1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
#' Create a new preprocessing blueprint
#'
#' @description
#'
#' These are the base classes for creating new preprocessing blueprints. All
#' blueprints inherit from the one created by `new_blueprint()`, and the default
#' method specific blueprints inherit from the other three here.
#'
#' If you want to create your own processing blueprint for a specific method,
#' generally you will subclass one of the method specific blueprints here. If
#' you want to create a completely new preprocessing blueprint for a totally new
#' preprocessing method (i.e. not the formula, xy, or recipe method) then
#' you should subclass `new_blueprint()`.
#'
#' In addition to creating a blueprint subclass, you will likely also need to
#' provide S3 methods for [run_mold()] and [run_forge()] for your subclass.
#'
#' @param intercept A logical. Should an intercept be included in the
#' processed data? This information is used by the `process` function
#' in the `mold` and `forge` function list.
#'
#' @param allow_novel_levels A logical. Should novel factor levels be allowed at
#' prediction time? This information is used by the `clean` function in the
#' `forge` function list, and is passed on to [scream()].
#'
#' @param composition Either "tibble", "matrix", or "dgCMatrix" for the format
#' of the processed predictors. If "matrix" or "dgCMatrix" are chosen, all of
#' the predictors must be numeric after the preprocessing method has been
#' applied; otherwise an error is thrown.
#'
#' @param ptypes Either `NULL`, or a named list with 2 elements, `predictors`
#' and `outcomes`, both of which are 0-row tibbles. `ptypes` is generated
#' automatically at [mold()] time and is used to validate `new_data` at
#' prediction time.
#'
#' @param ... Name-value pairs for additional elements of blueprints that
#' subclass this blueprint.
#'
#' @param subclass A character vector. The subclasses of this blueprint.
#'
#' @return
#'
#' A preprocessing blueprint, which is a list containing the inputs used as
#' arguments to the function, along with a class specific to the type
#' of blueprint being created.
#'
#' @name new-blueprint
#' @export
new_blueprint <- function(intercept = FALSE,
allow_novel_levels = FALSE,
composition = "tibble",
ptypes = NULL,
...,
subclass = character()) {
validate_is_bool(intercept)
validate_is_bool(allow_novel_levels)
validate_composition(composition)
validate_is_ptype_list_or_null(ptypes)
validate_is_character(subclass, "subclass")
elems <- list(
intercept = intercept,
allow_novel_levels = allow_novel_levels,
composition = composition,
ptypes = ptypes
)
new_elems <- list(...)
validate_has_unique_names(new_elems, "...")
elems <- c(elems, new_elems)
structure(elems, class = c(subclass, "hardhat_blueprint"))
}
# ------------------------------------------------------------------------------
#' Refresh a preprocessing blueprint
#'
#' `refresh_blueprint()` is a developer facing generic function that is called
#' at the end of [update_blueprint()]. It simply is a wrapper around the
#' method specific `new_*_blueprint()` function that runs the updated blueprint
#' through the constructor again to ensure that all of the elements of the
#' blueprint are still valid after the update.
#'
#' If you implement your own custom `blueprint`, you should export a
#' `refresh_blueprint()` method that just calls the constructor for your blueprint
#' and passes through all of the elements of the blueprint to the constructor.
#'
#' @param blueprint A preprocessing blueprint.
#'
#' @return
#'
#' `blueprint` is returned after a call to the corresponding constructor.
#'
#' @examples
#'
#' blueprint <- default_xy_blueprint()
#'
#' # This should never be done manually, but is essentially
#' # what `update_blueprint(blueprint, intercept = TRUE)` does for you
#' blueprint$intercept <- TRUE
#'
#' # Then update_blueprint() will call refresh_blueprint()
#' # to ensure that the structure is correct
#' refresh_blueprint(blueprint)
#'
#' # So you can't do something like...
#' blueprint_bad <- blueprint
#' blueprint_bad$intercept <- 1
#'
#' # ...because the constructor will catch it
#' try(refresh_blueprint(blueprint_bad))
#'
#' # And update_blueprint() catches this automatically
#' try(update_blueprint(blueprint, intercept = 1))
#' @export
refresh_blueprint <- function(blueprint) {
UseMethod("refresh_blueprint")
}
#' @export
refresh_blueprint.hardhat_blueprint <- function(blueprint) {
do.call(new_blueprint, as.list(blueprint))
}
# ------------------------------------------------------------------------------
#' Update a preprocessing blueprint
#'
#' @description
#'
#' `update_blueprint()` is the correct way to alter elements of an existing
#' `blueprint` object. It has two benefits over just doing
#' `blueprint$elem <- new_elem`.
#'
#' - The name you are updating _must_ already exist in the blueprint. This prevents
#' you from accidentally updating non-existent elements.
#'
#' - The constructor for the blueprint is automatically run after the update by
#' `refresh_blueprint()` to ensure that the blueprint is still valid.
#'
#' @inheritParams refresh_blueprint
#'
#' @param ... Name-value pairs of _existing_ elements in `blueprint` that should
#' be updated.
#'
#' @examples
#'
#' blueprint <- default_xy_blueprint()
#'
#' # `intercept` defaults to FALSE
#' blueprint
#'
#' update_blueprint(blueprint, intercept = TRUE)
#'
#' # Can't update non-existent elements
#' try(update_blueprint(blueprint, intercpt = TRUE))
#'
#' # Can't add non-valid elements
#' try(update_blueprint(blueprint, intercept = 1))
#' @export
update_blueprint <- function(blueprint, ...) {
validate_is_blueprint(blueprint)
changes <- list2(...)
if (!has_unique_names(changes)) {
glubort("`...` must have unique names.")
}
new_nms <- names(changes)
old_nms <- names(blueprint)
for (nm in new_nms) {
if (!(nm %in% old_nms)) {
glubort(
"All elements to change must already exist. `{nm}` is a new field."
)
}
# this nukes elements if we set them to NULL
blueprint[[nm]] <- changes[[nm]]
}
refresh_blueprint(blueprint)
}
# ------------------------------------------------------------------------------
#' Is `x` a preprocessing blueprint?
#'
#' `is_blueprint()` checks if `x` inherits from `"hardhat_blueprint"`.
#'
#' @param x An object.
#'
#' @examples
#' is_blueprint(default_xy_blueprint())
#' @export
is_blueprint <- function(x) {
inherits(x, "hardhat_blueprint")
}
# ------------------------------------------------------------------------------
validate_is_or_null <- function(.x, .f, .expected, .x_nm, .note = "") {
# capture name first
if (is_missing(.x_nm)) {
.x_nm <- as_label(enexpr(.x))
}
if (is.null(.x)) {
return(invisible(.x))
}
validate_is(.x, .f, .expected, .x_nm, .note)
}
validate_is_ptype_list_or_null <- function(.x, .x_nm) {
if (is_missing(.x_nm)) {
.x_nm <- as_label(enexpr(.x))
}
if (is.null(.x)) {
return(invisible(.x))
}
validate_has_name(.x, .x_nm, "predictors")
validate_has_name(.x, .x_nm, "outcomes")
validate_is_0_row_tibble(.x$predictors, glue("{.x_nm}$predictors"))
validate_is_0_row_tibble(.x$outcomes, glue("{.x_nm}$outcomes"))
invisible(.x)
}
validate_is_0_row_tibble <- function(.x, .x_nm) {
validate_is(.x, tibble::is_tibble, "tibble", .x_nm)
.n <- nrow(.x)
if (.n != 0) {
glubort("`{.x_nm}` must be a tibble of size 0, not {.n}.")
}
invisible(.x)
}
validate_has_name <- function(.x, .x_nm, .nm) {
if (!tibble::has_name(.x, .nm)) {
glubort("`{.x_nm}` must have an element named '{.nm}'.")
}
invisible(.x)
}
validate_is_character <- function(.x, .x_nm) {
validate_is(
.x,
is_character,
"character",
.x_nm
)
}
|