File: scream.R

package info (click to toggle)
r-cran-hardhat 1.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,656 kB
  • sloc: sh: 13; makefile: 2
file content (309 lines) | stat: -rw-r--r-- 9,648 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#' \if{html}{\Sexpr[stage=render,results=rd]{"\U0001f631"}} Scream.
#'
#' @description
#'
#' `scream()` ensures that the structure of `data` is the same as
#' prototype, `ptype`. Under the hood, [vctrs::vec_cast()] is used, which
#' casts each column of `data` to the same type as the corresponding
#' column in `ptype`.
#'
#' This casting enforces a number of important structural checks,
#' including but not limited to:
#'
#' - _Data Classes_ - Checks that the class of each column in `data` is the
#' same as the corresponding column in `ptype`.
#'
#' - _Novel Levels_ - Checks that the factor columns in `data` don't have any
#' _new_ levels when compared with the `ptype` columns. If there are new
#' levels, a warning is issued and they are coerced to `NA`. This check is
#' optional, and can be turned off with `allow_novel_levels = TRUE`.
#'
#' - _Level Recovery_ - Checks that the factor columns in `data` aren't
#' missing any factor levels when compared with the `ptype` columns. If
#' there are missing levels, then they are restored.
#'
#' @details
#'
#' `scream()` is called by [forge()] after [shrink()] but before the
#' actual processing is done. Generally, you don't need to call `scream()`
#' directly, as `forge()` will do it for you.
#'
#' If `scream()` is used as a standalone function, it is good practice to call
#' [shrink()] right before it as there are no checks in `scream()` that ensure
#' that all of the required column names actually exist in `data`. Those
#' checks exist in `shrink()`.
#'
#' @section Factor Levels:
#'
#' `scream()` tries to be helpful by recovering missing factor levels and
#' warning about novel levels. The following graphic outlines how `scream()`
#' handles factor levels when coercing _from_ a column in `data` _to_ a
#' column in `ptype`.
#'
#' \figure{factor-handling.png}
#'
#' Note that ordered factor handing is much stricter than factor handling.
#' Ordered factors in `data` must have _exactly_ the same levels as ordered
#' factors in `ptype`.
#'
#' @param data A data frame containing the new data to check the structure
#' of.
#'
#' @param ptype A data frame prototype to cast `data` to. This is commonly
#' a 0-row slice of the training set.
#'
#' @param allow_novel_levels Should novel factor levels in `data` be allowed?
#' The safest approach is the default, which throws a warning when novel levels
#' are found, and coerces them to `NA` values. Setting this argument to `TRUE`
#' will ignore all novel levels. This argument does not apply to ordered
#' factors. Novel levels are not allowed in ordered factors because the
#' level ordering is a critical part of the type.
#'
#' @return
#'
#' A tibble containing the required columns after any required structural
#' modifications have been made.
#'
#' @examples
#' # ---------------------------------------------------------------------------
#' # Setup
#'
#' train <- iris[1:100, ]
#' test <- iris[101:150, ]
#'
#' # mold() is run at model fit time
#' # and a formula preprocessing blueprint is recorded
#' x <- mold(log(Sepal.Width) ~ Species, train)
#'
#' # Inside the result of mold() are the prototype tibbles
#' # for the predictors and the outcomes
#' ptype_pred <- x$blueprint$ptypes$predictors
#' ptype_out <- x$blueprint$ptypes$outcomes
#'
#' # ---------------------------------------------------------------------------
#' # shrink() / scream()
#'
#' # Pass the test data, along with a prototype, to
#' # shrink() to extract the prototype columns
#' test_shrunk <- shrink(test, ptype_pred)
#'
#' # Now pass that to scream() to perform validation checks
#' # If no warnings / errors are thrown, the checks were
#' # successful!
#' scream(test_shrunk, ptype_pred)
#'
#' # ---------------------------------------------------------------------------
#' # Outcomes
#'
#' # To also extract the outcomes, use the outcome prototype
#' test_outcome <- shrink(test, ptype_out)
#' scream(test_outcome, ptype_out)
#'
#' # ---------------------------------------------------------------------------
#' # Casting
#'
#' # scream() uses vctrs::vec_cast() to intelligently convert
#' # new data to the prototype automatically. This means
#' # it can automatically perform certain conversions, like
#' # coercing character columns to factors.
#' test2 <- test
#' test2$Species <- as.character(test2$Species)
#'
#' test2_shrunk <- shrink(test2, ptype_pred)
#' scream(test2_shrunk, ptype_pred)
#'
#' # It can also recover missing factor levels.
#' # For example, it is plausible that the test data only had the
#' # "virginica" level
#' test3 <- test
#' test3$Species <- factor(test3$Species, levels = "virginica")
#'
#' test3_shrunk <- shrink(test3, ptype_pred)
#' test3_fixed <- scream(test3_shrunk, ptype_pred)
#'
#' # scream() recovered the missing levels
#' levels(test3_fixed$Species)
#'
#' # ---------------------------------------------------------------------------
#' # Novel levels
#'
#' # When novel levels with any data are present in `data`, the default
#' # is to coerce them to `NA` values with a warning.
#' test4 <- test
#' test4$Species <- as.character(test4$Species)
#' test4$Species[1] <- "new_level"
#'
#' test4$Species <- factor(
#'   test4$Species,
#'   levels = c(levels(test$Species), "new_level")
#' )
#'
#' test4 <- shrink(test4, ptype_pred)
#'
#' # Warning is thrown
#' test4_removed <- scream(test4, ptype_pred)
#'
#' # Novel level is removed
#' levels(test4_removed$Species)
#'
#' # No warning is thrown
#' test4_kept <- scream(test4, ptype_pred, allow_novel_levels = TRUE)
#'
#' # Novel level is kept
#' levels(test4_kept$Species)
#' @export
scream <- function(data, ptype, allow_novel_levels = FALSE) {
  vec_assert(allow_novel_levels, ptype = logical(), size = 1L)

  if (is.null(data)) {
    return(NULL)
  }

  data <- check_is_data_like(data, "data")

  if (allow_novel_levels) {
    ptype <- add_novel_levels_to_ptype(ptype, data)
  } else {
    data <- remove_novel_levels(data, ptype)
  }

  vec_cast(data, ptype)
}

# ------------------------------------------------------------------------------

# vec_cast() throws an error for any lossy cast. This means that novel factor
# levels in the test data throw an error. For most modeling purposes,
# it is better to convert these to `NA` values, with a warning. We handle this
# before handing off to vctrs, checking each factor column to ensure that there
# are no novel levels.

remove_novel_levels <- function(data, ptype) {
  ptype_fct_indicator <- map_lgl(ptype, is_bare_factor)
  ptype_fct_locs <- which(ptype_fct_indicator)

  if (length(ptype_fct_locs) == 0L) {
    return(data)
  }

  fct_names <- names(ptype_fct_locs)

  for (fct_name in fct_names) {
    data[[fct_name]] <- check_novel_levels(
      data[[fct_name]],
      ptype[[fct_name]],
      fct_name
    )
  }

  data
}

check_novel_levels <- function(x, ptype, column) {
  # Allow characters, consider them factors
  if (is.character(x)) {
    x <- factor(x, levels = unique(x))
  }

  # If not a bare factor, then let `vec_cast()` throw an error later.
  # Ordered factors are stricter and do not allow novel levels in any way.
  if (!is_bare_factor(x)) {
    return(x)
  }

  x_lvls <- levels(x)
  ptype_lvls <- levels(ptype)
  new_lvls <- setdiff(x_lvls, ptype_lvls)

  # All good
  if (length(new_lvls) == 0L) {
    return(x)
  }

  new_locs <- which(x %in% new_lvls | is.na(x))

  # There is at least one new level, but none of them are used in the data
  # vctrs will silently handle it for us
  if (length(new_locs) == 0L) {
    return(x)
  }

  # Use the levels from `x`, not `ptype` as we may still be missing levels
  old_lvls <- setdiff(x_lvls, new_lvls)

  warn_novel_levels(new_lvls, column)

  factor(as.character(x), levels = old_lvls)
}

warn_novel_levels <- function(levels, column) {
  message <- glue(
    "Novel levels found in column '{column}': {glue_quote_collapse(levels)}. ",
    "The levels have been removed, and values have been coerced to 'NA'."
  )

  warn(
    message,
    class = "hardhat_warn_novel_levels",
    levels = levels,
    column = column
  )
}

# ------------------------------------------------------------------------------

# There are cases where we want to ignore any novel levels, but otherwise still
# validate a user's `new_data`. The issue with this is that vec_cast() throws an
# error for any lossy cast. This means that novel factor levels in the
# `new_data` throw an error. To handle this, we add the novel levels to the
# `ptype` to prevent vec_cast() from thinking that it is an error.

add_novel_levels_to_ptype <- function(ptype, data) {
  ptype_fct_indicator <- map_lgl(ptype, is_bare_factor)
  ptype_fct_locs <- which(ptype_fct_indicator)

  if (length(ptype_fct_locs) == 0L) {
    return(ptype)
  }

  fct_names <- names(ptype_fct_locs)

  for (fct_name in fct_names) {
    ptype[[fct_name]] <- add_novel_levels(
      data[[fct_name]],
      ptype[[fct_name]]
    )
  }

  ptype
}

add_novel_levels <- function(x, ptype) {
  # Allow characters, consider them factors
  if (is.character(x)) {
    x <- factor(x, levels = unique(x))
  }

  # If not a bare factor, then let `vec_cast()` throw an error later.
  # Ordered factors are stricter and do not allow novel levels in any way.
  if (!is_bare_factor(x)) {
    return(ptype)
  }

  x_lvls <- levels(x)
  ptype_lvls <- levels(ptype)

  # Ensure that `x_lvls` is first, so order is maintained
  new_ptype_lvls <- union(x_lvls, ptype_lvls)

  factor(
    as.character(ptype),
    levels = new_ptype_lvls
  )
}

# ------------------------------------------------------------------------------

is_bare_factor <- function(x) {
  inherits_only(x, "factor")
}