File: validate_predictors_are_numeric.Rd

package info (click to toggle)
r-cran-hardhat 1.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,656 kB
  • sloc: sh: 13; makefile: 2
file content (75 lines) | stat: -rw-r--r-- 2,429 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/validation.R
\name{validate_predictors_are_numeric}
\alias{validate_predictors_are_numeric}
\alias{check_predictors_are_numeric}
\title{Ensure predictors are all numeric}
\usage{
validate_predictors_are_numeric(predictors)

check_predictors_are_numeric(predictors)
}
\arguments{
\item{predictors}{An object to check.}
}
\value{
\code{validate_predictors_are_numeric()} returns \code{predictors} invisibly.

\code{check_predictors_are_numeric()} returns a named list of two components,
\code{ok}, and \code{bad_classes}.
}
\description{
validate - asserts the following:
\itemize{
\item \code{predictors} must have numeric columns.
}

check - returns the following:
\itemize{
\item \code{ok} A logical. Does the check pass?
\item \code{bad_classes} A named list. The names are the names of problematic columns,
and the values are the classes of the matching column.
}
}
\details{
The expected way to use this validation function is to supply it the
\verb{$predictors} element of the result of a call to \code{\link[=mold]{mold()}}.
}
\section{Validation}{


hardhat provides validation functions at two levels.
\itemize{
\item \verb{check_*()}:  \emph{check a condition, and return a list}. The list
always contains at least one element, \code{ok}, a logical that specifies if the
check passed. Each check also has check specific elements in the returned
list that can be used to construct meaningful error messages.
\item \verb{validate_*()}: \emph{check a condition, and error if it does not pass}. These
functions call their corresponding check function, and
then provide a default error message. If you, as a developer, want a
different error message, then call the \verb{check_*()} function yourself,
and provide your own validation function.
}
}

\examples{
# All good
check_predictors_are_numeric(mtcars)

# Species is not numeric
check_predictors_are_numeric(iris)

# This gives an intelligent error message
try(validate_predictors_are_numeric(iris))
}
\seealso{
Other validation functions: 
\code{\link{validate_column_names}()},
\code{\link{validate_no_formula_duplication}()},
\code{\link{validate_outcomes_are_binary}()},
\code{\link{validate_outcomes_are_factors}()},
\code{\link{validate_outcomes_are_numeric}()},
\code{\link{validate_outcomes_are_univariate}()},
\code{\link{validate_prediction_size}()}
}
\concept{validation functions}