File: high_level_UI.R

package info (click to toggle)
r-cran-hdf5r 1.3.8%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 10,192 kB
  • sloc: ansic: 76,883; sh: 82; python: 32; makefile: 13
file content (750 lines) | stat: -rw-r--r-- 32,974 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750

#############################################################################
##
## Copyright 2016 Novartis Institutes for BioMedical Research Inc.
## Licensed under the Apache License, Version 2.0 (the "License");
## you may not use this file except in compliance with the License.
## You may obtain a copy of the License at
##
## http://www.apache.org/licenses/LICENSE-2.0
##
## Unless required by applicable law or agreed to in writing, software
## distributed under the License is distributed on an "AS IS" BASIS,
## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
## See the License for the specific language governing permissions and
## limitations under the License.
##
#############################################################################










###################################################
## UI for operating on groups and files
###################################################

##' Get the names of the items in the group or at the \code{/} root of the file
##'
##' Works similar to the regular \code{names} function for a list. The names of the items of either a
##' \code{\link{H5File}} at the root or a \code{\link{H5Group}} are returned as a character vector.
##' The items are then accessed, again similar to a list, using \code{[[}.
##' @title Get the names of the items in the group or at the \code{/} root of the file
##' @param x An object of class \code{\link{H5File}} or \code{\link{H5Group}}
##' @return A character vector with the names of the items in the group/file.
##' @author Holger Hoefling
##' @export
names.H5Group <- function(x) {
    link_access_pl <- h5const$H5P_DEFAULT
    ginfo <- x$group_info()
    nlinks <- ginfo$nlinks
    res <- character(nlinks)
    for(i in seq_len(nlinks)) {
        res[i] <- x$link_name_by_idx(i-1, ".", idx_type=h5const$H5_INDEX_NAME, order=h5const$H5_ITER_INC,
                                     link_access_pl=link_access_pl)
    }
    return(res)
}

##' @rdname names.H5Group
##' @export
names.H5File <- names.H5Group

##' Retrieve object from a group of file
##'
##' Works similar to retrieving objects in a list. \code{x[["my_name"]]} retrieves object \code{my_name} from the
##' HDF5-File or HDF5-Group \code{x}.
##'
##' One can also assign objects under a not yet existing name. For either a  \code{\link{H5Group}} or \code{\link{H5D}},
##' a hard link is created. If it is a datatype, \code{\link{H5T}}, this is committed under the chosen name \code{name}.
##' @title Retrieve object from a group of file
##' @param x An object of class \code{\link{H5File}} or \code{\link{H5Group}}
##' @param name Name of the object to retrieve. Has to be a character vector of length one. No integer values allowed.
##' @param ... Currently ignored
##' @param link_access_pl An object of class \code{\link{H5P_LINK_ACCESS}}.
##' @param dataset_access_pl An object of class \code{\link{H5P_DATASET_ACCESS}}.
##' @param type_access_pl Currently always \code{h5const$H5P_DEFAULT}
##' @param value What to assign. Has to be one of \code{\link{H5Group}},  \code{\link{H5D}} or  \code{\link{H5T}}
##' @return A \code{\link{H5Group}},  \code{\link{H5D}} or  \code{\link{H5T}}, depending on the object saved in the group under
##' the requested name.
##' @author Holger Hoefling
##' @rdname H5Group_access
##' @name H5Group_access
##' @export
'[[.H5Group' <- function(x, name, ..., link_access_pl=h5const$H5P_DEFAULT, dataset_access_pl=h5const$H5P_DEFAULT, type_access_pl=h5const$H5P_DEFAULT) {
    if(x$exists(name)) {
        return(x$open(name=name, link_access_pl=link_access_pl, dataset_access_pl=dataset_access_pl, type_access_pl=type_access_pl))
    }
    else {
        stop(paste("An object with name", name, "does not exist in this group"))
    }
}

##' @rdname H5Group_access
##' @export
'[[.H5File' <- get("[[.H5Group")


##' @rdname H5Group_access
##' @export
'[[<-.H5Group' <- function(x, name, ..., value) {
    ## if a group is given, make a link
    ## if a dataset is given, make a link
    ## if another r-obj is given, create a dataset for that object and write it
    ## if the object already exists, just fail
    if(x$exists(name)) {
        ## it is a peculiarity of the way R works that when assigning attributes,
        ## as it is done by value, the resulting object is written over itself (with the attribute attached)
        ## so here, we need to check if the object being assigned is itself
        if(inherits(value, "H5File") || inherits(value, "H5Group") || inherits(value, "H5D") || inherits(value, "H5T")) {
            value_oinfo <- value$obj_info()
            x_oinfo <- x[[name]]$obj_info()
            if(identical(value_oinfo, x_oinfo)) {
                return(invisible(x))
            }
        }

        stop("Cannot assign - already exists. Please use the 'link_delete' to delete the object before assigning a new one")
    }
    if(inherits(value, "H5Group")) {
        x$link_create_hard(value, ".", name)
    }
    else if(inherits(value, "H5D")) {
        x$link(value, name)
    }
    else if(inherits(value, "H5T")) {
        x$commit(name, value)
    }
    else {
        x$create_dataset(name, value)
    }
    return(invisible(x))
}

##' @rdname H5Group_access
##' @export
'[[<-.H5File' <- get("[[<-.H5Group")

###################################################
## UI for working with arguments
###################################################

##' Interface for HDF5 attributes
##'
##' Implements high-level functions that allows interactions with HDF5-attributes in a way very similar to regular R-object attributes
##' in R are handled.
##' @title Interface for HDF5 attributes
##' @param x The object to which to attach the attribute to or retrieve it from. Can be one of \code{\link{H5Group}},  \code{\link{H5D}},
##' \code{\link{H5T}} or  \code{\link{H5File}}
##' @param which The name of the attribute to assign it to
##' @param value The value to assign to the attribute.
##' @return For \code{h5attributes}, a named list with the content of the attributes read out. For \code{h5attr_names},
##' a vector of names of the attributes attached to the object \code{x}. For \code{h5attr}, the content of the attribute and
##' for \code{h5attr<-}, the assignment, the original object to which the attributes are attached (so that chaining is possible).
##' @author Holger Hoefling
##' @export
h5attributes <- function(x) {
    ## return a list with the names and content of all attributes
    ## first get number of attributes; used deprecated attr_get_number;
    ## reason is that H5Oget_info can be slow on large datasets (but should be ok on files)
    if(inherits(x, "H5File")) {
        num_attrs <- x$obj_info()$num_attrs
    }
    else {
        num_attrs <- x$attr_get_number()
    }
    attr_data <- vector("list", length=num_attrs)
    names(attr_data) <- h5attr_names(x)

    for(i in seq_along(attr_data)) {
        attr_obj <- x$attr_open_by_idx(i - 1, ".")
        attr_data[[i]] <- attr_obj$read()
    }
    return(attr_data)
}

##' @rdname h5attributes
##' @export
h5attr_names <- function(x) {
    ## get the number of attributes
    ## first get number of attributes; used deprecated attr_get_number;
    ## reason is that H5Oget_info can be slow on large datasets (but should be ok on files)
    if(inherits(x, "H5File")) {
        num_attrs <- x$obj_info()$num_attrs
    }
    else {
        num_attrs <- x$attr_get_number()
    }
    attr_names <- character(num_attrs)
    for(i in seq_along(attr_names)) {
        attr_names[i] <- x$attr_name_by_idx(i - 1, ".")
    }
    return(attr_names)
}

##' @rdname h5attributes
##' @export
h5attr <- function(x, which) {
    if(!x$attr_exists_by_name(which, ".")) {
        stop("Attribute does not exist")
    }
    attr_obj <- x$attr_open_by_name(which, ".")
    return(attr_obj$read())
}

##' @rdname h5attributes
##' @export
'h5attr<-' <- function(x, which, value) {
    if(x$attr_exists_by_name(which, ".")) {
        ## if it already exists, delete it first
        ## to make sure that unused object get closed
        gc()
        x$attr_delete_by_name(which, ".")
    }
    attr_obj <- x$create_attr(which, robj=value)
    return(invisible(x))
}


###################################################
## UI for working with datasets
###################################################

##' Selecting and assigning subsets of HDF5-Spaces and HDF5-Datasets
##'
##' Used for subsetting HDF5-Datasets or HDF5-Spaces or for assigning data into HDF5-Datasets. There are some differences to
##' consider with R itself.
##'
##' Most importantly HDF5-COMPOUND objects only have a single dimension internally to HDF5 (a vector), but they correspond to R-data.frames,
##' which are 2 dimensional. For an HDF5 COMPOUND object, it is currently not possible to only sub-select a specific column.
##' All columns have to be extracted (using 1-dimensional access with \code{[} and can then be subset in R itself.
##' The same is true for writing a COMPOUND object (\code{\link{H5T_COMPOUND}}). A complete data-frame
##' is needed, not just a subset of the columns.
##'
##' Another important differences is for datasets of HDF5-ARRAY type \code{\link{H5T_ARRAY}}
##' where the access to the object is only for the dimension of the object itself, not including the dimensions of the underlying array type.
##' @title Selecting and assigning subsets of HDF5-Spaces and HDF5-Datasets
##' @param x The  \code{\link{H5S}} or \code{\link{H5D}} to subset or assign values to
##' @param d1 First dimension of the object
##' @param ... Used for other dimension of the object
##' @param op Operation to perform on the \code{\link{H5S}}. Look into the HDF5 online help
##' \url{https://portal.hdfgroup.org/display/HDF5/H5S_SELECT_ELEMENTS} and
##' \url{https://portal.hdfgroup.org/display/HDF5/H5S_SELECT_HYPERSLAB}
##' @param dataset_xfer_pl An object of class \code{\link{H5P_DATASET_XFER}}.
##' @param flags Some flags governing edge cases of conversion from HDF5 to R. This is related to how integers are being treated and
##' the issue of R not being able to natively represent 64bit integers and not at all being able to represent unsigned 64bit integers
##' (even using add-on packages). The constants governing this are part of \code{\link{h5const}}. The relevant ones start with the term
##' \code{H5TOR} and are documented there. The default set here returns a regular 32bit integer if it doesn't lead to an overflow
##' and returns a 64bit integer from the \code{bit64} package otherwise. For 64bit unsigned int that are larger than 64bit signed int,
##' it return a \code{double}. This looses precision, however. See also documentation or \code{\link{h5const}}.
##' @param value The value to assign to the dataset
##' @param drop Logical. When reading data, should dimensions of size 1 be dropped.
##' @param envir The environment in which the dimension indices \code{d1, ...} are to be evaluated. Usually the environment from
##' where the function is called
##' @return For \code{x} being a \code{\link{H5S}}, the same object is returned, but with the selection set as requested. For
##' \code{\link{H5D}} it retrieves the subset of data requested or sets the subset of data assigned, as for any n-dimensional array
##' in R.
##' @author Holger Hoefling
##' @name H5S_H5D_subset_assign
NULL

#' @rdname H5S_H5D_subset_assign
#' @export
subset_h5.H5S <- function(x,d1, ..., op=h5const$H5S_SELECT_SET, envir=parent.frame()) {
    args <- eval(substitute(alist(d1, ...)))

    return(x$subset(args=args, op=op, envir=envir))
}



#' @rdname H5S_H5D_subset_assign
#' @export
'[.H5S' <- subset_h5.H5S

#' @rdname H5S_H5D_subset_assign
#' @export
subset_h5.H5D <- function(x, d1, ..., dataset_xfer_pl=h5const$H5P_DEFAULT,
                          flags=getOption("hdf5r.h5tor_default"), drop=TRUE, envir=parent.frame()) {
    args <- eval(substitute(alist(d1, ...)))
    return(x$read(args=args, dataset_xfer_pl=dataset_xfer_pl, flags=flags, drop=drop, envir=envir))
}

#' @rdname H5S_H5D_subset_assign
#' @export
"[.H5D" <- subset_h5.H5D


#' @rdname H5S_H5D_subset_assign
#' @export
subset_assign_h5.H5D <- function(x, d1, ..., dataset_xfer_pl=h5const$H5P_DEFAULT, envir=parent.frame(), value) {
    args <- eval(substitute(alist(d1, ...)))
    return(x$write(args=args, value=value, dataset_xfer_pl=dataset_xfer_pl, envir=envir))
}

#' @rdname H5S_H5D_subset_assign
#' @export
"[<-.H5D" <- subset_assign_h5.H5D


###############################################################
# Helper functions for evaluating arguments
###############################################################

##' Apply a selection to a space
##'
##' Calls the respective stand-alone functions for point-selection or multiple hyperslab selection. The reason for not
##' calling a method of an R6 object is to make it more efficient and make it useable without creating a full R6 object.
##' @title Apply a selection to a space
##' @param space_id The space_id of the space to which to apply the selection to
##' @param selection The selection object of class \code{point_selection} or \code{hyperslab_selection}
##' @return NULL
##' @author Holger Hoefling
##' @keywords internal
apply_selection <- function(space_id, selection) {
    op <- h5const$H5S_SELECT_SET
    if(inherits(selection, "point_selection")) {
        standalone_H5S_select_elements(id=space_id, coord=selection, op=h5const$H5S_SELECT_SET, byrow=TRUE)
    }
    else if(inherits(selection, "hyperslab_selection")) {
        standalone_H5S_select_multiple_hyperslab(id=space_id, hyperslab_array=selection)
    }
    else {
        stop("Unknown selection type; needs to be of class point_selection of hyperslab_selection")
    }
    return(invisible(NULL))
}



##' Can arguments be interpreted as a scalar?
##'
##' Check if there is only one argument and if it is either empty
##' of of length 1 with value 1, i.e. can be interpreted as a scalar.
##' @title Can arguments be interpreted as a scalar?
##' @param args The arguments to check
##' @return Logical if the arguments can be interpreted as a scalar
##' @author Holger Hoefling
##' @keywords internal
are_args_scalar <- function(args) {
    if(length(args) != 1) {
        return(FALSE)
    }
    if(args[[1]]==bquote(expr=) || args[[1]] == 1) {
        return(TRUE)
    }
    else {
        return(FALSE)
    }
}


##' Check argument for known functions that encode a hyperslab
##'
##' Checks for the functions \code{:}, \code{seq} and \code{seq_len}
##' @title Check argument for known functions that encode a hyperslab
##' @param cur_arg The argument to check
##' @param envir The environment in which to evaluate the argument
##' @return A vector of length 4 describing start, count, stride and block if appropriate
##' @author Holger Hoefling
##' @keywords internal
check_arg_for_hyperslab_func <- function(x, envir) {
    res <- c(NA, NA, NA, NA)
    if(is.call(x)) {
        if(length(x) > 1) {
            for(i in 2:length(x)) {
                x[[i]] <- eval(x[[i]], envir=envir)
            }
        }
        if(x[[1]] == ":") {
            if(length(x) == 3) {
                if(x[[3]] < x[[2]]) {
                    stop("Retrieving hyperslabs in reverse order not supported")
                }
                start <- as.numeric(x[[2]])
                block <- as.numeric(x[[3]]) - start + 1
                res <- c(start, 1, 1, block)
            }
        }
        else if(x[[1]] == "seq_len") {
            res <- c(1, 1, 1, as.numeric(x[[2]]))
        }
        else if(x[[1]] == "seq") {
            if(length(x) >= 2 && (is.integer(x[[2]]) || is.numeric(x[[2]]))) {
                ## in both cases use a matching to seq.default, as the signatures are the same
                matched_call <- match.call.withDef(seq.default, x)
                if(is.null(matched_call$length.out)) {
                    length.out <- floor(((as.numeric(matched_call$to) - as.numeric(matched_call$from)) / as.numeric(matched_call$by)) + 1)
                }
                else {
                    length.out <- as.numeric(matched_call$length.out)
                }
                stride <- as.numeric(matched_call$by)
                start <- as.numeric(matched_call$from)
                if(stride==1) {
                    ## it is one block
                    res <- c(start, 1, stride, length.out)
                }
                else {
                    ## it is length.out blocks, each of length 1
                    res <- c(start, length.out, stride, 1)
                }
            }
        }
    }
    if(!is.na(res[[1]]) && res[[1]] <= 0) {
        res <- c(NA, NA, NA, NA)
    }
    return(res)
}


##' Evaluate if the arguments are regular for hyperslab use
##'
##' For each argument check if it can be used as a hyperslab, potentially after sorting and making unique.
##' @title Evaluate if the arguments are regular for hyperslab use
##' @param args The arguments input; if it was empty, then set to NULL
##' @param ds_dims The dimensions of the input dataset
##' @param envir The environment in which to evaluate the arguments
##' @param post_read Should the reshuffle be computed for post-read (then \code{TRUE}) or pre-write (then \code{FALSE})
##' @return A list with 2 parts; Evaluated arguments, regularity report and reshuffle indicators. Will be returned as a list
##' with components \code{args_in}, \code{args_point}, \code{is_hyperslab}, \code{hyperslab},
##' \code{needs_reshuffle}, code{reshuffle}, \code{result_dims_pre_shuffle}, \code{result_dims_post_shuffle}, \code{max_dims}
##' @author Holger Hoefling
##' @keywords internal
args_regularity_evaluation <- function(args, ds_dims, envir, post_read=TRUE) {
    ## check that the number of arguments is the same as the dataset dimension
    if(length(args) != length(ds_dims)) {
        stop("Number of arguments not equal to number of dimensions: ", length(args), " vs. ", length(ds_dims))
    }

    ## create the skeleton for the regularity report
    ## has columns: start, count, stride, block
    hyperslab <- matrix(rep(NA, length(args) * 4), ncol=4)
    colnames(hyperslab) <- c("start", "count", "stride", "block")

    is_hyperslab <- rep(FALSE, length(args))
    needs_reshuffle <- is_hyperslab
    args_in <- args
    args_point <- vector("list", length(args))
    result_dims_pre_shuffle <- numeric(length(args))
    result_dims_post_shuffle <- numeric(length(args))
    max_dims <- result_dims_pre_shuffle
    reshuffle <- args_point

    for(i in seq_along(args)) {
        cur_arg <- args[[i]]
        if(length(args[[i]]) == 1 && args[[i]]==quote(expr=)) {
            ## set to maximal hyperslab for this dimension
            res_hyper <- c(1, 1, 1, ds_dims[[i]])
        }
        else if(is.call(cur_arg)) {
            res_hyper <- check_arg_for_hyperslab_func(cur_arg, envir)
        }
        else {
            res_hyper <- c(NA, NA, NA, NA)
        }
        ## res_hyper contains the information if the argument can be interpreted as a hyperslab

        if(!any(is.na(res_hyper))) { ## is a hyperslab made from a function
            is_hyperslab[i] <- TRUE
            hyperslab[i,] <- res_hyper
            needs_reshuffle[i] <- FALSE
            result_dims_pre_shuffle[i] <- res_hyper[2] * res_hyper[4] # count * block
            result_dims_post_shuffle[i] <- res_hyper[2] * res_hyper[4] # count * block
            max_dims[i] <- res_hyper[1] + (res_hyper[2] - 1) * res_hyper[3] + res_hyper[4] - 1 # start + (count - 1) * stride + block - 1
        }
        else {
            cur_arg <- eval(cur_arg, envir=envir)
            if(is.logical(cur_arg)) {
                ## expand it as necessary and convert to an integer vector
                cur_arg <- seq_len(ds_dims[[i]])[cur_arg]
            }
            if(is.null(cur_arg)) {
                ## make it into a numeric of length 0
                cur_arg <- numeric(0)
            }
            if(is.numeric(cur_arg) || is.integer(cur_arg) || is.integer64(cur_arg)) {
                cur_arg <- as.numeric(cur_arg)
                ## check if it has length 0 or 1; these are special cases
                if(length(cur_arg) == 0) {
                    is_hyperslab[i] <- FALSE
                    needs_reshuffle[i] <- FALSE
                    args_point[[i]] <- cur_arg
                    result_dims_pre_shuffle[i] <- 0
                    result_dims_post_shuffle[i] <- 0
                    max_dims[i] <- -Inf
                }
                else if(length(cur_arg) == 1) {
                    is_hyperslab[i] <- TRUE
                    needs_reshuffle[i] <- FALSE
                    result_dims_pre_shuffle[i] <- 1
                    result_dims_post_shuffle[i] <- 1
                    hyperslab[i, ] <- c(cur_arg, 1, 1, 1)
                    max_dims[i] <- cur_arg
                }
                else {
                    ## check it is all positive, negative or a mixture of both
                    if(all(cur_arg < 0)) {
                        cur_arg <- seq_len(ds_dims[[i]])[cur_arg]
                    }
                    else if(!all(cur_arg > 0)) {
                        stop("In index ", i, " not all subscripts are either positive or negative")
                    }
                    ## then check if it can be written as a hyperslab
                    cur_arg_diff_unique <- unique(diff(cur_arg))
                    if(all(cur_arg_diff_unique > 0)) { ## strictly increasing
                        needs_reshuffle[i] <- FALSE
                        max_dims[i] <- cur_arg[length(cur_arg)]
                        result_dims_pre_shuffle[i] <- length(cur_arg)
                        result_dims_post_shuffle[i] <- length(cur_arg)
                        if(length(cur_arg_diff_unique) == 1) {
                            is_hyperslab[i] <- TRUE

                            if(cur_arg_diff_unique == 1) {
                                hyperslab[i, ] <- c(cur_arg[[1]], 1, 1, length(cur_arg))
                            }
                            else {
                                hyperslab[i, ] <- c(cur_arg[[1]], length(cur_arg), cur_arg_diff_unique, 1)
                            }
                        }
                        else {
                            ## can only be done as points, not as a hyperslab
                            is_hyperslab[i] <- FALSE
                            args_point[[i]] <- cur_arg
                        }
                    }
                    else { ## not strictly increasing, so sort and make unique
                        ## see if a sorting and making unique could make it into a hyperslab
                        sort_arg <- sort(unique.default(cur_arg))
                        needs_reshuffle[i] <- TRUE
                        if(post_read) {
                            reshuffle[[i]] <- match(cur_arg, sort_arg)
                            result_dims_pre_shuffle[i] <- length(sort_arg)
                            result_dims_post_shuffle[i] <- length(cur_arg)
                        }
                        else {
                            ## need to invalidate the first instance of anything that is duplicated
                            reshuffle[[i]] <- order(cur_arg)[!duplicated(cur_arg, fromLast=TRUE)]
                            ## length of pre and post are reversed here
                            result_dims_post_shuffle[i] <- length(sort_arg)
                            result_dims_pre_shuffle[i] <- length(cur_arg)

                        }

                        sort_arg_diff <- diff(sort_arg)
                        sort_arg_diff_unique <- unique(sort_arg_diff)
                        ## now same as before for the unsorted one
                        ## but as is sorted and unique, know already that it is non-decreasing
                        max_dims[i] <- sort_arg[length(sort_arg)]
                        if(length(sort_arg_diff_unique) == 1) {
                            is_hyperslab[i] <- TRUE

                            if(sort_arg_diff_unique == 1) {
                                hyperslab[i, ] <- c(sort_arg[[1]], 1, 1, length(sort_arg))
                            }
                            else {
                                hyperslab[i, ] <- c(sort_arg[[1]], length(sort_arg), sort_arg_diff_unique, 1)
                            }
                        }
                        else {
                            ## can only be done as points, not as a hyperslab
                            is_hyperslab[i] <- FALSE
                            args_point[[i]] <- sort_arg
                        }
                    }
                }
            }
            else {
                stop("Can't evaluate argument ", i)
            }
        }

    }
    return(list(args_in=args_in, args_point=args_point, is_hyperslab=is_hyperslab, hyperslab=hyperslab,
                result_dims_pre_shuffle=result_dims_pre_shuffle, result_dims_post_shuffle=result_dims_post_shuffle,
                max_dims=max_dims, needs_reshuffle=needs_reshuffle, reshuffle=reshuffle))
}

##' Single hyperslab dimension to explicit vector
##'
##' Uses the information of a hyperslab and turns it into an explicit vector.
##' @title Single hyperslab dimension to explicit vector
##' @param hyperslab a length 4 vector describing the start, count, stride and block component of a single dimension of a hyperslab
##' @return An explicit vector describing the points in the hyperslab dimension
##' @author Holger Hoefling
##' @keywords internal
hyperslab_to_points <- function(hyperslab) {
    stopifnot(length(hyperslab)==4 && is.numeric(hyperslab))
    ## c("start", "count", "stride", "block")
    if(hyperslab[[2]] == 1) { # only one block
        res <- (seq_len(hyperslab[[4]]) - 1) + hyperslab[[1]] 
    }
    else if(hyperslab[[4]] == 1) { # only blocks of size 1
        res <- ((seq_len(hyperslab[[2]]) - 1) * hyperslab[[3]]) + hyperslab[[1]]
    }
    else { # mixed; should not occur for us but will write function to handle this anyway
        ## doesn't need to be overly efficient
        res <- rep(seq_len(hyperslab[[4]]), times=hyperslab[[2]])
        ## now add it the stride component
        res <- res + rep((seq_len(hyperslab[[2]]) - 1) * hyperslab[[3]], each=hyperslab[[4]])
        res <- res + hyperslab[[1]] - 1
    }
    return(res)
}

##' Turn regulation evaluation into a selection for a space object
##'
##' Analyzes the results of the regularity evaluation of each dimension and checks if
##' it needs to be into a hyperslab-selection or a point-selection. A hyperslab selection will be chosen
##' whenever there are significantly less of it than the number of selected points. The ratio is determined
##' by the option \code{hdf5r.point_to_hyperslab_ratio}. If this is 1, then always hyperslabs will be used.
##' @title Turn regulation evaluation into a selection for a space object
##' @param reg_eval_res The result of the \code{args_regularity_evaluation} function
##' @return Returns an object with either the point-matrix or the hyperslab-selection array. The resulting object is
##' of class \code{point_selection} or \code{hyperslab_selection}.
##' @author Holger Hoefling
##' @keywords internal
regularity_eval_to_selection <- function(reg_eval_res) {
    ## first calculate how many points need to be selected and how many hyperslabs would need to be necesary
    num_points <- prod(reg_eval_res$result_dims_pre_shuffle)
    num_hyperslabs <- prod(reg_eval_res$result_dims_pre_shuffle[!reg_eval_res$is_hyperslab])

    ## trivially any selection can always be written as a concatenation of hyperslabs; so should be ever do a pointlist?
    ## likely pointlist more efficient in selection. Use hyperslabs only if we have X-fold fewer hyperslabs than datapoints
    ## here choose X as >= 4 for now
    if(num_hyperslabs == 0) {
        point_hyperslab_ratio <- 0
    }
    else {
        point_hyperslab_ratio <- num_points / num_hyperslabs
    }
    if(point_hyperslab_ratio >= getOption("hdf5r.point_to_hyperslabs_ratio")) {
        ## use a hyperslab
        sel_type <- "hyperslab_selection"
        ## make a 3-dimensional array, each 2 dimensional sub-array (in the third dimension) is a complete hyperslab description
        if(any(!reg_eval_res$is_hyperslab)) {
            ## not just 1 hyperslab
            point_grid <- expand_point_grid(reg_eval_res$args_point[!reg_eval_res$is_hyperslab])
            hyperslab_array <- array(0, dim=c(nrow(reg_eval_res$hyperslab), nrow(point_grid), 4))
            for(i in 1:4) {
                hyperslab_array[,,i] <- reg_eval_res$hyperslab[,i]
            }
            ## c("start", "count", "stride", "block")
            ## set the dimensions that are the point grid; those currently have NA in them
            hyperslab_array[!reg_eval_res$is_hyperslab, , 1] <- t(point_grid)
            hyperslab_array[!reg_eval_res$is_hyperslab, , 2] <- 1
            hyperslab_array[!reg_eval_res$is_hyperslab, , 3] <- 1
            hyperslab_array[!reg_eval_res$is_hyperslab, , 4] <- 1
        }
        else {
            hyperslab_array <- array(reg_eval_res$hyperslab, dim=c(nrow(reg_eval_res$hyperslab), 1, 4))
        }
        sel <- hyperslab_array
    }
    else {
        sel_type <- "point_selection"
        ## if there are any hyperslab dimensions, expand them to a point list
        args_point <- reg_eval_res$args_point
        if(any(reg_eval_res$is_hyperslab)) {
            for(i in which(reg_eval_res$is_hyperslab)) {
                args_point[[i]] <- hyperslab_to_points(reg_eval_res$hyperslab[i,])
            }
        }

        sel <- expand_point_grid(args_point)
    }
    return(structure(.Data=sel, class=sel_type))
}





##' Expand list of points for each dimension into a matrix of all combinations
##'
##' The function is similar to the \code{expand.grid} function
##' @title Expand list of points for each dimension into a matrix of all combinations
##' @param point_list A list of the points in each dimension to include
##' @return A matrix with every combination of points for each dimension
##' @author Holger Hoefling
##' @keywords internal
expand_point_grid <- function(point_list) {
    point_list_size <- unlist(lapply(point_list, length))
    cum_prod_std <- c(1, cumprod(point_list_size))
    cum_prod_rev <- rev(c(1, cumprod(rev(point_list_size))))
    num_points <- prod(point_list_size)
    point_mat <- matrix(numeric(num_points * length(point_list)), ncol=length(point_list))
    for(i in seq_along(point_list)) {
        point_mat[, i] <- rep(point_list[[i]], each=cum_prod_std[i], times=cum_prod_rev[i+1])
    }
    return(point_mat)
}





##' Match arguments in a call to function and add default values
##'
##' Given the definition of a function and a call, it matches the arguments
##' so that they are named and inserts any default argument values where
##' those are missing
##' @title Match arguments in a call to function and add default values
##' @param definition Definition of the function to match against
##' @param call The call that should be matched
##' @return A call with named arguments and default values
##' @author Holger Hoefling
##' @keywords internal
match.call.withDef <- function(definition, call) {
    def.formals <- formals(definition)
    foo <- try(as.list(match.call(definition = definition, call=call)), silent=TRUE)

    if(inherits(foo, "try-error")) {
        return(foo)
    }
    ## add the default arguments if they are missing
    for(v in names(def.formals)) {
        if(!(v %in% names(foo))) {
            foo <- c(foo, def.formals[v])
        }
    }
    return(foo)
}

##' Reshuffle the input as needed - see \code{args_regularity_evaluation}
##'
##' When necessary, this function performs the reshuffle as defined by \code{args_regularity_evaluation}.
##' @title Reshuffle the input as needed - see \code{args_regularity_evaluation}
##' @param x The array to reshuffle
##' @param reg_eval_res The result of the regularity evaluation
##' @return The reshuffled input
##' @author Holger Hoefling
##' @keywords internal
do_reshuffle <- function (x, reg_eval_res) {
    ## for the post read shuffle, we just have to use the order as noted in reg_eval_res
    ## however, data.frames have an additional dimension the evaluator currently
    ## does not know about, so have to add it
    if(inherits(x, "data.frame")) {
        if(length(reg_eval_res$needs_reshuffle) != 1) {
            stop("For data.frame, the selection can only have 1 dimension")
        }
        reorder_params <- rep(list(quote(expr=)), 2)
        if(reg_eval_res$needs_reshuffle) {
            reorder_params[1] <- reg_eval_res$reshuffle[1]
        }
    }
    else {
        reorder_params <- rep(list(quote(expr=)), length(reg_eval_res$reshuffle))

        reorder_params[reg_eval_res$needs_reshuffle] <- reg_eval_res$reshuffle[reg_eval_res$needs_reshuffle]
    }
    res <- do.call("[", c(list(x), reorder_params))
    return(res)
}