File: table.R

package info (click to toggle)
r-cran-hardhat 1.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,656 kB
  • sloc: sh: 13; makefile: 2
file content (134 lines) | stat: -rw-r--r-- 4,662 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#' Weighted table
#'
#' @description
#' `weighted_table()` computes a weighted contingency table based on factors
#' provided in `...` and a double vector of weights provided in `weights`. It
#' can be seen as a weighted extension to [base::table()] and an alternative
#' to [stats::xtabs()].
#'
#' `weighted_table()` always uses the _exact_ set of levels returned by
#' `levels()` when constructing the table. This results in the following
#' properties:
#'
#' - Missing values found in the factors are never included in the table unless
#' there is an explicit `NA` factor level. If needed, this can be added to a
#' factor with [base::addNA()] or `forcats::fct_expand(x, NA)`.
#'
#' - Levels found in the factors that aren't actually used in the underlying
#' data are included in the table with a value of `0`. If needed, you can
#' drop unused factor levels by re-running your factor through [factor()],
#' or by calling `forcats::fct_drop()`.
#'
#' See the examples section for more information about these properties.
#'
#' @details
#' The result of `weighted_table()` does not have a `"table"` class attached
#' to it. It is only a double array. This is because "table" objects are
#' defined as containing integer counts, but weighted tables can utilize
#' fractional weights.
#'
#' @param ... Factors of equal length to use in the weighted table. If the
#'   `...` are named, those names will propagate onto the "dimnames names" of
#'   the resulting table. At least one factor must be provided.
#'
#' @param weights A double vector of weights used to fill the cells of the
#'   weighted table. This must be the same length as the factors provided in
#'   `...`.
#'
#' @param na_remove A single `TRUE` or `FALSE` for handling whether or not
#'   missing values in `weights` should be removed when summing up the weights.
#'
#' @return
#' The weighted table as an array of double values.
#'
#' @export
#' @examples
#' x <- factor(c("x", "y", "z", "x", "x", "y"))
#' y <- factor(c("a", "b", "a", "a", "b", "b"))
#' w <- c(1.5, 2, 1.1, .5, 3, 2)
#'
#' weighted_table(x = x, y = y, weights = w)
#'
#' # ---------------------------------------------------------------------------
#' # If `weights` contains missing values, then missing values will be
#' # propagated into the weighted table
#' x <- factor(c("x", "y", "y"))
#' y <- factor(c("a", "b", "b"))
#' w <- c(1, NA, 3)
#'
#' weighted_table(x = x, y = y, weights = w)
#'
#' # You can remove the missing values while summing up the weights with
#' # `na_remove = TRUE`
#' weighted_table(x = x, y = y, weights = w, na_remove = TRUE)
#'
#' # ---------------------------------------------------------------------------
#' # If there are missing values in the factors, those typically don't show
#' # up in the weighted table
#' x <- factor(c("x", NA, "y", "x"))
#' y <- factor(c("a", "b", "a", NA))
#' w <- 1:4
#'
#' weighted_table(x = x, y = y, weights = w)
#'
#' # This is because the missing values aren't considered explicit levels
#' levels(x)
#'
#' # You can force them to show up in the table by using `addNA()` ahead of time
#' # (or `forcats::fct_expand(x, NA)`)
#' x <- addNA(x, ifany = TRUE)
#' y <- addNA(y, ifany = TRUE)
#' levels(x)
#'
#' weighted_table(x = x, y = y, weights = w)
#'
#' # ---------------------------------------------------------------------------
#' # If there are levels in your factors that aren't actually used in the
#' # underlying data, then they will still show up in the table with a `0` value
#' x <- factor(c("x", "y", "x"), levels = c("x", "y", "z"))
#' y <- factor(c("a", "b", "a"), levels = c("a", "b", "c"))
#' w <- 1:3
#'
#' weighted_table(x = x, y = y, weights = w)
#'
#' # If you want to drop these empty factor levels from the result, you can
#' # rerun `factor()` ahead of time to drop them (or `forcats::fct_drop()`)
#' x <- factor(x)
#' y <- factor(y)
#' levels(x)
#'
#' weighted_table(x = x, y = y, weights = w)
weighted_table <- function(..., weights, na_remove = FALSE) {
  args <- list2(...)
  n_args <- length(args)

  if (n_args == 0L) {
    abort("At least one vector must be supplied to `...`.")
  }
  if (!all(map_lgl(args, is.factor))) {
    abort("All elements of `...` must be factors.")
  }

  sizes <- list_sizes(args)
  size <- sizes[[1L]]

  if (!all(sizes == size)) {
    abort("All elements of `...` must be the same size.")
  }

  weights <- vec_cast(weights, to = double())
  vec_assert(weights, size = size)

  if (!is_bool(na_remove)) {
    abort("`na_remove` must be a single `TRUE` or `FALSE`.")
  }

  tapply(
    X = weights,
    INDEX = args,
    FUN = sum,
    na.rm = na_remove,
    default = 0,
    simplify = TRUE
  )
}