File: fit.R

package info (click to toggle)
r-cran-igraph 1.0.1-1%2Bdeb9u1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 18,232 kB
  • sloc: ansic: 173,538; cpp: 19,365; fortran: 4,550; yacc: 1,164; tcl: 931; lex: 484; makefile: 149; sh: 9
file content (186 lines) | stat: -rw-r--r-- 8,211 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#   IGraph R package
#   Copyright (C) 2005-2012  Gabor Csardi <csardi.gabor@gmail.com>
#   334 Harvard street, Cambridge, MA 02139 USA
#   
#   This program is free software; you can redistribute it and/or modify
#   it under the terms of the GNU General Public License as published by
#   the Free Software Foundation; either version 2 of the License, or
#   (at your option) any later version.
#
#   This program is distributed in the hope that it will be useful,
#   but WITHOUT ANY WARRANTY; without even the implied warranty of
#   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#   GNU General Public License for more details.
#   
#   You should have received a copy of the GNU General Public License
#   along with this program; if not, write to the Free Software
#   Foundation, Inc.,  51 Franklin Street, Fifth Floor, Boston, MA
#   02110-1301 USA
#
###################################################################

###################################################################
# Pit a power-law (khmm a Yule really) distribution,
# this is a common degree distribution in networks
###################################################################



#' Fitting a power-law distribution function to discrete data
#' 
#' \code{fit_power_law} fits a power-law distribution to a data set.
#' 
#' This function fits a power-law distribution to a vector containing samples
#' from a distribution (that is assumed to follow a power-law of course). In a
#' power-law distribution, it is generally assumed that \eqn{P(X=x)} is
#' proportional to \eqn{x^{-alpha}}{x^-alpha}, where \eqn{x} is a positive
#' number and \eqn{\alpha}{alpha} is greater than 1. In many real-world cases,
#' the power-law behaviour kicks in only above a threshold value
#' \eqn{x_{min}}{xmin}. The goal of this function is to determine
#' \eqn{\alpha}{alpha} if \eqn{x_{min}}{xmin} is given, or to determine
#' \eqn{x_{min}}{xmin} and the corresponding value of \eqn{\alpha}{alpha}.
#' 
#' \code{fit_power_law} provides two maximum likelihood implementations.  If
#' the \code{implementation} argument is \sQuote{\code{R.mle}}, then the BFGS
#' optimization (see \link[stats4]{mle}) algorithm is applied.  The additional
#' arguments are passed to the mle function, so it is possible to change the
#' optimization method and/or its parameters.  This implementation can
#' \emph{not} to fit the \eqn{x_{min}}{xmin} argument, so use the
#' \sQuote{\code{plfit}} implementation if you want to do that.
#' 
#' The \sQuote{\code{plfit}} implementation also uses the maximum likelihood
#' principle to determine \eqn{\alpha}{alpha} for a given \eqn{x_{min}}{xmin};
#' When \eqn{x_{min}}{xmin} is not given in advance, the algorithm will attempt
#' to find itsoptimal value for which the \eqn{p}-value of a Kolmogorov-Smirnov
#' test between the fitted distribution and the original sample is the largest.
#' The function uses the method of Clauset, Shalizi and Newman to calculate the
#' parameters of the fitted distribution. See references below for the details.
#'
#' @aliases power.law.fit
#' @param x The data to fit, a numeric vector. For implementation
#' \sQuote{\code{R.mle}} the data must be integer values. For the
#' \sQuote{\code{plfit}} implementation non-integer values might be present and
#' then a continuous power-law distribution is fitted.
#' @param xmin Numeric scalar, or \code{NULL}. The lower bound for fitting the
#' power-law. If \code{NULL}, the smallest value in \code{x} will be used for
#' the \sQuote{\code{R.mle}} implementation, and its value will be
#' automatically determined for the \sQuote{\code{plfit}} implementation. This
#' argument makes it possible to fit only the tail of the distribution.
#' @param start Numeric scalar. The initial value of the exponent for the
#' minimizing function, for the \sQuote{\code{R.mle}} implementation. Ususally
#' it is safe to leave this untouched.
#' @param force.continuous Logical scalar. Whether to force a continuous
#' distribution for the \sQuote{\code{plfit}} implementation, even if the
#' sample vector contains integer values only (by chance). If this argument is
#' false, igraph will assume a continuous distribution if at least one sample
#' is non-integer and assume a discrete distribution otherwise.
#' @param implementation Character scalar. Which implementation to use. See
#' details below.
#' @param \dots Additional arguments, passed to the maximum likelihood
#' optimizing function, \code{\link[stats4]{mle}}, if the \sQuote{\code{R.mle}}
#' implementation is chosen. It is ignored by the \sQuote{\code{plfit}}
#' implementation.
#' @return Depends on the \code{implementation} argument. If it is
#' \sQuote{\code{R.mle}}, then an object with class \sQuote{\code{mle}}. It can
#' be used to calculate confidence intervals and log-likelihood. See
#' \code{\link[stats4]{mle-class}} for details.
#' 
#' If \code{implementation} is \sQuote{\code{plfit}}, then the result is a
#' named list with entries: \item{continuous}{Logical scalar, whether the
#' fitted power-law distribution was continuous or discrete.}
#' \item{alpha}{Numeric scalar, the exponent of the fitted power-law
#' distribution.} \item{xmin}{Numeric scalar, the minimum value from which the
#' power-law distribution was fitted. In other words, only the values larger
#' than \code{xmin} were used from the input vector.} \item{logLik}{Numeric
#' scalar, the log-likelihood of the fitted parameters.} \item{KS.stat}{Numeric
#' scalar, the test statistic of a Kolmogorov-Smirnov test that compares the
#' fitted distribution with the input vector. Smaller scores denote better
#' fit.} \item{KS.p}{Numeric scalar, the p-value of the Kolmogorov-Smirnov
#' test. Small p-values (less than 0.05) indicate that the test rejected the
#' hypothesis that the original data could have been drawn from the fitted
#' power-law distribution.}
#' @author Tamas Nepusz \email{ntamas@@gmail.com} and Gabor Csardi
#' \email{csardi.gabor@@gmail.com}
#' @seealso \code{\link[stats4]{mle}}
#' @references Power laws, Pareto distributions and Zipf's law, M. E. J.
#' Newman, \emph{Contemporary Physics}, 46, 323-351, 2005.
#' 
#' Aaron Clauset, Cosma R .Shalizi and Mark E.J. Newman: Power-law
#' distributions in empirical data. SIAM Review 51(4):661-703, 2009.
#' @export
#' @keywords graphs
#' @examples
#' 
#' # This should approximately yield the correct exponent 3
#' g <- barabasi.game(1000) # increase this number to have a better estimate
#' d <- degree(g, mode="in")
#' fit1 <- fit_power_law(d+1, 10)
#' fit2 <- fit_power_law(d+1, 10, implementation="R.mle")
#' 
#' fit1$alpha
#' stats4::coef(fit2)
#' fit1$logLik
#' stats4::logLik(fit2)
#' 
fit_power_law <- function(x, xmin=NULL, start=2, force.continuous=FALSE,
                          implementation=c("plfit", "R.mle"), ...) {

  implementation <- igraph.match.arg(implementation)

  if (implementation == "r.mle") {
    power.law.fit.old(x, xmin, start, ...)
  } else if (implementation == "plfit") {
    if (is.null(xmin)) xmin <- -1
    power.law.fit.new(x, xmin=xmin, force.continuous=force.continuous)
  }
}

power.law.fit.old <- function(x, xmin=NULL, start=2, ...) {

  if (length(x) == 0) {
    stop("zero length vector")
  }
  if (length(x) == 1) {
    stop("vector should be at least of length two")
  }  

  if (is.null(xmin)) { xmin <- min(x) }
  
  n <- length(x)
  x <- x[ x >= xmin]
  if (length(x) != n) {
    n <- length(x)
  }
  
#  mlogl <- function(alpha) {
#    if (xmin > 1) {
#      C <- 1/(1/(alpha-1)-sum(beta(1:(xmin-1), alpha)))
#    } else {
#      C <- alpha-1
#    }
#    -n*log(C)-sum(lbeta(x, alpha))
#  }

  mlogl <- function(alpha) {
     C <- 1/sum( (xmin:10000)^-alpha )
     -n*log(C)+alpha*sum(log(x))
  }

  alpha <- stats4::mle(mlogl, start=list(alpha=start), ...)

  alpha
}

power.law.fit.new <- function(data, xmin=-1, force.continuous=FALSE) {
  # Argument checks
  data <- as.numeric(data)
  xmin <- as.numeric(xmin)
  force.continuous <- as.logical(force.continuous)

  on.exit( .Call("R_igraph_finalizer", PACKAGE="igraph") )
  # Function call
  res <- .Call("R_igraph_power_law_fit", data, xmin, force.continuous,
        PACKAGE="igraph")

  res
}