1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
#' Default XY blueprint
#'
#' This pages holds the details for the XY preprocessing blueprint. This
#' is the blueprint used by default from `mold()` if `x` and `y` are provided
#' separately (i.e. the XY interface is used).
#'
#' @inheritParams new-blueprint
#'
#' @param x A data frame or matrix containing the predictors.
#'
#' @param y A data frame, matrix, or vector containing the outcomes.
#'
#' @param blueprint A preprocessing `blueprint`. If left as `NULL`, then a
#' [default_xy_blueprint()] is used.
#'
#' @param ... Not used.
#'
#' @return
#'
#' For `default_xy_blueprint()`, an XY blueprint.
#'
#' @details
#'
#' As documented in [standardize()], if `y` is a _vector_, then the returned
#' outcomes tibble has 1 column with a standardized name of `".outcome"`.
#'
#' The one special thing about the XY method's forge function is the behavior of
#' `outcomes = TRUE` when a _vector_ `y` value was provided to the original
#' call to [mold()]. In that case, `mold()` converts `y` into a tibble, with
#' a default name of `.outcome`. This is the column that `forge()` will look
#' for in `new_data` to preprocess. See the examples section for a
#' demonstration of this.
#'
#' @section Mold:
#'
#' When `mold()` is used with the default xy blueprint:
#'
#' - It converts `x` to a tibble.
#'
#' - It adds an intercept column to `x` if `intercept = TRUE`.
#'
#' - It runs [standardize()] on `y`.
#'
#' @section Forge:
#'
#' When `forge()` is used with the default xy blueprint:
#'
#' - It calls [shrink()] to trim `new_data` to only the required columns and
#' coerce `new_data` to a tibble.
#'
#' - It calls [scream()] to perform validation on the structure of the columns
#' of `new_data`.
#'
#' - It adds an intercept column onto `new_data` if `intercept = TRUE`.
#'
#' @examples
#' # ---------------------------------------------------------------------------
#' # Setup
#'
#' train <- iris[1:100, ]
#' test <- iris[101:150, ]
#'
#' train_x <- train[, "Sepal.Length", drop = FALSE]
#' train_y <- train[, "Species", drop = FALSE]
#'
#' test_x <- test[, "Sepal.Length", drop = FALSE]
#' test_y <- test[, "Species", drop = FALSE]
#'
#' # ---------------------------------------------------------------------------
#' # XY Example
#'
#' # First, call mold() with the training data
#' processed <- mold(train_x, train_y)
#'
#' # Then, call forge() with the blueprint and the test data
#' # to have it preprocess the test data in the same way
#' forge(test_x, processed$blueprint)
#'
#' # ---------------------------------------------------------------------------
#' # Intercept
#'
#' processed <- mold(train_x, train_y, blueprint = default_xy_blueprint(intercept = TRUE))
#'
#' forge(test_x, processed$blueprint)
#'
#' # ---------------------------------------------------------------------------
#' # XY Method and forge(outcomes = TRUE)
#'
#' # You can request that the new outcome columns are preprocessed as well, but
#' # they have to be present in `new_data`!
#'
#' processed <- mold(train_x, train_y)
#'
#' # Can't do this!
#' try(forge(test_x, processed$blueprint, outcomes = TRUE))
#'
#' # Need to use the full test set, including `y`
#' forge(test, processed$blueprint, outcomes = TRUE)
#'
#' # With the XY method, if the Y value used in `mold()` is a vector,
#' # then a column name of `.outcome` is automatically generated.
#' # This name is what forge() looks for in `new_data`.
#'
#' # Y is a vector!
#' y_vec <- train_y$Species
#'
#' processed_vec <- mold(train_x, y_vec)
#'
#' # This throws an informative error that tell you
#' # to include an `".outcome"` column in `new_data`.
#' try(forge(iris, processed_vec$blueprint, outcomes = TRUE))
#'
#' test2 <- test
#' test2$.outcome <- test2$Species
#' test2$Species <- NULL
#'
#' # This works, and returns a tibble in the $outcomes slot
#' forge(test2, processed_vec$blueprint, outcomes = TRUE)
#'
#' # ---------------------------------------------------------------------------
#' # Matrix output for predictors
#'
#' # You can change the `composition` of the predictor data set
#' bp <- default_xy_blueprint(composition = "dgCMatrix")
#' processed <- mold(train_x, train_y, blueprint = bp)
#' class(processed$predictors)
#' @export
default_xy_blueprint <- function(intercept = FALSE,
allow_novel_levels = FALSE,
composition = "tibble") {
new_default_xy_blueprint(
intercept = intercept,
allow_novel_levels = allow_novel_levels,
composition = composition
)
}
#' Create a new default blueprint
#'
#' This page contains the constructors for the default blueprints. They can be
#' extended if you want to add extra behavior on top of what the default
#' blueprints already do, but generally you will extend the non-default versions
#' of the constructors found in the documentation for [new_blueprint()].
#'
#' @inheritParams new_xy_blueprint
#' @inheritParams new_formula_blueprint
#' @inheritParams new_recipe_blueprint
#'
#' @name new-default-blueprint
#' @export
new_default_xy_blueprint <- function(intercept = FALSE,
allow_novel_levels = FALSE,
composition = "tibble",
ptypes = NULL,
...,
subclass = character()) {
new_xy_blueprint(
intercept = intercept,
allow_novel_levels = allow_novel_levels,
composition = composition,
ptypes = ptypes,
...,
subclass = c(subclass, "default_xy_blueprint")
)
}
#' @export
refresh_blueprint.default_xy_blueprint <- function(blueprint) {
do.call(new_default_xy_blueprint, as.list(blueprint))
}
# ------------------------------------------------------------------------------
#' @param x A data frame or matrix containing the predictors.
#'
#' @param y A data frame, matrix, or vector containing the outcomes.
#'
#' @rdname run-mold
#' @export
run_mold.default_xy_blueprint <- function(blueprint, ..., x, y) {
check_dots_empty0(...)
cleaned <- mold_xy_default_clean(blueprint = blueprint, x = x, y = y)
blueprint <- cleaned$blueprint
x <- cleaned$x
y <- cleaned$y
mold_xy_default_process(blueprint = blueprint, x = x, y = y)
}
# ------------------------------------------------------------------------------
# mold - xy - clean
mold_xy_default_clean <- function(blueprint, x, y) {
cleaned <- mold_xy_default_clean_predictors(blueprint, x)
blueprint <- cleaned$blueprint
x <- cleaned$x
# Special case `y = NULL` as a 0 column variation on `x`
if (is.null(y)) {
y <- x[, 0L, drop = FALSE]
}
cleaned <- mold_xy_default_clean_outcomes(blueprint, y)
blueprint <- cleaned$blueprint
y <- cleaned$y
new_mold_clean_xy(blueprint, x, y)
}
mold_xy_default_clean_predictors <- function(blueprint, x) {
x <- tibble::as_tibble(x)
list(blueprint = blueprint, x = x)
}
mold_xy_default_clean_outcomes <- function(blueprint, y) {
y <- standardize(y)
list(blueprint = blueprint, y = y)
}
# ------------------------------------------------------------------------------
# mold - xy - process
mold_xy_default_process <- function(blueprint, x, y) {
processed <- mold_xy_default_process_predictors(blueprint, x)
blueprint <- processed$blueprint
predictors <- processed$data
predictors_ptype <- processed$ptype
predictors_extras <- processed$extras
processed <- mold_xy_default_process_outcomes(blueprint, y)
blueprint <- processed$blueprint
outcomes <- processed$data
outcomes_ptype <- processed$ptype
outcomes_extras <- processed$extras
ptypes <- new_ptypes(predictors_ptype, outcomes_ptype)
extras <- new_extras(predictors_extras, outcomes_extras)
blueprint <- update_blueprint(blueprint, ptypes = ptypes)
new_mold_process(predictors, outcomes, blueprint, extras)
}
mold_xy_default_process_predictors <- function(blueprint, x) {
# Important! Collect ptype before adding intercept!
ptype <- extract_ptype(x)
x <- maybe_add_intercept_column(x, blueprint$intercept)
x <- recompose(x, blueprint$composition)
new_mold_process_terms(
blueprint = blueprint,
data = x,
ptype = ptype
)
}
mold_xy_default_process_outcomes <- function(blueprint, y) {
ptype <- extract_ptype(y)
new_mold_process_terms(
blueprint = blueprint,
data = y,
ptype = ptype
)
}
# ------------------------------------------------------------------------------
#' @rdname run-forge
#' @export
run_forge.default_xy_blueprint <- function(blueprint,
new_data,
...,
outcomes = FALSE) {
check_dots_empty0(...)
cleaned <- forge_xy_default_clean(
blueprint = blueprint,
new_data = new_data,
outcomes = outcomes
)
blueprint <- cleaned$blueprint
predictors <- cleaned$predictors
outcomes <- cleaned$outcomes
extras <- cleaned$extras
forge_xy_default_process(
blueprint = blueprint,
predictors = predictors,
outcomes = outcomes,
extras = extras
)
}
# ------------------------------------------------------------------------------
forge_xy_default_clean <- function(blueprint, new_data, outcomes) {
validate_is_new_data_like(new_data)
validate_has_unique_column_names(new_data, "new_data")
validate_is_bool(outcomes)
predictors <- shrink(new_data, blueprint$ptypes$predictors)
predictors <- scream(
predictors,
blueprint$ptypes$predictors,
allow_novel_levels = blueprint$allow_novel_levels
)
if (outcomes) {
outcomes <- shrink(new_data, blueprint$ptypes$outcomes)
# Never allow novel levels for outcomes
outcomes <- scream(outcomes, blueprint$ptypes$outcomes)
} else {
outcomes <- NULL
}
new_forge_clean(blueprint, predictors, outcomes)
}
# ------------------------------------------------------------------------------
forge_xy_default_process <- function(blueprint, predictors, outcomes, extras) {
processed <- forge_xy_default_process_predictors(blueprint, predictors)
blueprint <- processed$blueprint
predictors <- processed$data
predictors_extras <- processed$extras
processed <- forge_xy_default_process_outcomes(blueprint, outcomes)
blueprint <- processed$blueprint
outcomes <- processed$data
outcomes_extras <- processed$extras
extras <- c(
extras,
new_extras(predictors_extras, outcomes_extras)
)
new_forge_process(predictors, outcomes, extras)
}
forge_xy_default_process_predictors <- function(blueprint, predictors) {
predictors <- maybe_add_intercept_column(predictors, blueprint$intercept)
predictors <- recompose(predictors, blueprint$composition)
new_forge_process_terms(
blueprint = blueprint,
data = predictors
)
}
forge_xy_default_process_outcomes <- function(blueprint, outcomes) {
# no outcomes to process
if (is.null(outcomes)) {
result <- new_forge_process_terms(
blueprint = blueprint,
data = outcomes
)
return(result)
}
new_forge_process_terms(
blueprint = blueprint,
data = outcomes
)
}
|