File: centr_eigen.Rd

package info (click to toggle)
r-cran-igraph 1.0.1-1%2Bdeb9u1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 18,232 kB
  • sloc: ansic: 173,538; cpp: 19,365; fortran: 4,550; yacc: 1,164; tcl: 931; lex: 484; makefile: 149; sh: 9
file content (71 lines) | stat: -rw-r--r-- 2,519 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
% Generated by roxygen2 (4.1.1): do not edit by hand
% Please edit documentation in R/centralization.R
\name{centr_eigen}
\alias{centr_eigen}
\alias{centralization.evcent}
\title{Centralize a graph according to the eigenvector centrality of vertices}
\usage{
centr_eigen(graph, directed = FALSE, scale = TRUE,
  options = arpack_defaults, normalized = TRUE)
}
\arguments{
\item{graph}{The input graph.}

\item{directed}{logical scalar, whether to use directed shortest paths for
calculating eigenvector centrality.}

\item{scale}{Whether to rescale the eigenvector centrality scores, such that
the maximum score is one.}

\item{options}{This is passed to \code{\link{eigen_centrality}}, the options
for the ARPACK eigensolver.}

\item{normalized}{Logical scalar. Whether to normalize the graph level
centrality score by dividing by the theoretical maximum.}
}
\value{
A named list with the following components:
  \item{vector}{The node-level centrality scores.}
  \item{value}{The corresponding eigenvalue.}
  \item{options}{ARPACK options, see the return value of
    \code{\link{eigen_centrality}} for details.}
  \item{centralization}{The graph level centrality index.}
  \item{theoretical_max}{The same as above, the theoretical maximum
    centralization score for a graph with the same number of vertices.}
}
\description{
See \code{\link{centralize}} for a summary of graph centralization.
}
\examples{
# A BA graph is quite centralized
g <- sample_pa(1000, m = 4)
centr_degree(g)$centralization
centr_clo(g, mode = "all")$centralization
centr_betw(g, directed = FALSE)$centralization
centr_eigen(g, directed = FALSE)$centralization

# The most centralized graph according to eigenvector centrality
g0 <- make_graph(c(2,1), n = 10, dir = FALSE)
g1 <- make_star(10, mode = "undirected")
centr_eigen(g0)$centralization
centr_eigen(g1)$centralization
}
\seealso{
Other centralization related: \code{\link{centr_betw_tmax}},
  \code{\link{centralization.betweenness.tmax}};
  \code{\link{centr_betw}},
  \code{\link{centralization.betweenness}};
  \code{\link{centr_clo_tmax}},
  \code{\link{centralization.closeness.tmax}};
  \code{\link{centr_clo}},
  \code{\link{centralization.closeness}};
  \code{\link{centr_degree_tmax}},
  \code{\link{centralization.degree.tmax}};
  \code{\link{centr_degree}},
  \code{\link{centralization.degree}};
  \code{\link{centr_eigen_tmax}},
  \code{\link{centralization.evcent.tmax}};
  \code{\link{centralization}}, \code{\link{centralize}},
  \code{\link{centralize.scores}}
}