1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
#' Importance weights
#'
#' @description
#' `r lifecycle::badge("experimental")`
#'
#' `importance_weights()` creates a vector of importance weights which allow you
#' to apply a context dependent weight to your observations. Importance weights
#' are supplied as a non-negative double vector, where fractional values are
#' allowed.
#'
#' @param x A double vector.
#'
#' @return A new importance weights vector.
#'
#' @seealso
#' [frequency_weights()]
#'
#' @export
#' @examples
#' importance_weights(c(1.5, 2.3, 10))
importance_weights <- function(x) {
x <- vec_cast_named(x, to = double(), x_arg = "x")
if (any(x < 0, na.rm = TRUE)) {
abort("`x` can't contain negative weights.")
}
new_importance_weights(x)
}
#' Construct an importance weights vector
#'
#' @description
#' `r lifecycle::badge("experimental")`
#'
#' `new_importance_weights()` is a developer oriented function for constructing
#' a new importance weights vector. Generally, you should use
#' [importance_weights()] instead.
#'
#' @inheritParams vctrs::new_vctr
#'
#' @param x A double vector.
#'
#' @return A new importance weights vector.
#'
#' @export
#' @examples
#' new_importance_weights()
#' new_importance_weights(c(1.5, 2.3, 10))
new_importance_weights <- function(x = double(), ..., class = character()) {
if (!is.double(x)) {
abort("`x` must be a double vector.")
}
new_case_weights(
x = x,
...,
class = c(class, "hardhat_importance_weights")
)
}
#' Is `x` an importance weights vector?
#'
#' @description
#' `r lifecycle::badge("experimental")`
#'
#' `is_importance_weights()` checks if `x` inherits from
#' `"hardhat_importance_weights"`.
#'
#' @param x An object.
#'
#' @return A single `TRUE` or `FALSE`.
#'
#' @export
#' @examples
#' is_importance_weights(1)
#' is_importance_weights(frequency_weights(1))
#' is_importance_weights(importance_weights(1))
is_importance_weights <- function(x) {
inherits(x, "hardhat_importance_weights")
}
#' @export
vec_ptype2.hardhat_importance_weights.hardhat_importance_weights <- function(x, y, ...) {
x
}
#' @export
vec_cast.hardhat_importance_weights.hardhat_importance_weights <- function(x, to, ...) {
x
}
#' @export
vec_cast.double.hardhat_importance_weights <- function(x, to, ...) {
unstructure(x)
}
#' @export
vec_ptype_full.hardhat_importance_weights <- function(x, ...) {
"importance_weights"
}
#' @export
vec_ptype_abbr.hardhat_importance_weights <- function(x, ...) {
"imp_wts"
}
# ------------------------------------------------------------------------------
#' Frequency weights
#'
#' @description
#' `r lifecycle::badge("experimental")`
#'
#' `frequency_weights()` creates a vector of frequency weights which allow you
#' to compactly repeat an observation a set number of times. Frequency weights
#' are supplied as a non-negative integer vector, where only whole numbers are
#' allowed.
#'
#' @param x An integer vector.
#'
#' @return A new frequency weights vector.
#'
#' @seealso
#' [importance_weights()]
#'
#' @export
#' @examples
#' # Record that the first observation has 10 replicates, the second has 12
#' # replicates, and so on
#' frequency_weights(c(10, 12, 2, 1))
#'
#' # Fractional values are not allowed
#' try(frequency_weights(c(1.5, 2.3, 10)))
frequency_weights <- function(x) {
x <- vec_cast_named(x, to = integer(), x_arg = "x")
if (any(x < 0L, na.rm = TRUE)) {
abort("`x` can't contain negative weights.")
}
new_frequency_weights(x)
}
#' Construct a frequency weights vector
#'
#' @description
#' `r lifecycle::badge("experimental")`
#'
#' `new_frequency_weights()` is a developer oriented function for constructing
#' a new frequency weights vector. Generally, you should use
#' [frequency_weights()] instead.
#'
#' @inheritParams vctrs::new_vctr
#'
#' @param x An integer vector.
#'
#' @return A new frequency weights vector.
#'
#' @export
#' @examples
#' new_frequency_weights()
#' new_frequency_weights(1:5)
new_frequency_weights <- function(x = integer(), ..., class = character()) {
if (!is.integer(x)) {
abort("`x` must be an integer vector.")
}
new_case_weights(
x = x,
...,
class = c(class, "hardhat_frequency_weights")
)
}
#' Is `x` a frequency weights vector?
#'
#' @description
#' `r lifecycle::badge("experimental")`
#'
#' `is_frequency_weights()` checks if `x` inherits from
#' `"hardhat_frequency_weights"`.
#'
#' @param x An object.
#'
#' @return A single `TRUE` or `FALSE`.
#'
#' @export
#' @examples
#' is_frequency_weights(1)
#' is_frequency_weights(frequency_weights(1))
#' is_frequency_weights(importance_weights(1))
is_frequency_weights <- function(x) {
inherits(x, "hardhat_frequency_weights")
}
#' @export
vec_ptype2.hardhat_frequency_weights.hardhat_frequency_weights <- function(x, y, ...) {
x
}
#' @export
vec_cast.hardhat_frequency_weights.hardhat_frequency_weights <- function(x, to, ...) {
x
}
#' @export
vec_cast.integer.hardhat_frequency_weights <- function(x, to, ...) {
unstructure(x)
}
#' @export
vec_cast.double.hardhat_frequency_weights <- function(x, to, ...) {
x <- unstructure(x)
vec_cast_named(x, to = double(), ...)
}
#' @export
vec_ptype_full.hardhat_frequency_weights <- function(x, ...) {
"frequency_weights"
}
#' @export
vec_ptype_abbr.hardhat_frequency_weights <- function(x, ...) {
"freq_wts"
}
# ------------------------------------------------------------------------------
#' Extend case weights
#'
#' @description
#' `r lifecycle::badge("experimental")`
#'
#' `new_case_weights()` is a developer oriented function for constructing a new
#' case weights type. The `<case_weights>` type itself is an _abstract_ type
#' with very little functionality. Because of this, `class` is a required
#' argument.
#'
#' @inheritParams vctrs::new_vctr
#'
#' @param x An integer or double vector.
#'
#' @return A new subclassed case weights vector.
#'
#' @export
#' @examples
#' new_case_weights(1:5, class = "my_weights")
new_case_weights <- function(x, ..., class) {
if (!is.integer(x) && !is.double(x)) {
abort("`x` must be an integer or double vector.")
}
new_vctr(
.data = x,
...,
class = c(class, "hardhat_case_weights"),
inherit_base_type = FALSE
)
}
#' Is `x` a case weights vector?
#'
#' @description
#' `r lifecycle::badge("experimental")`
#'
#' `is_case_weights()` checks if `x` inherits from `"hardhat_case_weights"`.
#'
#' @param x An object.
#'
#' @return A single `TRUE` or `FALSE`.
#'
#' @export
#' @examples
#' is_case_weights(1)
#' is_case_weights(frequency_weights(1))
is_case_weights <- function(x) {
inherits(x, "hardhat_case_weights")
}
# ------------------------------------------------------------------------------
unstructure <- function(x) {
attributes(x) <- list(names = vec_names(x))
x
}
|