1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
#' Construct a design matrix
#'
#' `model_matrix()` is a stricter version of [stats::model.matrix()]. Notably,
#' `model_matrix()` will _never_ drop rows, and the result will be a tibble.
#'
#' @param terms A terms object to construct a model matrix with. This is
#' typically the terms object returned from the corresponding call to
#' [model_frame()].
#'
#' @param data A tibble to construct the design matrix with. This is
#' typically the tibble returned from the corresponding call to
#' [model_frame()].
#'
#' @details
#'
#' The following explains the rationale for some of the difference in arguments
#' compared to [stats::model.matrix()]:
#'
#' - `contrasts.arg`: Set the contrasts argument, `options("contrasts")`
#' globally, or assign a contrast to the factor of interest directly using
#' [stats::contrasts()]. See the examples section.
#'
#' - `xlev`: Not allowed because `model.frame()` is never called, so it is
#' unnecessary.
#'
#' - `...`: Not allowed because the default method of `model.matrix()` does
#' not use it, and the `lm` method uses it to pass potential offsets and
#' weights through, which are handled differently in hardhat.
#'
#' @return
#'
#' A tibble containing the design matrix.
#'
#' @examples
#' # ---------------------------------------------------------------------------
#' # Example usage
#'
#' framed <- model_frame(Sepal.Width ~ Species, iris)
#'
#' model_matrix(framed$terms, framed$data)
#'
#' # ---------------------------------------------------------------------------
#' # Missing values never result in dropped rows
#'
#' iris2 <- iris
#' iris2$Species[1] <- NA
#'
#' framed2 <- model_frame(Sepal.Width ~ Species, iris2)
#'
#' model_matrix(framed2$terms, framed2$data)
#'
#' # ---------------------------------------------------------------------------
#' # Contrasts
#'
#' # Default contrasts
#' y <- factor(c("a", "b"))
#' x <- data.frame(y = y)
#' framed <- model_frame(~y, x)
#'
#' # Setting contrasts directly
#' y_with_contrast <- y
#' contrasts(y_with_contrast) <- contr.sum(2)
#' x2 <- data.frame(y = y_with_contrast)
#' framed2 <- model_frame(~y, x2)
#'
#' # Compare!
#' model_matrix(framed$terms, framed$data)
#' model_matrix(framed2$terms, framed2$data)
#'
#' # Also, can set the contrasts globally
#' global_override <- c(unordered = "contr.sum", ordered = "contr.poly")
#'
#' rlang::with_options(
#' .expr = {
#' model_matrix(framed$terms, framed$data)
#' },
#' contrasts = global_override
#' )
#' @export
model_matrix <- function(terms, data) {
validate_is_terms(terms)
data <- check_is_data_like(data)
# otherwise model.matrix() will try and run model.frame() for us on data
# but we definitely don't want this, as we have already done it and it can
# actually error out if we don't prevent it from running
attr(data, "terms") <- terms
predictors <- with_options(
model.matrix(object = terms, data = data),
na.action = "na.pass"
)
predictors <- strip_model_matrix(predictors)
tibble::as_tibble(predictors)
}
strip_model_matrix <- function(x) {
colnames <- colnames(x)
dimnames <- list(NULL, colnames)
dim <- dim(x)
attrs <- list(dim = dim, dimnames = dimnames)
attributes(x) <- attrs
x
}
is_terms <- function(x) {
inherits(x, "terms")
}
validate_is_terms <- function(.x, .x_nm) {
if (is_missing(.x_nm)) {
.x_nm <- as_label(enexpr(.x))
}
validate_is(.x, is_terms, "terms object", .x_nm)
}
# ------------------------------------------------------------------------------
model_matrix_one_hot <- function(terms, data) {
validate_is_terms(terms)
data <- check_is_data_like(data)
n_cols <- length(data)
# Convert character to factor ahead of time
# so we can apply the one hot contrast
for (i in seq_len(n_cols)) {
col <- data[[i]]
if (is.character(col)) {
data[[i]] <- factor(col)
}
}
# Locate unordered factors only
indicator_unordered_factors <- vapply(data, is_unordered_factor, logical(1))
names <- names(data)
names <- names[indicator_unordered_factors]
# Pre-assign the `contrasts<-` of each unordered factor using
# `contr_one_hot()` so `model.matrix()` doesn't overwrite them with the
# default that comes from `getOption("contrasts")`
for (name in names) {
col <- data[[name]]
lvls <- levels(col)
n <- length(lvls)
contrasts <- contr_one_hot(lvls)
data[[name]] <- assign_contrasts(col, n, contrasts)
}
model_matrix(terms, data)
}
#' Contrast function for one-hot encodings
#'
#' This contrast function produces a model matrix that has indicator columns for
#' each level of each factor.
#'
#' @param n A vector of character factor levels or the number of unique levels.
#' @param contrasts This argument is for backwards compatibility and only the
#' default of `TRUE` is supported.
#' @param sparse This argument is for backwards compatibility and only the
#' default of `FALSE` is supported.
#'
#' @return A diagonal matrix that is `n`-by-`n`.
#'
#' @keywords internal
contr_one_hot <- function(n, contrasts = TRUE, sparse = FALSE) {
if (sparse) {
warn("`sparse = TRUE` not implemented for `contr_one_hot()`.")
}
if (!contrasts) {
warn("`contrasts = FALSE` not implemented for `contr_one_hot()`.")
}
if (is.character(n)) {
names <- n
n <- length(names)
} else if (is.numeric(n)) {
n <- as.integer(n)
if (length(n) != 1L) {
abort("`n` must have length 1 when an integer is provided.")
}
names <- as.character(seq_len(n))
} else {
abort("`n` must be a character vector or an integer of size 1.")
}
out <- diag(n)
rownames(out) <- names
colnames(out) <- names
out
}
is_unordered_factor <- function(x) {
inherits(x, "factor") && !inherits(x, "ordered")
}
assign_contrasts <- function(x, how_many, value) {
stats::`contrasts<-`(x, how_many, value)
}
|