1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
|
#############################################################################
##
## Copyright 2016 Novartis Institutes for BioMedical Research Inc.
## Licensed under the Apache License, Version 2.0 (the "License");
## you may not use this file except in compliance with the License.
## You may obtain a copy of the License at
##
## http://www.apache.org/licenses/LICENSE-2.0
##
## Unless required by applicable law or agreed to in writing, software
## distributed under the License is distributed on an "AS IS" BASIS,
## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
## See the License for the specific language governing permissions and
## limitations under the License.
##
#############################################################################
##' Low-level conversion functions from R to HDF5 and vice versa
##'
##' These are the low-level function that dispatch the R object to HDF5 object conversion to the underlying C code.
##' None of these should be accessed by the end-user under normal circumstances. See also \code{\link{convertRoundTrip}}
##' for an example of how to use them.
##' @title Low-level conversion functions from R to HDF5 and vice versa
##' @param Robj The R-object to transfer to HDF5
##' @param dtype Datatype of the HDF5 object. Of class \code{\link{H5T}}
##' @param nelem Number of elements to copy
##' @param flags Some flags governing edge cases of conversion from HDF5 to R. This is related to how integers are being treated and
##' the issue of R not being able to natively represent 64bit integers and not at all being able to represent unsigned 64bit integers
##' (even using add-on packages). The constants governing this are part of \code{\link{h5const}}. The relevant ones start with the term
##' \code{H5TOR} and are documented there. The default set here returns a regular 32bit integer if it doesn't lead to an overflow
##' and returns a 64bit integer from the \code{bit64} package otherwise. For 64bit unsigned int that are larger than 64bit signed int,
##' it is truncated (the default; but can also be set to NA).
##' @param id When creating a reference, an id for the file (or an object in the file) is needed. By default \code{-1}, which will work
##' with everything except references.
##' @return The converted object or the buffer into which the object is written.
##' @author Holger Hoefling
##' @keywords internal
RToH5 <- function(Robj, dtype, nelem) {
return(.Call("R_RToH5", Robj, dtype$id, nelem, PACKAGE="hdf5r"))
}
##' @rdname RToH5
H5ToR_Pre <- function(dtype, nelem) {
return(.Call("R_H5ToR_Pre", dtype$id, nelem, PACKAGE="hdf5r"))
}
##' @rdname RToH5
H5ToR_Post <- function(Robj, dtype, nelem, flags=getOption("hdf5r.h5tor_default"), id=-1) {
return(.Call("R_H5ToR_Post", Robj, dtype$id, nelem, flags, id, PACKAGE="hdf5r"))
}
##' Create an empty R-object according to a given HDF5 datatype
##'
##' With complex datatypes it can be useful to have a template that can be used so that the
##' data input into a dataset conforms to expectations.
##'
##' Given a datatype, this function creates an object of length \code{nelem}.
##' Here, an empty datatype refers to objects with value 0 for numeric objects and
##' empty strings.
##' @title Create an empty R-object according to a given HDF5 datatype
##' @param nelem The number of elements to use for the object
##' @param dtype The datatype based on which an empty R-object should be created
##' @return An empty R object corresponding to the datatype that was passed in
##' @author Holger Hoefling
##' @export
create_empty <- function(nelem, dtype) {
flags <- h5const$H5TOR_CONV_INT64_NOLOSS ## in this case, does not matter
## create an r-object that represents a request to give HDF5-space of nelem elements
Robj <- request_empty(nelem)
h5val_raw <- RToH5(Robj, dtype, nelem)
## initialize to make sure
retRobj <- H5ToR_Pre(dtype, nelem)
dtype_size <- dtype$get_size()
if(dtype_size==Inf) {
dtype_size <- dtype$get_size(variable_as_inf=FALSE)
}
retRobj <- copyRVec(retRobj, h5val_raw, nelem * dtype_size);
retRobj <- H5ToR_Post(retRobj, dtype, nelem, flags)
return(retRobj)
}
copyRVec <- function(dst, src, nbytes) {
return(.Call("copy_rvec", dst, src, as.integer(nbytes), PACKAGE="hdf5r"))
}
##' @rdname guess_dtype
##' @export
guess_nelem <- function(x, dtype) {
return(.Call("R_guess_nelem", x, dtype$id, PACKAGE="hdf5r"))
}
##' @rdname guess_dtype
##' @export
guess_dim <- function(x) {
if(inherits(x, "data.frame")) {
return(nrow(x))
}
else if(!is.null(dim(x))) {
return(dim(x))
}
else {
return(length(x))
}
}
##' Guess the HDF5 datatype of an R object
##'
##' Given an object, it creates a datatype in HDF5 that would match this object. For simple datasets like arrays, this
##' function is not so useful, but is very good for creating dataframes or hierarchical objects (like lists of dataframes) etc.
##' @title Guess the HDF5 datatype of an R object
##' @param x The object for which to guess the HDF5 datatype or the dimension or the number of elements
##' @param dtype datatype; used in guessing the number of dataset elements of an r object
##' @param ds_dim Can explicitly set the dimension of the dataset object. For \code{scalar}, this is one. Otherwise, this can be
##' used so that a multi-dimensional object can be represented so that some of its dimension are in the dataset, and some are inside an
##' \code{\link{H5T_ARRAY}}
##' @param scalar Should the datatype be created so that \code{x} can be represented as a scalar with that datatype? This is intended
##' to know if a vector/array should be represented as an \code{\link{H5T_ARRAY}} or not.
##' @param string_len If a string is in the R object, the length to which the corresponding HDF5 type should be set. If it is a
##' positive integer, the string is of that length. If it is \code{Inf}, it is variable length. If it is set to \code{estimate},
##' it is set to the length of the longest string in the \code{x}.
##' @return An object of class \code{\link{H5T}} that represents the HDF5-type of the Robj that was passed in
##' @author Holger Hoefling
##' @importFrom bit64 is.integer64
##' @export
guess_dtype <- function(x, ds_dim=NULL, scalar=FALSE, string_len=getOption("hdf5r.default_string_len")) {
## check for the different classes
## if could be:
## a data frame
## an regular array
## a ragged array (VLEN)
## a string
## an enumeration
## a complex number
## integer
## float
## reference data type
guessed_dim <- guess_dim(x)
if(is.null(ds_dim)) {
if(scalar) {
ds_dim <- 1
}
else {
ds_dim <- guessed_dim
}
}
## first check if we need an array; for this look if the number of elements is the same
## as the number of elements in the Robj
if(length(ds_dim) != length(guessed_dim) || any(ds_dim != guessed_dim)) {
## it could be an array, or it might simply not match
if(ds_dim==1) { ## simply create an array
dtype_base <- guess_dtype(x, ds_dim=guessed_dim, scalar=FALSE, string_len=string_len)
array_type <- H5T_ARRAY$new(dims=guessed_dim, dtype_base=dtype_base)
return(array_type)
}
else { ## check that the outer dimensions match
## equal also captured here; with equal size, all items would have to be the same, but aren't
## as seen by previous if query
if(length(ds_dim) >= length(guessed_dim)) {
stop(paste("Dimensions don't match. Should be", str_dim(ds_dim), "but is", str_dim(guessed_dim)))
}
if(any(ds_dim != guessed_dim[seq_along(ds_dim)])) {
stop(paste("Dimensions don't match. Should be", str_dim(ds_dim), "but is", str_dim(guessed_dim)))
}
rest_dim <- guessed_dim[-seq_along(ds_dim)]
dtype_base <- guess_dtype(x, ds_dim=guessed_dim, scalar=FALSE, string_len=string_len)
array_type <- H5T_ARRAY$new(dims=rest_dim, dtype_base=dtype_base)
return(array_type)
}
}
else { ## just find the appropriate data type
if(inherits(x, "data.frame")) {
dtypes <- lapply(x, guess_dtype, ds_dim=ds_dim, scalar=FALSE, string_len=string_len)
dtype <- H5T_COMPOUND$new(labels=names(x), dtypes=dtypes)
return(dtype)
}
else if(inherits(x, "list")) {
## if each item is of the same class, this could be a ragged array
dtype_ids <- vector("list", length=length(x))
item_dim <- vector("list", length=length(x))
for(i in seq_along(x)) {
dtype_ids[[i]] <- guess_dtype(x[[i]], ds_dim=length(x[[i]]), scalar=FALSE, string_len=string_len)
item_dim[[i]] <- guess_dim(x[[i]])
}
## now check that they are all the same
if(length(x) == 0) {
stop("Empty list; can't guess datatype")
}
type_equal <- TRUE
length_equal <- TRUE
if(length(x) > 1) {
for(i in 2:length(x)) {
if(!(dtype_ids[[1]]$equal(dtype_ids[[i]]))) {
type_equal <- FALSE
}
if(any(item_dim[[1]] != item_dim[[i]])) {
length_equal <- FALSE
}
}
}
if(!type_equal & !length_equal) {
stop("Found a list where neither the length nor the types are the same. Cannot match h5-datatype.")
}
if(!type_equal & length_equal) {
## if some of these are not identical - can make a compound object out of it
## if all lengths are the same, a regular compound object;
## for all intents and purposed, this is a data.frame
attr(x, "class") <- "data.frame"
attr(x, "row.names") <- 1:item_dim[[1]][1]
return(guess_dtype(x, ds_dim=item_dim[[1]][1], scalar=scalar, string_len=string_len))
}
if(type_equal) {
## note; if the length are equal, we could handle it as a regular array; but for now we will do a
## variable length array
dtype_base <- dtype_ids[[1]]
return(H5T_VLEN$new(dtype_base=dtype_base))
}
}
else if(inherits(x, "factor_ext")) {
return(H5T_ENUM$new(labels=levels(x), values=values(x)))
}
else if(is.factor(x)) {
return(H5T_ENUM$new(labels=levels(x)))
}
else if(is.character(x)) {
if(string_len=="estimate") {
string_len <- max(nchar(x)) + 1
}
return(H5T_STRING$new(type="c", size=string_len))
}
else if(is.logical(x)) {
return(H5T_LOGICAL$new(include_NA=TRUE))
}
else if(is.integer64(x)) {
return(h5types$H5T_NATIVE_LLONG)
}
else if(is.integer(x)) {
return(h5types$H5T_NATIVE_INT)
}
else if(is.double(x)) {
return(h5types$H5T_NATIVE_DOUBLE)
}
else if(is.complex(x)) {
return(H5T_COMPLEX$new())
}
else if(inherits(x, "H5R")) {
if(inherits(x, "H5R_OBJECT")) {
return(h5types$H5T_STD_REF_OBJ)
}
else if(inherits(x, "H5R_DATASET_REGION")) {
return(h5types$H5T_STD_REF_DSETREG)
}
else {
stop("Unknown reference type")
}
}
else {
stop("unknown type")
}
}
stop("the function should never have reached this place")
}
##' Guess the dataspace of an object
##'
##' Creates a dataspace that fits an R object so that it can be written into a dataset. This is used
##' for example in dataset creation based on an R-object, not a specifically defined dimensions.
##' @title Guess the dataspace of an object
##' @param x The R object for which to guess the space
##' @param dtype Object of type \code{\link{H5T}}, that represents that datatype to use.
##' @param chunked Is the datatype chunked? If yes, \code{maxdims} of the space will be set to infinity,
##' otherwise \code{maxdims} will be set to the original extent of the space.
##' @return An object of type \code{\link{H5S}}
##' @author Holger Hoefling
##' @export
guess_space <- function(x, dtype, chunked=TRUE) {
## if a datatype is given and it is an array, take out that part of the dimension guess
x_dim <- guess_dim(x)
dtype_dim <- NULL
if(inherits(dtype, "H5T")) {
if(dtype$get_class() == h5const$H5T_ARRAY) {
dtype_dim <- dtype$get_array_dims()
}
}
## check if the dtype_dimensions fit the guessed dimensions
space_dim <- x_dim
dtype_rank <- length(dtype_dim)
x_rank <- length(x_dim)
if(dtype_rank > 0) {
if(x_rank < dtype_rank) {
stop("rank of x is smaller than rank of dtype_dim; types don't fit")
}
else if(x_rank == dtype_rank) {
if(any(x_dim != dtype_dim)) {
stop("dimensions of x and dtype are different")
}
else {
space_dim <- 1
}
}
else {
space_dim <- x_dim[1:(x_rank-dtype_rank)]
}
}
## now create the appropriate space
if(chunked) {
maxdims=rep(Inf, length(space_dim))
}
else {
maxdims <- space_dim
}
return(H5S$new(type="simple", dims=space_dim, maxdims=maxdims))
}
##' Guess the dimension of a chunk
##'
##' The size of the chunk in bytes is first divided by the size of the datatype, giving the number of elements
##' to be stored in each chunk. This is taken as a rough guideline. Then, the number of dimensions of the dataset is used.
##' By default, the chunk is assumed to have the same size in each dimension, yielding an initial guess.
##'
##' If the resulting chunk is larger than the entire dataset for a maximal dimension, this dimension of the chunk is reduced and
##' redistributed to the other dimensions.
##'
##' As a chunk is never allowed to be larger than the maximum dimension of the dataset itself,
##' @title Guess the dimension of a chunk
##' @param space_maxdims Maximal dimensions of the dataset
##' @param dtype_size Size of the datatype that is stored
##' @param chunk_size Size of each chunk in bytes
##' @return An integer vector giving the dimension of the chunk
##' @author Holger Hoefling
##' @export
guess_chunks <- function(space_maxdims, dtype_size, chunk_size=getOption("hdf5r.chunk_size")) {
chunk_num_elem <- floor(chunk_size / dtype_size)
## now, given the dimension of the space, decide on the dimension of the chunks
## each dimension is, if possible identical in chunk size
## if the total dimension is too small, they are redistributed to other dimensions
## if the whole space is too small, the first dimension is being increased
space_rank <- length(space_maxdims)
chunk_dim <- rep(ceiling(chunk_num_elem^(1/space_rank)), space_rank)
chunk_dim <- pmin(space_maxdims, chunk_dim)
bounded <- chunk_dim == space_maxdims
while(prod(chunk_dim) < chunk_num_elem & !all(bounded)) {
mult_factor <- (chunk_num_elem / prod(chunk_dim))^(1/ sum(!bounded))
chunk_dim[!bounded] <- ceiling(chunk_dim[!bounded] * mult_factor)
chunk_dim <- pmin(space_maxdims, chunk_dim)
bounded <- chunk_dim == space_maxdims
}
return(chunk_dim)
}
##' Set the correct dimension attribute for an object
##'
##' This function uses the space and the selection in it to set the correct dimension
##' for the resulting object (but without dropping dimensions). Furthermore, if the
##' datatype is an array, those dimensions are correctly determined as well.
##'
##' Internal use only; currently unused
##' @title Set the correct dimension attribute for an object
##' @param x an object that was read from an HDF5 dataset or attribute
##' @param space The space with the selection that was used to read the dataset
##' @param dtype The datatype of the dataset
##' @return \code{x}, but with a new dimension attribute
##' @author Holger Hoefling
##' @keywords internal
extract_dim <- function(space, dtype) {
## apply the right dimension attribute to x that is implied by the space and the data-type
dtype_dim <- NULL
if(inherits(dtype, "H5T")) {
if(dtype$get_class() == h5const$H5T_ARRAY) {
dtype_dim <- dtype$get_array_dims()
}
}
## check if the dtype_dimensions fit the guessed dimensions
if(!space$is_simple()) {
space_dim <- NULL
}
else {
## now we need to check what the dimension of the dataspace-selection is
space_sel_type <- space$get_select_type()
if(space_sel_type == h5const$H5S_SEL_HYPERSLABS) {
nblocks <- space$get_select_hyper_nblocks()
if(nblocks == 1) {
blocklist <- space$get_select_hyper_blocklist()
space_dim <- blocklist[2,] - blocklist[1,] + 1
}
else {## cannot infer easily the size of each dimension
space_dim <- space$get_select_npoints()
}
}
else if(space_sel_type == h5const$H5S_SEL_POINTS) {
space_dim <- space$get_select_npoints()
}
else if(space_sel_type == h5const$H5S_SEL_ALL) {
space_dim <- space$get_simple_extent_dims()$dims
}
else if(space_sel_type == h5const$H5S_SEL_NONE) {
return(NULL)
}
else {
stop("Unknown selection in space")
}
}
all_dim <- as.integer(c(space_dim, dtype_dim))
return(all_dim)
}
##' Reorder an array
##'
##' Reorders an array using a fast underlying c-function. It is implemented
##' for its simple generality and only intended for internal use in the package.
##' @title Reorder an array
##' @param x The array; doesn't have to have a dim attribute; is just assumed to be a vector
##' @param dims The dimensionality of the array
##' @param reorder_dim The dimension to reorder
##' @param new_order The new ordering of the reorder_dim; not checked for correctness; 1-based
##' @param item_size The size in bytes of each array item; not discovered automatically
##' @return The re-ordered array
##' @author Holger Hoefling
##' @keywords internal
array_reorder <- function(x, dims, reorder_dim, new_order, item_size) {
pre_reorder_dims <- dims[seq_len(reorder_dim -1)]
post_reorder_dims <- dims[reorder_dim + seq_len(length(dims) - reorder_dim)]
## item size is the number of items in the dimensions before the re-order times the size of each item
item_size <- prod(pre_reorder_dims) * item_size
num_rows <- dims[reorder_dim]
num_cols <- prod(post_reorder_dims)
return(.Call("R_reorder", x, num_rows, num_cols, item_size, new_order - 1, PACKAGE="hdf5r"))
}
##' Round-trip of converting data to HDF5 and back to R
##'
##' Take an R-object, convert it to HDF5, convert it back and return input, output and intermediate steps
##' This is mainly intended for use in tests.
##' @title Round-trip of converting data to HDF5 and back to R
##' @param Robj The object to convert
##' @param dtype The datatype to convert it into
##' @param nelem The number of elements in the object
##' @param flags conversion flags from HDF5 to R
##' @return A list with input, number of elements, raw vector for intermediate storage and output
##' @author Holger Hoefling
##' @keywords internal
convertRoundTrip <- function(Robj, dtype, nelem=length(Robj), flags=h5const$H5TOR_CONV_INT64_NOLOSS) {
if(missing(nelem)) {
if(!is.data.frame(Robj)) {
nelem <- length(Robj)
}
else {
nelem <- nrow(Robj)
}
}
h5val_raw <- RToH5(Robj, dtype, nelem)
retRobj <- H5ToR_Pre(dtype, nelem)
dtype_size <- dtype$get_size()
if(dtype_size==Inf) {
dtype_size <- dtype$get_size(variable_as_inf=FALSE)
}
retRobj <- copyRVec(retRobj, h5val_raw, nelem * dtype_size);
retRobj <- H5ToR_Post(retRobj, dtype, nelem, flags)
return(list(input=Robj, nelem=nelem, h5val_raw=h5val_raw, output=retRobj))
}
|