File: blueprint-recipe-default.R

package info (click to toggle)
r-cran-hardhat 1.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,656 kB
  • sloc: sh: 13; makefile: 2
file content (668 lines) | stat: -rw-r--r-- 20,205 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
#' Default recipe blueprint
#'
#' This pages holds the details for the recipe preprocessing blueprint. This
#' is the blueprint used by default from `mold()` if `x` is a recipe.
#'
#' @inheritParams new_recipe_blueprint
#'
#' @param x An unprepped recipe created from [recipes::recipe()].
#'
#' @param data A data frame or matrix containing the outcomes and predictors.
#'
#' @param blueprint A preprocessing `blueprint`. If left as `NULL`, then a
#' [default_recipe_blueprint()] is used.
#'
#' @param ... Not used.
#'
#' @return
#'
#' For `default_recipe_blueprint()`, a recipe blueprint.
#'
#' @section Mold:
#'
#' When `mold()` is used with the default recipe blueprint:
#'
#' - It calls [recipes::prep()] to prep the recipe.
#'
#' - It calls [recipes::juice()] to extract the outcomes and predictors. These
#' are returned as tibbles.
#'
#' - If `intercept = TRUE`, adds an intercept column to the predictors.
#'
#' @section Forge:
#'
#' When `forge()` is used with the default recipe blueprint:
#'
#' - It calls [shrink()] to trim `new_data` to only the required columns and
#' coerce `new_data` to a tibble.
#'
#' - It calls [scream()] to perform validation on the structure of the columns
#' of `new_data`.
#'
#' - It calls [recipes::bake()] on the `new_data` using the prepped recipe
#' used during training.
#'
#' - It adds an intercept column onto `new_data` if `intercept = TRUE`.
#'
#' @export
#' @examples
#' library(recipes)
#'
#' # ---------------------------------------------------------------------------
#' # Setup
#'
#' train <- iris[1:100, ]
#' test <- iris[101:150, ]
#'
#' # ---------------------------------------------------------------------------
#' # Recipes example
#'
#' # Create a recipe that logs a predictor
#' rec <- recipe(Species ~ Sepal.Length + Sepal.Width, train) %>%
#'   step_log(Sepal.Length)
#'
#' processed <- mold(rec, train)
#'
#' # Sepal.Length has been logged
#' processed$predictors
#'
#' processed$outcomes
#'
#' # The underlying blueprint is a prepped recipe
#' processed$blueprint$recipe
#'
#' # Call forge() with the blueprint and the test data
#' # to have it preprocess the test data in the same way
#' forge(test, processed$blueprint)
#'
#' # Use `outcomes = TRUE` to also extract the preprocessed outcome!
#' # This logged the Sepal.Length column of `new_data`
#' forge(test, processed$blueprint, outcomes = TRUE)
#'
#' # ---------------------------------------------------------------------------
#' # With an intercept
#'
#' # You can add an intercept with `intercept = TRUE`
#' processed <- mold(rec, train, blueprint = default_recipe_blueprint(intercept = TRUE))
#'
#' processed$predictors
#'
#' # But you also could have used a recipe step
#' rec2 <- step_intercept(rec)
#'
#' mold(rec2, iris)$predictors
#'
#' # ---------------------------------------------------------------------------
#' # Matrix output for predictors
#'
#' # You can change the `composition` of the predictor data set
#' bp <- default_recipe_blueprint(composition = "dgCMatrix")
#' processed <- mold(rec, train, blueprint = bp)
#' class(processed$predictors)
#'
#' @examplesIf utils::packageVersion("recipes") >= "0.2.0.9002"
#' # ---------------------------------------------------------------------------
#' # Non standard roles
#'
#' # If you have custom recipes roles, they are assumed to be required at
#' # `bake()` time when passing in `new_data`. This is an assumption that both
#' # recipes and hardhat makes, meaning that those roles are required at
#' # `forge()` time as well.
#' rec_roles <- recipe(train) %>%
#'   update_role(Sepal.Width, new_role = "predictor") %>%
#'   update_role(Species, new_role = "outcome") %>%
#'   update_role(Sepal.Length, new_role = "id") %>%
#'   update_role(Petal.Length, new_role = "important")
#'
#' processed_roles <- mold(rec_roles, train)
#'
#' # The custom roles will be in the `mold()` result in case you need
#' # them for modeling.
#' processed_roles$extras
#'
#' # And they are in the `forge()` result
#' forge(test, processed_roles$blueprint)$extras
#'
#' # If you remove a column with a custom role from the test data, then you
#' # won't be able to `forge()` even though this recipe technically didn't
#' # use that column in any steps
#' test2 <- test
#' test2$Petal.Length <- NULL
#' try(forge(test2, processed_roles$blueprint))
#'
#' # Most of the time, if you find yourself in the above scenario, then we
#' # suggest that you remove `Petal.Length` from the data that is supplied to
#' # the recipe. If that isn't an option, you can declare that that column
#' # isn't required at `bake()` time by using `update_role_requirements()`
#' rec_roles <- update_role_requirements(rec_roles, "important", bake = FALSE)
#' processed_roles <- mold(rec_roles, train)
#' forge(test2, processed_roles$blueprint)
default_recipe_blueprint <- function(intercept = FALSE,
                                     allow_novel_levels = FALSE,
                                     fresh = TRUE,
                                     composition = "tibble") {
  new_default_recipe_blueprint(
    intercept = intercept,
    allow_novel_levels = allow_novel_levels,
    fresh = fresh,
    composition = composition
  )
}

#' @param extra_role_ptypes A named list. The names are the unique non-standard
#' recipe roles (i.e. everything except `"predictors"` and `"outcomes"`). The
#' values are prototypes of the original columns with that role. These are
#' used for validation in `forge()`.
#'
#' @rdname new-default-blueprint
#' @export
new_default_recipe_blueprint <- function(intercept = FALSE,
                                         allow_novel_levels = FALSE,
                                         fresh = TRUE,
                                         composition = "tibble",
                                         ptypes = NULL,
                                         recipe = NULL,
                                         extra_role_ptypes = NULL,
                                         ...,
                                         subclass = character()) {
  new_recipe_blueprint(
    intercept = intercept,
    allow_novel_levels = allow_novel_levels,
    fresh = fresh,
    composition = composition,
    ptypes = ptypes,
    recipe = recipe,
    extra_role_ptypes = extra_role_ptypes,
    ...,
    subclass = c(subclass, "default_recipe_blueprint")
  )
}

#' @export
refresh_blueprint.default_recipe_blueprint <- function(blueprint) {
  do.call(new_default_recipe_blueprint, as.list(blueprint))
}

# ------------------------------------------------------------------------------

#' @rdname run-mold
#' @export
run_mold.default_recipe_blueprint <- function(blueprint, ..., data) {
  check_dots_empty0(...)

  cleaned <- mold_recipe_default_clean(blueprint = blueprint, data = data)

  blueprint <- cleaned$blueprint
  data <- cleaned$data

  mold_recipe_default_process(blueprint = blueprint, data = data)
}

# ------------------------------------------------------------------------------
# mold - recipe - clean

mold_recipe_default_clean <- function(blueprint, data) {
  data <- check_is_data_like(data)

  new_mold_clean(blueprint, data)
}

# ------------------------------------------------------------------------------
# mold - recipe - process

mold_recipe_default_process <- function(blueprint, data) {

  # Prep for predictors and outcomes
  recipe <- recipes::prep(blueprint$recipe, training = data, fresh = blueprint$fresh)
  blueprint <- update_blueprint(blueprint, recipe = recipe)

  processed <- mold_recipe_default_process_predictors(blueprint = blueprint, data = data)

  blueprint <- processed$blueprint
  predictors <- processed$data
  predictors_ptype <- processed$ptype
  predictors_extras <- processed$extras

  processed <- mold_recipe_default_process_outcomes(blueprint = blueprint, data = data)

  blueprint <- processed$blueprint
  outcomes <- processed$data
  outcomes_ptype <- processed$ptype
  outcomes_extras <- processed$extras

  processed <- mold_recipe_default_process_extras(blueprint, data)

  blueprint <- processed$blueprint
  extras <- processed$extras

  extras <- c(
    extras,
    new_extras(predictors_extras, outcomes_extras)
  )

  # un-retain training data
  blueprint <- update_blueprint(blueprint, recipe = compost(blueprint$recipe))

  ptypes <- new_ptypes(predictors_ptype, outcomes_ptype)

  blueprint <- update_blueprint(blueprint, ptypes = ptypes)

  new_mold_process(predictors, outcomes, blueprint, extras)
}

mold_recipe_default_process_predictors <- function(blueprint, data) {
  all_predictors <- recipes::all_predictors

  predictors <- recipes::juice(blueprint$recipe, all_predictors())

  predictors <- maybe_add_intercept_column(predictors, blueprint$intercept)

  predictors <- recompose(predictors, blueprint$composition)

  ptype <- get_original_predictor_ptype(blueprint$recipe, data)

  new_mold_process_terms(
    blueprint = blueprint,
    data = predictors,
    ptype = ptype
  )
}

mold_recipe_default_process_outcomes <- function(blueprint, data) {
  all_outcomes <- recipes::all_outcomes

  outcomes <- recipes::juice(blueprint$recipe, all_outcomes())

  ptype <- get_original_outcome_ptype(blueprint$recipe, data)

  new_mold_process_terms(
    blueprint = blueprint,
    data = outcomes,
    ptype = ptype
  )
}

mold_recipe_default_process_extras <- function(blueprint, data) {

  # Capture original non standard role columns that exist in `data` and are also
  # required by the `recipe$requirements$bake` requirement. These columns are
  # also required in `new_data` at `bake()` time.
  original_extra_role_cols <- get_extra_role_columns_original(
    blueprint$recipe,
    data
  )

  if (!is.null(original_extra_role_cols)) {
    original_extra_role_ptypes <- lapply(original_extra_role_cols, extract_ptype)

    blueprint <- update_blueprint(
      blueprint,
      extra_role_ptypes = original_extra_role_ptypes
    )
  }

  # Return all of the processed non standard role columns.
  # These might be generated by `prep()` and could differ from the ones in the
  # original data.
  # These are not required in `new_data`, but we return them assuming the
  # developer may need them for model fitting purposes.
  processed_extra_role_cols <- get_extra_role_columns_processed(
    blueprint$recipe,
    recipes::juice(blueprint$recipe)
  )

  list(
    blueprint = blueprint,
    extras = list(roles = processed_extra_role_cols)
  )
}

# ------------------------------------------------------------------------------

#' @rdname run-forge
#' @export
run_forge.default_recipe_blueprint <- function(blueprint,
                                               new_data,
                                               ...,
                                               outcomes = FALSE) {
  check_dots_empty0(...)

  cleaned <- forge_recipe_default_clean(
    blueprint = blueprint,
    new_data = new_data,
    outcomes = outcomes
  )

  blueprint <- cleaned$blueprint
  predictors <- cleaned$predictors
  outcomes <- cleaned$outcomes
  extras <- cleaned$extras

  forge_recipe_default_process(
    blueprint = blueprint,
    predictors = predictors,
    outcomes = outcomes,
    extras = extras
  )
}

# ------------------------------------------------------------------------------

forge_recipe_default_clean <- function(blueprint, new_data, outcomes) {
  validate_is_new_data_like(new_data)
  validate_has_unique_column_names(new_data, "new_data")
  validate_is_bool(outcomes)

  predictors <- shrink(new_data, blueprint$ptypes$predictors)

  predictors <- scream(
    predictors,
    blueprint$ptypes$predictors,
    allow_novel_levels = blueprint$allow_novel_levels
  )

  if (outcomes) {
    outcomes <- shrink(new_data, blueprint$ptypes$outcomes)
    # Never allow novel levels for outcomes
    outcomes <- scream(outcomes, blueprint$ptypes$outcomes)
  } else {
    outcomes <- NULL
  }

  extras <- forge_recipe_default_clean_extras(blueprint, new_data)

  new_forge_clean(blueprint, predictors, outcomes, extras)
}

forge_recipe_default_clean_extras <- function(blueprint, new_data) {
  if (is.null(blueprint$extra_role_ptypes)) {
    extras <- list(roles = NULL)
    return(extras)
  }

  extra_role_cols <- map(
    blueprint$extra_role_ptypes,
    shrink,
    data = new_data
  )

  extra_role_cols <- map2(
    extra_role_cols,
    blueprint$extra_role_ptypes,
    scream,
    allow_novel_levels = blueprint$allow_novel_levels
  )

  extras <- list(roles = extra_role_cols)

  extras
}

# ------------------------------------------------------------------------------

forge_recipe_default_process <- function(blueprint, predictors, outcomes, extras) {
  rec <- blueprint$recipe
  vars <- rec$term_info$variable
  roles <- rec$term_info$role
  roles <- chr_explicit_na(roles)

  # Minimal name repair in case a predictor has multiple roles
  # We just want to include it once, but without any name repair
  new_data <- vec_cbind(
    predictors,
    outcomes,
    !!!unname(extras$roles),
    .name_repair = "minimal"
  )

  new_data_names <- names(new_data)
  unique_names <- unique(new_data_names)

  new_data <- new_data[, unique_names, drop = FALSE]

  # Can't move this inside core functions
  # predictors and outcomes both must be present
  baked_data <- recipes::bake(
    object = rec,
    new_data = new_data
  )

  processed_predictor_names <- vars[roles == "predictor"]
  predictors <- baked_data[, processed_predictor_names, drop = FALSE]

  if (!is.null(outcomes)) {
    processed_outcome_names <- vars[roles == "outcome"]
    outcomes <- baked_data[, processed_outcome_names, drop = FALSE]
  }

  processed <- forge_recipe_default_process_predictors(
    blueprint = blueprint,
    predictors = predictors
  )

  blueprint <- processed$blueprint
  predictors <- processed$data
  predictors_extras <- processed$extras

  processed <- forge_recipe_default_process_outcomes(
    blueprint = blueprint,
    outcomes = outcomes
  )

  blueprint <- processed$blueprint
  outcomes <- processed$data
  outcomes_extras <- processed$extras

  extras <- forge_recipe_default_process_extras(
    extras,
    rec,
    baked_data,
    predictors_extras,
    outcomes_extras
  )

  new_forge_process(predictors, outcomes, extras)
}

forge_recipe_default_process_predictors <- function(blueprint, predictors) {
  predictors <- maybe_add_intercept_column(predictors, blueprint$intercept)

  predictors <- recompose(predictors, blueprint$composition)

  new_forge_process_terms(
    blueprint = blueprint,
    data = predictors
  )
}

forge_recipe_default_process_outcomes <- function(blueprint, outcomes) {

  # no outcomes to process
  if (is.null(outcomes)) {
    result <- new_forge_process_terms(
      blueprint = blueprint,
      data = outcomes
    )
    return(result)
  }

  new_forge_process_terms(
    blueprint = blueprint,
    data = outcomes
  )
}

forge_recipe_default_process_extras <- function(extras,
                                                rec,
                                                baked_data,
                                                predictors_extras,
                                                outcomes_extras) {

  # Remove old roles slot
  extras$roles <- NULL

  # Get the processed extra role columns after `bake()` has been called.
  processed_extra_role_cols <- get_extra_role_columns_processed(
    rec,
    baked_data
  )

  extras <- c(
    extras,
    list(roles = processed_extra_role_cols),
    new_extras(predictors_extras, outcomes_extras)
  )

  extras
}

# ------------------------------------------------------------------------------

get_original_predictor_ptype <- function(rec, data) {
  roles <- rec$var_info$role
  roles <- chr_explicit_na(roles)

  original_names <- rec$var_info$variable[roles == "predictor"]
  original_names <- original_names[!is.na(original_names)]

  original_data <- data[, original_names, drop = FALSE]

  extract_ptype(original_data)
}

get_original_outcome_ptype <- function(rec, data) {
  roles <- rec$var_info$role
  roles <- chr_explicit_na(roles)

  original_names <- rec$var_info$variable[roles == "outcome"]

  original_data <- data[, original_names, drop = FALSE]

  extract_ptype(original_data)
}

get_extra_role_columns_original <- function(rec, data) {
  # Extra roles that existed before `prep()` has been called.
  # To get "extra" roles that are required at bake time:
  # - Compute the bake role requirements named logical vector.
  #   It has information about every role in the original data.
  # - Subset that vector to only `TRUE` locations, where the role is required
  # - Remove the `"predictor"` role (it is always required, but isn't "extra")
  info_type <- "var_info"

  requirements <- compute_bake_role_requirements(rec)

  # Filter down to the roles that are actually required
  requirements <- requirements[requirements]
  requirement_roles <- names(requirements)

  extra_roles <- setdiff(requirement_roles, "predictor")

  get_extra_role_columns(rec, data, extra_roles, info_type)
}
get_extra_role_columns_processed <- function(rec, data) {
  # Extra roles that exist after baking either the training data or testing
  # data (i.e. through `prep()` or `bake()`). This might include more or less
  # roles than in the original data, because steps may have created or removed
  # them along the way.
  info_type <- "term_info"

  data_roles <- rec[[info_type]][["role"]]
  data_roles <- chr_explicit_na(data_roles)

  extra_roles <- setdiff(data_roles, c("outcome", "predictor"))

  get_extra_role_columns(rec, data, extra_roles, info_type)
}

get_extra_role_columns <- function(rec, data, extra_roles, info_type) {
  has_any_extra_roles <- length(extra_roles) > 0

  if (!has_any_extra_roles) {
    return(NULL)
  }

  data_names <- colnames(data)

  recipe_names <- rec[[info_type]][["variable"]]
  recipe_roles <- rec[[info_type]][["role"]]
  recipe_roles <- chr_explicit_na(recipe_roles)

  out <- lapply(extra_roles, function(role) {
    role_names <- recipe_names[recipe_roles == role]

    # Must restrict to names that are actually in the `data` in case some
    # roles were declared as "not required" and columns with those roles weren't
    # passed to `forge()` through `new_data`.
    role_names <- intersect(role_names, data_names)

    data[, role_names, drop = FALSE]
  })

  names(out) <- extra_roles

  out
}

# ------------------------------------------------------------------------------

new_role_requirements <- function() {
  # recipes:::new_role_requirements()
  list(
    bake = new_bake_role_requirements()
  )
}
get_role_requirements <- function(recipe) {
  # recipes:::get_role_requirements()
  recipe$requirements %||% new_role_requirements()
}

new_bake_role_requirements <- function() {
  # recipes:::new_bake_role_requirements()
  set_names(logical(), nms = character())
}
get_bake_role_requirements <- function(recipe) {
  # recipes:::get_bake_role_requirements()
  requirements <- get_role_requirements(recipe)
  requirements$bake
}
default_bake_role_requirements <- function() {
  # recipes:::default_bake_role_requirements()
  c(
    "outcome" = FALSE,
    "predictor" = TRUE,
    "case_weights" = FALSE,
    "NA" = TRUE
  )
}
compute_bake_role_requirements <- function(recipe) {
  # recipes:::compute_bake_role_requirements()
  var_info <- recipe$var_info
  var_roles <- var_info$role
  var_roles <- chr_explicit_na(var_roles)
  var_roles <- unique(var_roles)

  # Start with default requirements
  requirements <- default_bake_role_requirements()

  # Drop unused default requirements
  requirements <- requirements[names(requirements) %in% var_roles]

  # Update with nonstandard roles in the recipe, which are required by default
  nonstandard_roles <- var_roles[!var_roles %in% names(requirements)]
  requirements[nonstandard_roles] <- TRUE

  # Override with `update_role_requirements()` changes
  user_requirements <- get_bake_role_requirements(recipe)
  requirements[names(user_requirements)] <- user_requirements

  requirements
}

chr_explicit_na <- function(x) {
  # recipes:::chr_explicit_na()
  # To turn `NA_character_` into `"NA"` because you can't match
  # against `NA_character_` when assigning with `[<-`
  x[is.na(x)] <- "NA"
  x
}