File: convert.R

package info (click to toggle)
r-cran-hdf5r 1.3.8%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 10,192 kB
  • sloc: ansic: 76,883; sh: 82; python: 32; makefile: 13
file content (492 lines) | stat: -rw-r--r-- 20,512 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
#############################################################################
##
## Copyright 2016 Novartis Institutes for BioMedical Research Inc.
## Licensed under the Apache License, Version 2.0 (the "License");
## you may not use this file except in compliance with the License.
## You may obtain a copy of the License at
##
## http://www.apache.org/licenses/LICENSE-2.0
##
## Unless required by applicable law or agreed to in writing, software
## distributed under the License is distributed on an "AS IS" BASIS,
## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
## See the License for the specific language governing permissions and
## limitations under the License.
##
#############################################################################






##' Low-level conversion functions from R to HDF5 and vice versa
##'
##' These are the low-level function that dispatch the R object to HDF5 object conversion to the underlying C code.
##' None of these should be accessed by the end-user under normal circumstances. See also \code{\link{convertRoundTrip}}
##' for an example of how to use them.
##' @title Low-level conversion functions from R to HDF5 and vice versa
##' @param Robj The R-object to transfer to HDF5
##' @param dtype Datatype of the HDF5 object. Of class \code{\link{H5T}}
##' @param nelem Number of elements to copy
##' @param flags Some flags governing edge cases of conversion from HDF5 to R. This is related to how integers are being treated and
##' the issue of R not being able to natively represent 64bit integers and not at all being able to represent unsigned 64bit integers
##' (even using add-on packages). The constants governing this are part of \code{\link{h5const}}. The relevant ones start with the term
##' \code{H5TOR} and are documented there. The default set here returns a regular 32bit integer if it doesn't lead to an overflow
##' and returns a 64bit integer from the \code{bit64} package otherwise. For 64bit unsigned int that are larger than 64bit signed int,
##' it is truncated (the default; but can also be set to NA).
##' @param id When creating a reference, an id for the file (or an object in the file) is needed. By default \code{-1}, which will work
##' with everything except references.
##' @return The converted object or the buffer into which the object is written. 
##' @author Holger Hoefling
##' @keywords internal
RToH5 <- function(Robj, dtype, nelem) {
    return(.Call("R_RToH5", Robj, dtype$id, nelem, PACKAGE="hdf5r"))
}

##' @rdname RToH5
H5ToR_Pre <- function(dtype, nelem) {
    return(.Call("R_H5ToR_Pre", dtype$id, nelem, PACKAGE="hdf5r"))
}

##' @rdname RToH5
H5ToR_Post <- function(Robj, dtype, nelem, flags=getOption("hdf5r.h5tor_default"), id=-1) {
    return(.Call("R_H5ToR_Post", Robj, dtype$id, nelem, flags, id, PACKAGE="hdf5r"))
}



##' Create an empty R-object according to a given HDF5 datatype
##'
##' With complex datatypes it can be useful to have a template that can be used so that the
##' data input into a dataset conforms to expectations.
##'
##' Given a datatype, this function creates an object of length \code{nelem}.
##' Here, an empty datatype refers to objects with value 0 for numeric objects and
##' empty strings.
##' @title Create an empty R-object according to a given HDF5 datatype
##' @param nelem The number of elements to use for the object
##' @param dtype The datatype based on which an empty R-object should be created
##' @return An empty R object corresponding to the datatype that was passed in
##' @author Holger Hoefling
##' @export
create_empty <- function(nelem, dtype) {
    flags <- h5const$H5TOR_CONV_INT64_NOLOSS ## in this case, does not matter

    ## create an r-object that represents a request to give HDF5-space of nelem elements
    Robj <- request_empty(nelem)
    h5val_raw <- RToH5(Robj, dtype, nelem)
    ## initialize to make sure
    
    retRobj <- H5ToR_Pre(dtype, nelem)
    dtype_size <- dtype$get_size()
    if(dtype_size==Inf) {
        dtype_size <- dtype$get_size(variable_as_inf=FALSE)
    }
    retRobj <- copyRVec(retRobj, h5val_raw, nelem * dtype_size);
    retRobj <- H5ToR_Post(retRobj, dtype, nelem, flags)
    return(retRobj)
}




copyRVec <- function(dst, src, nbytes) {
    return(.Call("copy_rvec", dst, src, as.integer(nbytes), PACKAGE="hdf5r"))
}


##' @rdname guess_dtype
##' @export
guess_nelem <- function(x, dtype) {
    return(.Call("R_guess_nelem", x, dtype$id, PACKAGE="hdf5r"))
}

##' @rdname guess_dtype
##' @export
guess_dim <- function(x) {
    if(inherits(x, "data.frame")) {
        return(nrow(x))
    }
    else if(!is.null(dim(x))) {
        return(dim(x))
    }
    else {
        return(length(x))
    }
}

##' Guess the HDF5 datatype of an R object
##'
##' Given an object, it creates a datatype in HDF5 that would match this object. For simple datasets like arrays, this
##' function is not so useful, but is very good for creating dataframes or hierarchical objects (like lists of dataframes) etc.
##' @title Guess the HDF5 datatype of an R object
##' @param x The object for which to guess the HDF5 datatype or the dimension or the number of elements
##' @param dtype datatype; used in guessing the number of dataset elements of an r object
##' @param ds_dim Can explicitly set the dimension of the dataset object. For \code{scalar}, this is one. Otherwise, this can be
##' used so that a multi-dimensional object can be represented so that some of its dimension are in the dataset, and some are inside an
##' \code{\link{H5T_ARRAY}}
##' @param scalar Should the datatype be created so that \code{x} can be represented as a scalar with that datatype? This is intended
##' to know if a vector/array should be represented as an \code{\link{H5T_ARRAY}} or not.
##' @param string_len If a string is in the R object, the length to which the corresponding HDF5 type should be set. If it is a
##' positive integer, the string is of that length. If it is \code{Inf}, it is variable length. If it is set to \code{estimate},
##' it is set to the length of the longest string in the \code{x}.
##' @return An object of class \code{\link{H5T}} that represents the HDF5-type of the Robj that was passed in
##' @author Holger Hoefling
##' @importFrom bit64 is.integer64
##' @export
guess_dtype <- function(x, ds_dim=NULL, scalar=FALSE, string_len=getOption("hdf5r.default_string_len")) {
    ## check for the different classes
    ## if could be:
    ## a data frame
    ## an regular array
    ## a ragged array (VLEN)
    ## a string
    ## an enumeration
    ## a complex number
    ## integer
    ## float
    ## reference data type
    
    guessed_dim <- guess_dim(x)

    if(is.null(ds_dim)) {
        if(scalar) {
            ds_dim <- 1
        }
        else {
            ds_dim <- guessed_dim
        }
    }
    
    ## first check if we need an array; for this look if the number of elements is the same
    ## as the number of elements in the Robj
    if(length(ds_dim) != length(guessed_dim) || any(ds_dim != guessed_dim)) {
        ## it could be an array, or it might simply not match
        if(ds_dim==1) { ## simply create an array
            dtype_base <- guess_dtype(x, ds_dim=guessed_dim, scalar=FALSE, string_len=string_len)
            array_type <- H5T_ARRAY$new(dims=guessed_dim, dtype_base=dtype_base)
            return(array_type)
        }
        else { ## check that the outer dimensions match
             ## equal also captured here; with equal size, all items  would have to be the same, but aren't
            ## as seen by previous if query
            if(length(ds_dim) >= length(guessed_dim)) {
                stop(paste("Dimensions don't match. Should be", str_dim(ds_dim), "but is", str_dim(guessed_dim)))
            }
            if(any(ds_dim != guessed_dim[seq_along(ds_dim)])) {
                stop(paste("Dimensions don't match. Should be", str_dim(ds_dim), "but is", str_dim(guessed_dim)))
            }
            rest_dim <- guessed_dim[-seq_along(ds_dim)]
            dtype_base <- guess_dtype(x, ds_dim=guessed_dim, scalar=FALSE, string_len=string_len)
            array_type <- H5T_ARRAY$new(dims=rest_dim, dtype_base=dtype_base)
            return(array_type)
        }
    }
    else { ## just find the appropriate data type
        if(inherits(x, "data.frame")) {
            dtypes <- lapply(x, guess_dtype, ds_dim=ds_dim, scalar=FALSE, string_len=string_len)
            dtype <- H5T_COMPOUND$new(labels=names(x), dtypes=dtypes)
            return(dtype)
        }
        else if(inherits(x, "list")) {
            ## if each item is of the same class, this could be a ragged array
            dtype_ids <- vector("list", length=length(x))
            item_dim <- vector("list", length=length(x))
            for(i in seq_along(x)) {
                dtype_ids[[i]] <- guess_dtype(x[[i]], ds_dim=length(x[[i]]), scalar=FALSE, string_len=string_len)
                item_dim[[i]] <- guess_dim(x[[i]])
            }
            ## now check that they are all the same
            if(length(x) == 0) {
                stop("Empty list; can't guess datatype")
            }
            type_equal <- TRUE
            length_equal <- TRUE
            if(length(x) > 1) {
                for(i in 2:length(x)) {
                    if(!(dtype_ids[[1]]$equal(dtype_ids[[i]]))) {
                        type_equal <- FALSE
                    }
                    if(any(item_dim[[1]] != item_dim[[i]])) {
                        length_equal <- FALSE
                    }
                }
            }

            if(!type_equal & !length_equal) {
                stop("Found a list where neither the length nor the types are the same. Cannot match h5-datatype.")
            }
            if(!type_equal & length_equal) {
                ## if some of these are not identical - can make a compound object out of it
                ## if all lengths are the same, a regular compound object;
                ## for all intents and purposed, this is a data.frame
                attr(x, "class") <- "data.frame"
                attr(x, "row.names") <- 1:item_dim[[1]][1]
                return(guess_dtype(x, ds_dim=item_dim[[1]][1], scalar=scalar, string_len=string_len))
            }
            if(type_equal) {
                ## note; if the length are equal, we could handle it as a regular array; but for now we will do a
                ## variable length array
                dtype_base <- dtype_ids[[1]]
                return(H5T_VLEN$new(dtype_base=dtype_base))
            }
            
        }
        else if(inherits(x, "factor_ext")) {
            return(H5T_ENUM$new(labels=levels(x), values=values(x)))
        }
        else if(is.factor(x)) {
            return(H5T_ENUM$new(labels=levels(x)))
        }
        else if(is.character(x)) {
            if(string_len=="estimate") {
                string_len <- max(nchar(x)) + 1
            }
            return(H5T_STRING$new(type="c", size=string_len))
        }
        else if(is.logical(x)) {
            return(H5T_LOGICAL$new(include_NA=TRUE))
        }
        else if(is.integer64(x)) {
            return(h5types$H5T_NATIVE_LLONG)
        }
        else if(is.integer(x)) {
            return(h5types$H5T_NATIVE_INT)
        }
        else if(is.double(x)) {
            return(h5types$H5T_NATIVE_DOUBLE)
        }
        else if(is.complex(x)) {
            return(H5T_COMPLEX$new())
        }
        else if(inherits(x, "H5R")) {
            if(inherits(x, "H5R_OBJECT")) {
                return(h5types$H5T_STD_REF_OBJ)
            }
            else if(inherits(x, "H5R_DATASET_REGION")) {
                return(h5types$H5T_STD_REF_DSETREG)
            }
            else {
                stop("Unknown reference type")
            }
        }
        else {
            stop("unknown type")
        }
    }
    stop("the function should never have reached this place")
}


##' Guess the dataspace of an object
##'
##' Creates a dataspace that fits an R object so that it can be written into a dataset. This is used
##' for example in dataset creation based on an R-object, not a specifically defined dimensions.
##' @title Guess the dataspace of an object
##' @param x The R object for which to guess the space
##' @param dtype Object of type \code{\link{H5T}}, that represents that datatype to use.
##' @param chunked Is the datatype chunked? If yes, \code{maxdims} of the space will be set to infinity,
##' otherwise \code{maxdims} will be set to the original extent of the space.
##' @return An object of type \code{\link{H5S}}
##' @author Holger Hoefling
##' @export
guess_space <- function(x, dtype, chunked=TRUE) {
    ## if a datatype is given and it is an array, take out that part of the dimension guess
    x_dim <- guess_dim(x)

    dtype_dim <- NULL
    if(inherits(dtype, "H5T")) {
        if(dtype$get_class() == h5const$H5T_ARRAY) {
            dtype_dim <- dtype$get_array_dims()
        }
    }

    ## check if the dtype_dimensions fit the guessed dimensions
    space_dim <- x_dim
    dtype_rank <- length(dtype_dim)
    x_rank <- length(x_dim)
    if(dtype_rank > 0) {
        if(x_rank < dtype_rank) {
            stop("rank of x is smaller than rank of dtype_dim; types don't fit")
        }
        else if(x_rank == dtype_rank) {
            if(any(x_dim != dtype_dim)) {
                stop("dimensions of x and dtype are different")
            }
            else {
                space_dim <- 1
            }
        }
        else {
            space_dim <- x_dim[1:(x_rank-dtype_rank)]
        }
    }
  
    ## now create the appropriate space
    if(chunked) {
        maxdims=rep(Inf, length(space_dim))
    }
    else {
        maxdims <- space_dim
    }
    return(H5S$new(type="simple", dims=space_dim, maxdims=maxdims))
}

##' Guess the dimension of a chunk
##'
##' The size of the chunk in bytes is first divided by the size of the datatype, giving the number of elements
##' to be stored in each chunk. This is taken as a rough guideline. Then, the number of dimensions of the dataset is used.
##' By default, the chunk is assumed to have the same size in each dimension, yielding an initial guess.
##'
##' If the resulting chunk is larger than the entire dataset for a maximal dimension, this dimension of the chunk is reduced and
##' redistributed to the other dimensions.
##'
##' As a chunk is never allowed to be larger than the maximum dimension of the dataset itself, 
##' @title Guess the dimension of a chunk
##' @param space_maxdims Maximal dimensions of the dataset
##' @param dtype_size Size of the datatype that is stored
##' @param chunk_size Size of each chunk in bytes
##' @return An integer vector giving the dimension of the chunk
##' @author Holger Hoefling
##' @export
guess_chunks <- function(space_maxdims, dtype_size, chunk_size=getOption("hdf5r.chunk_size")) {
    chunk_num_elem <- floor(chunk_size / dtype_size)

    ## now, given the dimension of the space, decide on the dimension of the chunks
    ## each dimension is, if possible identical in chunk size
    ## if the total dimension is too small, they are redistributed to other dimensions
    ## if the whole space is too small, the first dimension is being increased
    space_rank <- length(space_maxdims)
    chunk_dim <- rep(ceiling(chunk_num_elem^(1/space_rank)), space_rank)

    chunk_dim <- pmin(space_maxdims, chunk_dim)
    bounded <- chunk_dim == space_maxdims
    while(prod(chunk_dim) < chunk_num_elem & !all(bounded)) {
        mult_factor <- (chunk_num_elem / prod(chunk_dim))^(1/ sum(!bounded))
        chunk_dim[!bounded] <- ceiling(chunk_dim[!bounded] * mult_factor)
        chunk_dim <- pmin(space_maxdims, chunk_dim)
        bounded <- chunk_dim == space_maxdims
    }

    return(chunk_dim)
}

##' Set the correct dimension attribute for an object
##'
##' This function uses the space and the selection in it to set the correct dimension
##' for the resulting object (but without dropping dimensions). Furthermore, if the
##' datatype is an array, those dimensions are correctly determined as well.
##'
##' Internal use only; currently unused
##' @title Set the correct dimension attribute for an object
##' @param x an object that was read from an HDF5 dataset or attribute
##' @param space The space with the selection that was used to read the dataset
##' @param dtype The datatype of the dataset
##' @return \code{x}, but with a new dimension attribute
##' @author Holger Hoefling
##' @keywords internal
extract_dim <- function(space, dtype) {
    ## apply the right dimension attribute to x that is implied by the space and the data-type
    dtype_dim <- NULL
    if(inherits(dtype, "H5T")) {
        if(dtype$get_class() == h5const$H5T_ARRAY) {
            dtype_dim <- dtype$get_array_dims()
        }
    }

    ## check if the dtype_dimensions fit the guessed dimensions
    if(!space$is_simple()) {
        space_dim <- NULL
    }
    else {
        ## now we need to check what the dimension of the dataspace-selection is
        space_sel_type <- space$get_select_type()
        if(space_sel_type == h5const$H5S_SEL_HYPERSLABS) {
            nblocks <- space$get_select_hyper_nblocks()
            if(nblocks == 1) {
                blocklist <- space$get_select_hyper_blocklist()
                space_dim <- blocklist[2,] - blocklist[1,] + 1
            }
            else {## cannot infer easily the size of each dimension
                space_dim <- space$get_select_npoints()
            }
        }
        else if(space_sel_type == h5const$H5S_SEL_POINTS) {
            space_dim <- space$get_select_npoints()
        }
        else if(space_sel_type == h5const$H5S_SEL_ALL) {
            space_dim <- space$get_simple_extent_dims()$dims
        }
        else if(space_sel_type == h5const$H5S_SEL_NONE) {
            return(NULL)
        }
        else {
            stop("Unknown selection in space")
        }
    }

    all_dim <- as.integer(c(space_dim, dtype_dim))

    return(all_dim)
}


##' Reorder an array
##'
##' Reorders an array using a fast underlying c-function. It is implemented
##' for its simple generality and only intended for internal use in the package.
##' @title Reorder an array
##' @param x The array; doesn't have to have a dim attribute; is just assumed to be a vector
##' @param dims The dimensionality of the array
##' @param reorder_dim The dimension to reorder
##' @param new_order The new ordering of the reorder_dim; not checked for correctness; 1-based
##' @param item_size The size in bytes of each array item; not discovered automatically
##' @return The re-ordered array
##' @author Holger Hoefling
##' @keywords internal
array_reorder <- function(x, dims, reorder_dim, new_order, item_size) {
    pre_reorder_dims <- dims[seq_len(reorder_dim -1)]
    post_reorder_dims <- dims[reorder_dim + seq_len(length(dims) - reorder_dim)]

    ## item size is the number of items in the dimensions before the re-order times the size of each item
    item_size <- prod(pre_reorder_dims) * item_size
    num_rows <- dims[reorder_dim]
    num_cols <- prod(post_reorder_dims)

    return(.Call("R_reorder", x, num_rows, num_cols, item_size, new_order - 1, PACKAGE="hdf5r"))
}



##' Round-trip of converting data to HDF5 and back to R
##'
##' Take an R-object, convert it to HDF5, convert it back and return input, output and intermediate steps
##' This is mainly intended for use in tests.
##' @title Round-trip of converting data to HDF5 and back to R
##' @param Robj The object to convert
##' @param dtype The datatype to convert it into
##' @param nelem The number of elements in the object
##' @param flags conversion flags from HDF5 to R
##' @return A list with input, number of elements, raw vector for intermediate storage and output
##' @author Holger Hoefling
##' @keywords internal
convertRoundTrip <- function(Robj, dtype, nelem=length(Robj), flags=h5const$H5TOR_CONV_INT64_NOLOSS) {
    if(missing(nelem)) {
        if(!is.data.frame(Robj)) {
            nelem <- length(Robj)
        }
        else {
            nelem <- nrow(Robj)
        }
    }
    h5val_raw <- RToH5(Robj, dtype, nelem)
    retRobj <- H5ToR_Pre(dtype, nelem)
    dtype_size <- dtype$get_size()
    if(dtype_size==Inf) {
        dtype_size <- dtype$get_size(variable_as_inf=FALSE)
    }
    retRobj <- copyRVec(retRobj, h5val_raw, nelem * dtype_size);
    retRobj <- H5ToR_Post(retRobj, dtype, nelem, flags)
    return(list(input=Robj, nelem=nelem, h5val_raw=h5val_raw, output=retRobj))
}