1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
|
% Generated by roxygen2 (4.1.1): do not edit by hand
% Please edit documentation in R/games.R
\name{erdos.renyi.game}
\alias{erdos.renyi.game}
\alias{random.graph.game}
\title{Generate random graphs according to the Erdos-Renyi model}
\usage{
erdos.renyi.game(n, p.or.m, type = c("gnp", "gnm"), directed = FALSE,
loops = FALSE, ...)
}
\arguments{
\item{n}{The number of vertices in the graph.}
\item{p.or.m}{Either the probability for drawing an edge between two
arbitrary vertices (G(n,p) graph), or the number of edges in the graph (for
G(n,m) graphs).}
\item{type}{The type of the random graph to create, either \code{gnp}
(G(n,p) graph) or \code{gnm} (G(n,m) graph).}
\item{directed}{Logical, whether the graph will be directed, defaults to
FALSE.}
\item{loops}{Logical, whether to add loop edges, defaults to FALSE.}
\item{\dots}{Additional arguments, ignored.}
}
\value{
A graph object.
}
\description{
This model is very simple, every possible edge is created with the same
constant probability.
}
\details{
In G(n,p) graphs, the graph has \sQuote{n} vertices and for each edge the
probability that it is present in the graph is \sQuote{p}.
In G(n,m) graphs, the graph has \sQuote{n} vertices and \sQuote{m} edges,
and the \sQuote{m} edges are chosen uniformly randomly from the set of all
possible edges. This set includes loop edges as well if the \code{loops}
parameter is TRUE.
\code{random.graph.game} is an alias to this function.
}
\section{Deprecated}{
Since igraph version 0.8.0, both \code{erdos.renyi.game} and
\code{random.graph.game} are deprecated, and \code{\link{sample_gnp}} and
\code{\link{sample_gnm}} should be used instead.
}
\examples{
g <- erdos.renyi.game(1000, 1/1000)
degree_distribution(g)
}
\author{
Gabor Csardi \email{csardi.gabor@gmail.com}
}
\references{
Erdos, P. and Renyi, A., On random graphs, \emph{Publicationes
Mathematicae} 6, 290--297 (1959).
}
\seealso{
\code{\link{sample_pa}}
}
\keyword{graphs}
|