File: test_laplacian.spectral.embedding.R

package info (click to toggle)
r-cran-igraph 1.0.1-1%2Bdeb9u1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 18,232 kB
  • sloc: ansic: 173,538; cpp: 19,365; fortran: 4,550; yacc: 1,164; tcl: 931; lex: 484; makefile: 149; sh: 9
file content (442 lines) | stat: -rw-r--r-- 15,531 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

context("Spectral embedding of the Laplacian")

std <- function(x) {
  x <- zapsmall(x)
  apply(x, 2, function(col) {
    if (any(col < 0) && col[which(col != 0)[1]] < 0) { -col } else { col }
  })
}

mag_order <- function(x) {
  order(abs(x), sign(x), decreasing=TRUE)
}

mag_sort <- function(x) {
  x[mag_order(x)]
}

test_that("Undirected, unweighted, D-A case works", {
  library(igraph)
  set.seed(42)
  g <- random.graph.game(10, 20, type="gnm", directed=FALSE)

  no <- 3
  A <- diag(degree(g)) - g[]
  ss <- eigen(A)

  D <- ss$values
  U <- ss$vectors
  X <- std(ss$vectors %*% sqrt(diag(ss$values)))
  Y <- std(ss$vectors %*% sqrt(diag(ss$values)))

  ## LA

  au_la <- embed_laplacian_matrix(g, no=no, which="la", type="D-A",
                                        scaled=TRUE)
  as_la <- embed_laplacian_matrix(g, no=no, which="la", type="D-A",
                                        scaled=FALSE)

  expect_that(au_la$D, equals(D[1:no]))
  expect_that(std(au_la$X), equals(std(X[,1:no])))
  expect_that(as_la$D, equals(D[1:no]))
  expect_that(std(as_la$X), equals(std(U[,1:no])))

  ## LM

  au_lm <- embed_laplacian_matrix(g, no=no, which="lm", type="D-A",
                                        scaled=TRUE)
  as_lm <- embed_laplacian_matrix(g, no=no, which="lm", type="D-A",
                                        scaled=FALSE)

  expect_that(au_lm$D, equals(mag_sort(D)[1:no]))
  expect_that(std(au_lm$X), equals(std(X[,mag_order(D)][,1:no])))
  expect_that(as_lm$D, equals(mag_sort(D)[1:no]))
  expect_that(std(as_lm$X), equals(std(U[,mag_order(D)][,1:no])))

  ## SA

  au_sa <- embed_laplacian_matrix(g, no=no, which="sa", type="D-A",
                                        scaled=TRUE)
  as_sa <- embed_laplacian_matrix(g, no=no, which="sa", type="D-A",
                                        scaled=FALSE)

  expect_that(au_sa$D, equals(D[vcount(g)-1:no+1]))
  expect_that(std(au_sa$X), equals(std(X[,vcount(g)-1:no+1])))
  expect_that(as_sa$D, equals(D[vcount(g)-1:no+1]))
  expect_that(std(as_sa$X), equals(std(U[,vcount(g)-1:no+1])))

})

test_that("Undirected, unweighted, DAD case works", {
  library(igraph)
  set.seed(42)
  g <- random.graph.game(10, 20, type="gnm", directed=FALSE)

  no <- 3
  D12 <- diag(1/sqrt(degree(g)))
  A <- D12 %*% g[] %*% D12
  ss <- eigen(A)

  D <- ss$values
  U <- ss$vectors
  X <- std(ss$vectors %*% sqrt(diag(abs(ss$values))))
  Y <- std(ss$vectors %*% sqrt(diag(abs(ss$values))))

  ## LA

  au_la <- embed_laplacian_matrix(g, no=no, which="la", type="DAD",
                                        scaled=TRUE)
  as_la <- embed_laplacian_matrix(g, no=no, which="la", type="DAD",
                                        scaled=FALSE)

  expect_that(au_la$D, equals(abs(D[1:no])))
  expect_that(std(au_la$X), equals(std(X[,1:no])))
  expect_that(as_la$D, equals(D[1:no]))
  expect_that(std(as_la$X), equals(std(U[,1:no])))

  ## LM

  au_lm <- embed_laplacian_matrix(g, no=no, which="lm", type="DAD",
                                        scaled=TRUE)
  as_lm <- embed_laplacian_matrix(g, no=no, which="lm", type="DAD",
                                        scaled=FALSE)

  expect_that(au_lm$D, equals(mag_sort(D)[1:no]))
  expect_that(std(au_lm$X), equals(std(X[,mag_order(D)][,1:no])))
  expect_that(as_lm$D, equals(mag_sort(D)[1:no]))
  expect_that(std(as_lm$X), equals(std(U[,mag_order(D)][,1:no])))

  ## SA

  au_sa <- embed_laplacian_matrix(g, no=no, which="sa", type="DAD",
                                        scaled=TRUE)
  as_sa <- embed_laplacian_matrix(g, no=no, which="sa", type="DAD",
                                        scaled=FALSE)

  expect_that(au_sa$D, equals(D[vcount(g)-1:no+1]))
  expect_that(std(au_sa$X), equals(std(X[,vcount(g)-1:no+1])))
  expect_that(as_sa$D, equals(D[vcount(g)-1:no+1]))
  expect_that(std(as_sa$X), equals(std(U[,vcount(g)-1:no+1])))
})

test_that("Undirected, unweighted, I-DAD case works", {
  library(igraph)
  set.seed(42)
  g <- random.graph.game(10, 20, type="gnm", directed=FALSE)

  no <- 3
  D12 <- diag(1/sqrt(degree(g)))
  A <- diag(vcount(g)) - D12 %*% g[] %*% D12
  ss <- eigen(A)

  D <- ss$values
  U <- ss$vectors
  X <- std(ss$vectors %*% sqrt(diag(abs(ss$values))))
  Y <- std(ss$vectors %*% sqrt(diag(abs(ss$values))))

  ## LA

  au_la <- embed_laplacian_matrix(g, no=no, which="la", type="I-DAD",
                                        scaled=TRUE)
  as_la <- embed_laplacian_matrix(g, no=no, which="la", type="I-DAD",
                                        scaled=FALSE)

  expect_that(au_la$D, equals(abs(D[1:no])))
  expect_that(std(au_la$X), equals(std(X[,1:no])))
  expect_that(as_la$D, equals(D[1:no]))
  expect_that(std(as_la$X), equals(std(U[,1:no])))

  ## LM

  au_lm <- embed_laplacian_matrix(g, no=no, which="lm", type="I-DAD",
                                        scaled=TRUE)
  as_lm <- embed_laplacian_matrix(g, no=no, which="lm", type="I-DAD",
                                        scaled=FALSE)

  expect_that(au_lm$D, equals(mag_sort(D)[1:no]))
  expect_that(std(au_lm$X), equals(std(X[,mag_order(D)][,1:no])))
  expect_that(as_lm$D, equals(mag_sort(D)[1:no]))
  expect_that(std(as_lm$X), equals(std(U[,mag_order(D)][,1:no])))

  ## SA

  au_sa <- embed_laplacian_matrix(g, no=no, which="sa", type="I-DAD",
                                        scaled=TRUE)
  as_sa <- embed_laplacian_matrix(g, no=no, which="sa", type="I-DAD",
                                        scaled=FALSE)

  expect_that(au_sa$D, equals(D[vcount(g)-1:no+1]))
  expect_that(std(au_sa$X), equals(std(X[,vcount(g)-1:no+1])))
  expect_that(as_sa$D, equals(D[vcount(g)-1:no+1]))
  expect_that(std(as_sa$X), equals(std(U[,vcount(g)-1:no+1])))
})

test_that("Undirected, weighted, D-A case works", {
  library(igraph)
  set.seed(42*42)
  g <- random.graph.game(10, 20, type="gnm", directed=FALSE)
  E(g)$weight <- sample(1:5, ecount(g), replace=TRUE)

  no <- 3
  A <- diag(graph.strength(g)) - g[]
  ss <- eigen(A)

  D <- ss$values
  U <- ss$vectors
  X <- std(ss$vectors %*% sqrt(diag(abs(D))))
  Y <- std(ss$vectors %*% sqrt(diag(abs(D))))

  ## LA

  au_la <- embed_laplacian_matrix(g, no=no, which="la", type="D-A",
                                        scaled=TRUE)
  as_la <- embed_laplacian_matrix(g, no=no, which="la", type="D-A",
                                        scaled=FALSE)

  expect_that(au_la$D, equals(abs(D[1:no])))
  expect_that(std(au_la$X), equals(std(X[,1:no])))
  expect_that(as_la$D, equals(D[1:no]))
  expect_that(std(as_la$X), equals(std(U[,1:no])))

  ## LM

  au_lm <- embed_laplacian_matrix(g, no=no, which="lm", type="D-A",
                                        scaled=TRUE)
  as_lm <- embed_laplacian_matrix(g, no=no, which="lm", type="D-A",
                                        scaled=FALSE)

  expect_that(au_lm$D, equals(mag_sort(D)[1:no]))
  expect_that(std(au_lm$X), equals(std(X[,mag_order(D)][,1:no])))
  expect_that(as_lm$D, equals(mag_sort(D)[1:no]))
  expect_that(std(as_lm$X), equals(std(U[,mag_order(D)][,1:no])))

  ## SA

  au_sa <- embed_laplacian_matrix(g, no=no, which="sa", type="D-A",
                                        scaled=TRUE)
  as_sa <- embed_laplacian_matrix(g, no=no, which="sa", type="D-A",
                                        scaled=FALSE)

  expect_that(au_sa$D, equals(D[vcount(g)-1:no+1]))
  expect_that(std(au_sa$X), equals(X[,vcount(g)-1:no+1],
                                   tolerance=.Machine$double.eps ^ 0.25))
  expect_that(as_sa$D, equals(D[vcount(g)-1:no+1]))
  expect_that(std(as_sa$X), equals(std(U[,vcount(g)-1:no+1])))

})

test_that("Undirected, unweighted, DAD case works", {
  library(igraph)
  set.seed(42)
  g <- random.graph.game(10, 20, type="gnm", directed=FALSE)

  no <- 3
  D12 <- diag(1/sqrt(degree(g)))
  A <- D12 %*% g[] %*% D12
  ss <- eigen(A)

  D <- ss$values
  U <- ss$vectors
  X <- std(ss$vectors %*% sqrt(diag(abs(ss$values))))
  Y <- std(ss$vectors %*% sqrt(diag(abs(ss$values))))

  ## LA

  au_la <- embed_laplacian_matrix(g, no=no, which="la", type="DAD",
                                        scaled=TRUE)
  as_la <- embed_laplacian_matrix(g, no=no, which="la", type="DAD",
                                        scaled=FALSE)

  expect_that(au_la$D, equals(abs(D[1:no])))
  expect_that(std(au_la$X), equals(std(X[,1:no])))
  expect_that(as_la$D, equals(D[1:no]))
  expect_that(std(as_la$X), equals(std(U[,1:no])))

  ## LM

  au_lm <- embed_laplacian_matrix(g, no=no, which="lm", type="DAD",
                                        scaled=TRUE)
  as_lm <- embed_laplacian_matrix(g, no=no, which="lm", type="DAD",
                                        scaled=FALSE)

  expect_that(au_lm$D, equals(mag_sort(D)[1:no]))
  expect_that(std(au_lm$X), equals(std(X[,mag_order(D)][,1:no])))
  expect_that(as_lm$D, equals(mag_sort(D)[1:no]))
  expect_that(std(as_lm$X), equals(std(U[,mag_order(D)][,1:no])))

  ## SA

  au_sa <- embed_laplacian_matrix(g, no=no, which="sa", type="DAD",
                                        scaled=TRUE)
  as_sa <- embed_laplacian_matrix(g, no=no, which="sa", type="DAD",
                                        scaled=FALSE)

  expect_that(au_sa$D, equals(D[vcount(g)-1:no+1]))
  expect_that(std(au_sa$X), equals(std(X[,vcount(g)-1:no+1])))
  expect_that(as_sa$D, equals(D[vcount(g)-1:no+1]))
  expect_that(std(as_sa$X), equals(std(U[,vcount(g)-1:no+1])))
})

test_that("Undirected, unweighted, I-DAD case works", {
  library(igraph)
  set.seed(42)
  g <- random.graph.game(10, 20, type="gnm", directed=FALSE)

  no <- 3
  D12 <- diag(1/sqrt(degree(g)))
  A <- diag(vcount(g)) - D12 %*% g[] %*% D12
  ss <- eigen(A)

  D <- ss$values
  U <- ss$vectors
  X <- std(ss$vectors %*% sqrt(diag(abs(ss$values))))
  Y <- std(ss$vectors %*% sqrt(diag(abs(ss$values))))

  ## LA

  au_la <- embed_laplacian_matrix(g, no=no, which="la", type="I-DAD",
                                        scaled=TRUE)
  as_la <- embed_laplacian_matrix(g, no=no, which="la", type="I-DAD",
                                        scaled=FALSE)

  expect_that(au_la$D, equals(abs(D[1:no])))
  expect_that(std(au_la$X), equals(std(X[,1:no])))
  expect_that(as_la$D, equals(D[1:no]))
  expect_that(std(as_la$X), equals(std(U[,1:no])))

  ## LM

  au_lm <- embed_laplacian_matrix(g, no=no, which="lm", type="I-DAD",
                                        scaled=TRUE)
  as_lm <- embed_laplacian_matrix(g, no=no, which="lm", type="I-DAD",
                                        scaled=FALSE)

  expect_that(au_lm$D, equals(mag_sort(D)[1:no]))
  expect_that(std(au_lm$X), equals(std(X[,mag_order(D)][,1:no])))
  expect_that(as_lm$D, equals(mag_sort(D)[1:no]))
  expect_that(std(as_lm$X), equals(std(U[,mag_order(D)][,1:no])))

  ## SA

  au_sa <- embed_laplacian_matrix(g, no=no, which="sa", type="I-DAD",
                                        scaled=TRUE)
  as_sa <- embed_laplacian_matrix(g, no=no, which="sa", type="I-DAD",
                                        scaled=FALSE)

  expect_that(au_sa$D, equals(D[vcount(g)-1:no+1]))
  expect_that(std(au_sa$X), equals(std(X[,vcount(g)-1:no+1])))
  expect_that(as_sa$D, equals(D[vcount(g)-1:no+1]))
  expect_that(std(as_sa$X), equals(std(U[,vcount(g)-1:no+1])))
})

test_that("Directed, unweighted, OAP case works", {
  library(igraph)
  set.seed(42*42)
  g <- random.graph.game(10, 30, type="gnm", directed=TRUE)

  no <- 3
  O12 <- diag(1/sqrt(degree(g, mode="out")))
  P12 <- diag(1/sqrt(degree(g, mode="in")))
  A <- O12 %*% g[] %*% P12
  ss <- svd(A)

  D <- ss$d
  U <- ss$u
  V <- ss$v
  X <- std(ss$u %*% sqrt(diag(ss$d)))
  Y <- std(ss$v %*% sqrt(diag(ss$d)))

  au_la <- embed_laplacian_matrix(g, no=no, which="la", type="OAP",
                                        scaled=TRUE)
  as_la <- embed_laplacian_matrix(g, no=no, which="la", type="OAP",
                                        scaled=FALSE)

  expect_that(au_la$D, equals(D[1:no]))
  expect_that(std(au_la$X), equals(std(X[,1:no])))
  expect_that(std(au_la$Y), equals(std(Y[,1:no])))
  expect_that(as_la$D, equals(D[1:no]))
  expect_that(std(as_la$X), equals(std(U[,1:no])))
  expect_that(std(as_la$Y), equals(std(V[,1:no])))

  au_lm <- embed_laplacian_matrix(g, no=no, which="lm", type="OAP",
                                        scaled=TRUE)
  as_lm <- embed_laplacian_matrix(g, no=no, which="lm", type="OAP",
                                        scaled=FALSE)

  expect_that(au_lm$D, equals(D[1:no]))
  expect_that(std(au_lm$X), equals(std(X[,1:no])))
  expect_that(std(au_lm$Y), equals(std(Y[,1:no])))
  expect_that(as_lm$D, equals(D[1:no]))
  expect_that(std(as_lm$X), equals(std(U[,1:no])))
  expect_that(std(as_lm$Y), equals(std(V[,1:no])))

  au_sa <- embed_laplacian_matrix(g, no=no, which="sa", type="OAP",
                                        scaled=TRUE)
  as_sa <- embed_laplacian_matrix(g, no=no, which="sa", type="OAP",
                                        scaled=FALSE)

  expect_that(au_sa$D, equals(D[vcount(g)-1:no+1]))
  expect_that(std(au_sa$X), equals(std(X[,vcount(g)-1:no+1])))
  expect_that(std(au_sa$Y), equals(std(Y[,vcount(g)-1:no+1]),
                            tolerance=sqrt(sqrt(.Machine$double.eps))))
  expect_that(as_sa$D, equals(D[vcount(g)-1:no+1]))
  expect_that(std(as_sa$X), equals(std(U[,vcount(g)-1:no+1])))
  expect_that(std(as_sa$Y), equals(std(V[,vcount(g)-1:no+1])))
})

test_that("Directed, weighted case works", {
  library(igraph)
  set.seed(42*42)
  g <- random.graph.game(10, 30, type="gnm", directed=TRUE)
  E(g)$weight <- sample(1:5, ecount(g), replace=TRUE)

  no <- 3
  O12 <- diag(1/sqrt(graph.strength(g, mode="out")))
  P12 <- diag(1/sqrt(graph.strength(g, mode="in")))
  A <- O12 %*% g[] %*% P12
  ss <- svd(A)

  D <- ss$d
  U <- ss$u
  V <- ss$v
  X <- std(ss$u %*% sqrt(diag(ss$d)))
  Y <- std(ss$v %*% sqrt(diag(ss$d)))

  au_la <- embed_laplacian_matrix(g, no=no, which="la", type="OAP",
                                        scaled=TRUE)
  as_la <- embed_laplacian_matrix(g, no=no, which="la", type="OAP",
                                        scaled=FALSE)

  expect_that(au_la$D, equals(D[1:no]))
  expect_that(std(au_la$X), equals(std(X[,1:no])))
  expect_that(std(au_la$Y), equals(std(Y[,1:no])))
  expect_that(as_la$D, equals(D[1:no]))
  expect_that(std(as_la$X), equals(std(U[,1:no])))
  expect_that(std(as_la$Y), equals(std(V[,1:no])))

  au_lm <- embed_laplacian_matrix(g, no=no, which="lm", type="OAP",
                                        scaled=TRUE)
  as_lm <- embed_laplacian_matrix(g, no=no, which="lm", type="OAP",
                                        scaled=FALSE)

  expect_that(au_lm$D, equals(D[1:no]))
  expect_that(std(au_lm$X), equals(std(X[,1:no])))
  expect_that(std(au_lm$Y), equals(std(Y[,1:no])))
  expect_that(as_lm$D, equals(D[1:no]))
  expect_that(std(as_lm$X), equals(std(U[,1:no])))
  expect_that(std(as_lm$Y), equals(std(V[,1:no])))

  au_sa <- embed_laplacian_matrix(g, no=no, which="sa", type="OAP",
                                        scaled=TRUE)
  as_sa <- embed_laplacian_matrix(g, no=no, which="sa", type="OAP",
                                        scaled=FALSE)

  expect_that(au_sa$D, equals(D[vcount(g)-1:no+1]))
  expect_that(std(au_sa$X), equals(std(X[,vcount(g)-1:no+1])))
  expect_that(std(au_sa$Y), equals(std(Y[,vcount(g)-1:no+1]),
                            tolerance=sqrt(sqrt(.Machine$double.eps))))
  expect_that(as_sa$D, equals(D[vcount(g)-1:no+1]))
  expect_that(std(as_sa$X), equals(std(U[,vcount(g)-1:no+1])))
  expect_that(std(as_sa$Y), equals(std(V[,vcount(g)-1:no+1])))
})