File: components.R

package info (click to toggle)
r-cran-igraph 1.0.1-1%2Bdeb9u1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 18,232 kB
  • sloc: ansic: 173,538; cpp: 19,365; fortran: 4,550; yacc: 1,164; tcl: 931; lex: 484; makefile: 149; sh: 9
file content (202 lines) | stat: -rw-r--r-- 7,385 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#   IGraph R package
#   Copyright (C) 2005-2012  Gabor Csardi <csardi.gabor@gmail.com>
#   334 Harvard street, Cambridge, MA 02139 USA
#   
#   This program is free software; you can redistribute it and/or modify
#   it under the terms of the GNU General Public License as published by
#   the Free Software Foundation; either version 2 of the License, or
#   (at your option) any later version.
#
#   This program is distributed in the hope that it will be useful,
#   but WITHOUT ANY WARRANTY; without even the implied warranty of
#   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#   GNU General Public License for more details.
#   
#   You should have received a copy of the GNU General Public License
#   along with this program; if not, write to the Free Software
#   Foundation, Inc.,  51 Franklin Street, Fifth Floor, Boston, MA
#   02110-1301 USA
#
###################################################################

###################################################################
# Connected components, subgraphs, kinda
###################################################################

#' @export

count_components <- function(graph, mode=c("weak", "strong")) {
  if (!is_igraph(graph)) {
    stop("Not a graph object")
  }
  mode <- igraph.match.arg(mode)
  mode <- switch(mode, "weak"=1, "strong"=2)

  on.exit( .Call("R_igraph_finalizer", PACKAGE="igraph") )
  .Call("R_igraph_no_clusters", graph, as.numeric(mode),
        PACKAGE="igraph")
}

#' @rdname components
#' @param cumulative Logical, if TRUE the cumulative distirubution (relative
#' frequency) is calculated.
#' @param mul.size Logical. If TRUE the relative frequencies will be multiplied
#' by the cluster sizes.
#' @export

component_distribution <- function(graph, cumulative=FALSE, mul.size=FALSE,
                                 ...) {
  if (!is_igraph(graph)) {
    stop("Not a graph object")
  }
  
  cs <- components(graph, ...)$csize;
  hi <- hist(cs, -1:max(cs), plot=FALSE)$density
  if (mul.size) {
    hi <- hi*1:max(cs)
    hi <- hi/sum(hi)
  }
  if (!cumulative) {
    res <- hi
  } else {
    res <- rev(cumsum(rev(hi)));
  }
  
  res
}

#' @export

is_connected <- function(graph, mode=c("weak", "strong")) {
  if (!is_igraph(graph)) {
    stop("Not a graph object")
  }
  mode <- igraph.match.arg(mode)
  mode <- switch(mode, "weak"=1, "strong"=2)

  on.exit( .Call("R_igraph_finalizer", PACKAGE="igraph") )
  .Call("R_igraph_is_connected", graph, as.numeric(mode),
        PACKAGE="igraph")
}



#' Decompose a graph into components
#' 
#' Creates a separate graph for each component of a graph.
#' 
#' @aliases decompose.graph
#' @param graph The original graph.
#' @param mode Character constant giving the type of the components, wither
#' \code{weak} for weakly connected components or \code{strong} for strongly
#' connected components.
#' @param max.comps The maximum number of components to return. The first
#' \code{max.comps} components will be returned (which hold at least
#' \code{min.vertices} vertices, see the next parameter), the others will be
#' ignored. Supply \code{NA} here if you don't want to limit the number of
#' components.
#' @param min.vertices The minimum number of vertices a component should
#' contain in order to place it in the result list. Eg. supply 2 here to ignore
#' isolate vertices.
#' @return A list of graph objects.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso \code{\link{is_connected}} to decide whether a graph is connected,
#' \code{\link{components}} to calculate the connected components of a graph.
#' @export
#' @keywords graphs
#' @examples
#' 
#' # the diameter of each component in a random graph
#' g <- sample_gnp(1000, 1/1000)
#' components <- decompose(g, min.vertices=2)
#' sapply(components, diameter)
#' 
decompose <- function(graph, mode=c("weak", "strong"), max.comps=NA,
                      min.vertices=0) {
  if (!is_igraph(graph)) {
    stop("Not a graph object")
  }
  mode <- igraph.match.arg(mode)
  mode <- switch(mode, "weak"=1, "strong"=2)

  if (is.na(max.comps)) {
    max.comps=-1
  }
  on.exit( .Call("R_igraph_finalizer", PACKAGE="igraph") )
  .Call("R_igraph_decompose", graph, as.numeric(mode),
        as.numeric(max.comps), as.numeric(min.vertices),
        PACKAGE="igraph"
        )
}


#' Articulation points of a graph
#' 
#' Articuation points or cut vertices are vertices whose removal increases the
#' number of connected components in a graph.
#' 
#' Articuation points or cut vertices are vertices whose removal increases the
#' number of connected components in a graph. If the original graph was
#' connected, then the removal of a single articulation point makes it
#' undirected. If a graph contains no articulation points, then its vertex
#' connectivity is at least two.
#' 
#' @aliases articulation.points articulation_points
#' @param graph The input graph. It is treated as an undirected graph, even if
#' it is directed.
#' @return A numeric vector giving the vertex ids of the articulation points of
#' the input graph.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso \code{\link{biconnected_components}}, \code{\link{components}},
#' \code{\link{is_connected}}, \code{\link{vertex_connectivity}}
#' @keywords graphs
#' @examples
#' 
#' g <- disjoint_union( make_full_graph(5), make_full_graph(5) )
#' clu <- components(g)$membership
#' g <- add_edges(g, c(match(1, clu), match(2, clu)) )
#' articulation_points(g)
#' @export
#' @include auto.R

articulation_points <- articulation_points


#' Biconnected components
#' 
#' Finding the biconnected components of a graph
#' 
#' A graph is biconnected if the removal of any single vertex (and its adjacent
#' edges) does not disconnect it.
#' 
#' A biconnected component of a graph is a maximal biconnected subgraph of it.
#' The biconnected components of a graph can be given by the partition of its
#' edges: every edge is a member of exactly one biconnected component. Note
#' that this is not true for vertices: the same vertex can be part of many
#' biconnected components.
#' 
#' @aliases biconnected.components biconnected_components
#' @param graph The input graph. It is treated as an undirected graph, even if
#' it is directed.
#' @return A named list with three components: \item{no}{Numeric scalar, an
#' integer giving the number of biconnected components in the graph.}
#' \item{tree_edges}{The components themselves, a list of numeric vectors. Each
#' vector is a set of edge ids giving the edges in a biconnected component.
#' These edges define a spanning tree of the component.}
#' \item{component_edges}{A list of numeric vectors. It gives all edges in the
#' components.} \item{components}{A list of numeric vectors, the vertices of
#' the components.} \item{articulation_points}{The articulation points of the
#' graph. See \code{\link{articulation_points}}.}
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso \code{\link{articulation_points}}, \code{\link{components}},
#' \code{\link{is_connected}}, \code{\link{vertex_connectivity}}
#' @keywords graphs
#' @examples
#' 
#' g <- disjoint_union( make_full_graph(5), make_full_graph(5) )
#' clu <- components(g)$membership
#' g <- add_edges(g, c(which(clu==1), which(clu==2)))
#' bc <- biconnected_components(g)
#' @export

biconnected_components <- biconnected_components