File: dneupd.f

package info (click to toggle)
r-cran-igraph 1.0.1-1~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 18,160 kB
  • sloc: ansic: 173,529; cpp: 19,365; fortran: 4,550; yacc: 1,164; tcl: 931; lex: 484; makefile: 149; sh: 9
file content (1044 lines) | stat: -rw-r--r-- 43,967 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
c\BeginDoc
c
c\Name: igraphdneupd
c
c\Description: 
c
c  This subroutine returns the converged approximations to eigenvalues
c  of A*z = lambda*B*z and (optionally):
c
c      (1) The corresponding approximate eigenvectors;
c
c      (2) An orthonormal basis for the associated approximate
c          invariant subspace;
c
c      (3) Both.
c
c  There is negligible additional cost to obtain eigenvectors.  An orthonormal
c  basis is always computed.  There is an additional storage cost of n*nev
c  if both are requested (in this case a separate array Z must be supplied).
c
c  The approximate eigenvalues and eigenvectors of  A*z = lambda*B*z
c  are derived from approximate eigenvalues and eigenvectors of
c  of the linear operator OP prescribed by the MODE selection in the
c  call to DNAUPD.  DNAUPD must be called before this routine is called.
c  These approximate eigenvalues and vectors are commonly called Ritz
c  values and Ritz vectors respectively.  They are referred to as such
c  in the comments that follow.  The computed orthonormal basis for the
c  invariant subspace corresponding to these Ritz values is referred to as a
c  Schur basis.
c
c  See documentation in the header of the subroutine DNAUPD for 
c  definition of OP as well as other terms and the relation of computed
c  Ritz values and Ritz vectors of OP with respect to the given problem
c  A*z = lambda*B*z.  For a brief description, see definitions of 
c  IPARAM(7), MODE and WHICH in the documentation of DNAUPD.
c
c\Usage:
c  call igraphdneupd 
c     ( RVEC, HOWMNY, SELECT, DR, DI, Z, LDZ, SIGMAR, SIGMAI, WORKEV, BMAT, 
c       N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR, WORKD, WORKL, 
c       LWORKL, INFO )
c
c\Arguments:
c  RVEC    LOGICAL  (INPUT) 
c          Specifies whether a basis for the invariant subspace corresponding 
c          to the converged Ritz value approximations for the eigenproblem 
c          A*z = lambda*B*z is computed.
c
c             RVEC = .FALSE.     Compute Ritz values only.
c
c             RVEC = .TRUE.      Compute the Ritz vectors or Schur vectors.
c                                See Remarks below. 
c 
c  HOWMNY  Character*1  (INPUT) 
c          Specifies the form of the basis for the invariant subspace 
c          corresponding to the converged Ritz values that is to be computed.
c
c          = 'A': Compute NEV Ritz vectors; 
c          = 'P': Compute NEV Schur vectors;
c          = 'S': compute some of the Ritz vectors, specified
c                 by the logical array SELECT.
c
c  SELECT  Logical array of dimension NCV.  (INPUT)
c          If HOWMNY = 'S', SELECT specifies the Ritz vectors to be
c          computed. To select the Ritz vector corresponding to a
c          Ritz value (DR(j), DI(j)), SELECT(j) must be set to .TRUE.. 
c          If HOWMNY = 'A' or 'P', SELECT is used as internal workspace.
c
c  DR      Double precision array of dimension NEV+1.  (OUTPUT)
c          If IPARAM(7) = 1,2 or 3 and SIGMAI=0.0  then on exit: DR contains 
c          the real part of the Ritz  approximations to the eigenvalues of 
c          A*z = lambda*B*z. 
c          If IPARAM(7) = 3, 4 and SIGMAI is not equal to zero, then on exit:
c          DR contains the real part of the Ritz values of OP computed by 
c          DNAUPD. A further computation must be performed by the user
c          to transform the Ritz values computed for OP by DNAUPD to those
c          of the original system A*z = lambda*B*z. See remark 3 below.
c
c  DI      Double precision array of dimension NEV+1.  (OUTPUT)
c          On exit, DI contains the imaginary part of the Ritz value 
c          approximations to the eigenvalues of A*z = lambda*B*z associated
c          with DR.
c
c          NOTE: When Ritz values are complex, they will come in complex 
c                conjugate pairs.  If eigenvectors are requested, the 
c                corresponding Ritz vectors will also come in conjugate 
c                pairs and the real and imaginary parts of these are 
c                represented in two consecutive columns of the array Z 
c                (see below).
c
c  Z       Double precision N by NEV+1 array if RVEC = .TRUE. and HOWMNY = 'A'. (OUTPUT)
c          On exit, if RVEC = .TRUE. and HOWMNY = 'A', then the columns of 
c          Z represent approximate eigenvectors (Ritz vectors) corresponding 
c          to the NCONV=IPARAM(5) Ritz values for eigensystem 
c          A*z = lambda*B*z. 
c 
c          The complex Ritz vector associated with the Ritz value 
c          with positive imaginary part is stored in two consecutive 
c          columns.  The first column holds the real part of the Ritz 
c          vector and the igraphsecond column holds the imaginary part.  The 
c          Ritz vector associated with the Ritz value with negative 
c          imaginary part is simply the complex conjugate of the Ritz vector 
c          associated with the positive imaginary part.
c
c          If  RVEC = .FALSE. or HOWMNY = 'P', then Z is not referenced.
c
c          NOTE: If if RVEC = .TRUE. and a Schur basis is not required,
c          the array Z may be set equal to first NEV+1 columns of the Arnoldi
c          basis array V computed by DNAUPD.  In this case the Arnoldi basis
c          will be destroyed and overwritten with the eigenvector basis.
c
c  LDZ     Integer.  (INPUT)
c          The leading dimension of the array Z.  If Ritz vectors are
c          desired, then  LDZ >= max( 1, N ).  In any case,  LDZ >= 1.
c
c  SIGMAR  Double precision  (INPUT)
c          If IPARAM(7) = 3 or 4, represents the real part of the shift. 
c          Not referenced if IPARAM(7) = 1 or 2.
c
c  SIGMAI  Double precision  (INPUT)
c          If IPARAM(7) = 3 or 4, represents the imaginary part of the shift. 
c          Not referenced if IPARAM(7) = 1 or 2. See remark 3 below.
c
c  WORKEV  Double precision work array of dimension 3*NCV.  (WORKSPACE)
c
c  **** The remaining arguments MUST be the same as for the   ****
c  **** call to DNAUPD that was just completed.               ****
c
c  NOTE: The remaining arguments
c
c           BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR,
c           WORKD, WORKL, LWORKL, INFO
c
c         must be passed directly to DNEUPD following the last call
c         to DNAUPD.  These arguments MUST NOT BE MODIFIED between
c         the the last call to DNAUPD and the call to DNEUPD.
c
c  Three of these parameters (V, WORKL, INFO) are also output parameters:
c
c  V       Double precision N by NCV array.  (INPUT/OUTPUT)
c
c          Upon INPUT: the NCV columns of V contain the Arnoldi basis
c                      vectors for OP as constructed by DNAUPD .
c
c          Upon OUTPUT: If RVEC = .TRUE. the first NCONV=IPARAM(5) columns
c                       contain approximate Schur vectors that span the
c                       desired invariant subspace.  See Remark 2 below.
c
c          NOTE: If the array Z has been set equal to first NEV+1 columns
c          of the array V and RVEC=.TRUE. and HOWMNY= 'A', then the
c          Arnoldi basis held by V has been overwritten by the desired
c          Ritz vectors.  If a separate array Z has been passed then
c          the first NCONV=IPARAM(5) columns of V will contain approximate
c          Schur vectors that span the desired invariant subspace.
c
c  WORKL   Double precision work array of length LWORKL.  (OUTPUT/WORKSPACE)
c          WORKL(1:ncv*ncv+3*ncv) contains information obtained in
c          igraphdnaupd.  They are not changed by igraphdneupd.
c          WORKL(ncv*ncv+3*ncv+1:3*ncv*ncv+6*ncv) holds the
c          real and imaginary part of the untransformed Ritz values,
c          the upper quasi-triangular matrix for H, and the
c          associated matrix representation of the invariant subspace for H.
c
c          Note: IPNTR(9:13) contains the pointer into WORKL for addresses
c          of the above information computed by igraphdneupd.
c          -------------------------------------------------------------
c          IPNTR(9):  pointer to the real part of the NCV RITZ values of the
c                     original system.
c          IPNTR(10): pointer to the imaginary part of the NCV RITZ values of
c                     the original system.
c          IPNTR(11): pointer to the NCV corresponding error bounds.
c          IPNTR(12): pointer to the NCV by NCV upper quasi-triangular
c                     Schur matrix for H.
c          IPNTR(13): pointer to the NCV by NCV matrix of eigenvectors
c                     of the upper Hessenberg matrix H. Only referenced by
c                     igraphdneupd if RVEC = .TRUE. See Remark 2 below.
c          -------------------------------------------------------------
c
c  INFO    Integer.  (OUTPUT)
c          Error flag on output.
c
c          =  0: Normal exit.
c
c          =  1: The Schur form computed by LAPACK routine dlahqr
c                could not be reordered by LAPACK routine dtrsen.
c                Re-enter subroutine igraphdneupd with IPARAM(5)=NCV and 
c                increase the size of the arrays DR and DI to have 
c                dimension at least dimension NCV and allocate at least NCV 
c                columns for Z. NOTE: Not necessary if Z and V share 
c                the same space. Please notify the authors if this error
c                occurs.
c
c          = -1: N must be positive.
c          = -2: NEV must be positive.
c          = -3: NCV-NEV >= 2 and less than or equal to N.
c          = -5: WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'
c          = -6: BMAT must be one of 'I' or 'G'.
c          = -7: Length of private work WORKL array is not sufficient.
c          = -8: Error return from calculation of a real Schur form.
c                Informational error from LAPACK routine dlahqr.
c          = -9: Error return from calculation of eigenvectors.
c                Informational error from LAPACK routine dtrevc.
c          = -10: IPARAM(7) must be 1,2,3,4.
c          = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatible.
c          = -12: HOWMNY = 'S' not yet implemented
c          = -13: HOWMNY must be one of 'A' or 'P' if RVEC = .true.
c          = -14: DNAUPD did not find any eigenvalues to sufficient
c                 accuracy.
c
c\BeginLib
c
c\References:
c  1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
c     a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
c     pp 357-385.
c  2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly 
c     Restarted Arnoldi Iteration", Rice University Technical Report
c     TR95-13, Department of Computational and Applied Mathematics.
c  3. B.N. Parlett & Y. Saad, "Complex Shift and Invert Strategies for
c     Real Matrices", Linear Algebra and its Applications, vol 88/89,
c     pp 575-595, (1987).
c
c\Routines called:
c     igraphivout   ARPACK utility routine that prints integers.
c     igraphdmout   ARPACK utility routine that prints matrices
c     igraphdvout   ARPACK utility routine that prints vectors.
c     dgeqr2  LAPACK routine that computes the QR factorization of 
c             a matrix.
c     dlacpy  LAPACK matrix copy routine.
c     dlahqr  LAPACK routine to compute the real Schur form of an
c             upper Hessenberg matrix.
c     dlamch  LAPACK routine that determines machine constants.
c     dlapy2  LAPACK routine to compute sqrt(x**2+y**2) carefully.
c     dlaset  LAPACK matrix initialization routine.
c     dorm2r  LAPACK routine that applies an orthogonal matrix in 
c             factored form.
c     dtrevc  LAPACK routine to compute the eigenvectors of a matrix
c             in upper quasi-triangular form.
c     dtrsen  LAPACK routine that re-orders the Schur form.
c     dtrmm   Level 3 BLAS matrix times an upper triangular matrix.
c     dger    Level 2 BLAS rank one update to a matrix.
c     dcopy   Level 1 BLAS that copies one vector to another .
c     ddot    Level 1 BLAS that computes the scalar product of two vectors.
c     dnrm2   Level 1 BLAS that computes the norm of a vector.
c     dscal   Level 1 BLAS that scales a vector.
c
c\Remarks
c
c  1. Currently only HOWMNY = 'A' and 'P' are implemented.
c
c     Let X' denote the transpose of X.
c
c  2. Schur vectors are an orthogonal representation for the basis of
c     Ritz vectors. Thus, their numerical properties are often superior.
c     If RVEC = .TRUE. then the relationship
c             A * V(:,1:IPARAM(5)) = V(:,1:IPARAM(5)) * T, and
c     V(:,1:IPARAM(5))' * V(:,1:IPARAM(5)) = I are approximately satisfied.
c     Here T is the leading submatrix of order IPARAM(5) of the real 
c     upper quasi-triangular matrix stored workl(ipntr(12)). That is,
c     T is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; 
c     each 2-by-2 diagonal block has its diagonal elements equal and its
c     off-diagonal elements of opposite sign.  Corresponding to each 2-by-2
c     diagonal block is a complex conjugate pair of Ritz values. The real
c     Ritz values are stored on the diagonal of T.
c
c  3. If IPARAM(7) = 3 or 4 and SIGMAI is not equal zero, then the user must
c     form the IPARAM(5) Rayleigh quotients in order to transform the Ritz
c     values computed by DNAUPD for OP to those of A*z = lambda*B*z. 
c     Set RVEC = .true. and HOWMNY = 'A', and
c     compute 
c           Z(:,I)' * A * Z(:,I) if DI(I) = 0.
c     If DI(I) is not equal to zero and DI(I+1) = - D(I), 
c     then the desired real and imaginary parts of the Ritz value are
c           Z(:,I)' * A * Z(:,I) +  Z(:,I+1)' * A * Z(:,I+1),
c           Z(:,I)' * A * Z(:,I+1) -  Z(:,I+1)' * A * Z(:,I), respectively.
c     Another possibility is to set RVEC = .true. and HOWMNY = 'P' and
c     compute V(:,1:IPARAM(5))' * A * V(:,1:IPARAM(5)) and then an upper
c     quasi-triangular matrix of order IPARAM(5) is computed. See remark
c     2 above.
c
c\Authors
c     Danny Sorensen               Phuong Vu
c     Richard Lehoucq              CRPC / Rice University 
c     Chao Yang                    Houston, Texas
c     Dept. of Computational &
c     Applied Mathematics          
c     Rice University           
c     Houston, Texas            
c 
c\SCCS Information: @(#) 
c FILE: neupd.F   SID: 2.5   DATE OF SID: 7/31/96   RELEASE: 2 
c
c\EndLib
c
c-----------------------------------------------------------------------
      subroutine igraphdneupd (rvec, howmny, select, dr, di, z, ldz, 
     &     sigmar, sigmai, workev, bmat, n, which, nev, tol, 
     &     resid, ncv, v, ldv, iparam, ipntr, workd, 
     &     workl, lworkl, info)
c
c     %----------------------------------------------------%
c     | Include files for debugging and timing information |
c     %----------------------------------------------------%
c
      include   'debug.h'
      include   'stat.h'
c
c     %------------------%
c     | Scalar Arguments |
c     %------------------%
c
      character  bmat, howmny, which*2
      logical    rvec
      integer    info, ldz, ldv, lworkl, n, ncv, nev
      Double precision     
     &           sigmar, sigmai, tol
c
c     %-----------------%
c     | Array Arguments |
c     %-----------------%
c
      integer    iparam(11), ipntr(14)
      logical    select(ncv)
      Double precision
     &           dr(nev+1), di(nev+1), resid(n), v(ldv,ncv), z(ldz,*), 
     &           workd(3*n), workl(lworkl), workev(3*ncv)
c
c     %------------%
c     | Parameters |
c     %------------%
c
      Double precision
     &           one, zero
      parameter (one = 1.0D+0, zero = 0.0D+0)
c
c     %---------------%
c     | Local Scalars |
c     %---------------%
c
      character  type*6
      integer    bounds, ierr, ih, ihbds, iheigr, iheigi, iconj, nconv, 
     &           invsub, iuptri, iwev, iwork(1), j, k, ktrord, 
     &           ldh, ldq, mode, msglvl, outncv, ritzr, ritzi, wri, wrr,
     &           irr, iri, ibd
      logical    reord
      Double precision
     &           conds, rnorm, sep, temp, thres, vl(1,1), temp1, eps23
c
c     %----------------------%
c     | External Subroutines |
c     %----------------------%
c
      external   dcopy, dger, dgeqr2, dlacpy, dlahqr, dlaset, 
     &     igraphdmout, dorm2r, dtrevc, dtrmm, dtrsen, dscal, 
     &     igraphdvout, igraphivout
c
c     %--------------------%
c     | External Functions |
c     %--------------------%
c
      Double precision
     &           dlapy2, dnrm2, dlamch, ddot
      external   dlapy2, dnrm2, dlamch, ddot
c
c     %---------------------%
c     | Intrinsic Functions |
c     %---------------------%
c
      intrinsic    abs, min, sqrt
c
c     %-----------------------%
c     | Executable Statements |
c     %-----------------------%
c 
c     %------------------------%
c     | Set default parameters |
c     %------------------------%
c
      msglvl = mneupd
      mode = iparam(7)
      nconv = iparam(5)
      info = 0
c
c     %---------------------------------%
c     | Get machine dependent constant. |
c     %---------------------------------%
c
      eps23 = dlamch('Epsilon-Machine')
      eps23 = eps23**(2.0D+0 / 3.0D+0)
c
c     %--------------%
c     | Quick return |
c     %--------------%
c
      ierr = 0
c
      if (nconv .le. 0) then
         ierr = -14
      else if (n .le. 0) then
         ierr = -1
      else if (nev .le. 0) then
         ierr = -2
      else if (ncv .le. nev+1 .or.  ncv .gt. n) then
         ierr = -3
      else if (which .ne. 'LM' .and.
     &        which .ne. 'SM' .and.
     &        which .ne. 'LR' .and.
     &        which .ne. 'SR' .and.
     &        which .ne. 'LI' .and.
     &        which .ne. 'SI') then
         ierr = -5
      else if (bmat .ne. 'I' .and. bmat .ne. 'G') then
         ierr = -6
      else if (lworkl .lt. 3*ncv**2 + 6*ncv) then
         ierr = -7
      else if ( (howmny .ne. 'A' .and.
     &           howmny .ne. 'P' .and.
     &           howmny .ne. 'S') .and. rvec ) then
         ierr = -13
      else if (howmny .eq. 'S' ) then
         ierr = -12
      end if
c     
      if (mode .eq. 1 .or. mode .eq. 2) then
         type = 'REGULR'
      else if (mode .eq. 3 .and. sigmai .eq. zero) then
         type = 'SHIFTI'
      else if (mode .eq. 3 ) then
         type = 'REALPT'
      else if (mode .eq. 4 ) then
         type = 'IMAGPT'
      else 
                                              ierr = -10
      end if
      if (mode .eq. 1 .and. bmat .eq. 'G')    ierr = -11
c
c     %------------%
c     | Error Exit |
c     %------------%
c
      if (ierr .ne. 0) then
         info = ierr
         go to 9000
      end if
c 
c     %--------------------------------------------------------%
c     | Pointer into WORKL for address of H, RITZ, BOUNDS, Q   |
c     | etc... and the remaining workspace.                    |
c     | Also update pointer to be used on output.              |
c     | Memory is laid out as follows:                         |
c     | workl(1:ncv*ncv) := generated Hessenberg matrix        |
c     | workl(ncv*ncv+1:ncv*ncv+2*ncv) := real and imaginary   |
c     |                                   parts of ritz values |
c     | workl(ncv*ncv+2*ncv+1:ncv*ncv+3*ncv) := error bounds   |
c     %--------------------------------------------------------%
c
c     %-----------------------------------------------------------%
c     | The following is used and set by DNEUPD.                  |
c     | workl(ncv*ncv+3*ncv+1:ncv*ncv+4*ncv) := The untransformed |
c     |                             real part of the Ritz values. |
c     | workl(ncv*ncv+4*ncv+1:ncv*ncv+5*ncv) := The untransformed |
c     |                        imaginary part of the Ritz values. |
c     | workl(ncv*ncv+5*ncv+1:ncv*ncv+6*ncv) := The untransformed |
c     |                           error bounds of the Ritz values |
c     | workl(ncv*ncv+6*ncv+1:2*ncv*ncv+6*ncv) := Holds the upper |
c     |                             quasi-triangular matrix for H |
c     | workl(2*ncv*ncv+6*ncv+1: 3*ncv*ncv+6*ncv) := Holds the    |
c     |       associated matrix representation of the invariant   |
c     |       subspace for H.                                     |
c     | GRAND total of NCV * ( 3 * NCV + 6 ) locations.           |
c     %-----------------------------------------------------------%
c     
      ih     = ipntr(5)
      ritzr  = ipntr(6)
      ritzi  = ipntr(7)
      bounds = ipntr(8)
      ldh    = ncv
      ldq    = ncv
      iheigr = bounds + ldh
      iheigi = iheigr + ldh
      ihbds  = iheigi + ldh
      iuptri = ihbds  + ldh
      invsub = iuptri + ldh*ncv
      ipntr(9)  = iheigr
      ipntr(10) = iheigi
      ipntr(11) = ihbds
      ipntr(12) = iuptri
      ipntr(13) = invsub
      wrr = 1
      wri = ncv + 1
      iwev = wri + ncv
c
c     %-----------------------------------------%
c     | irr points to the REAL part of the Ritz |
c     |     values computed by _neigh before    |
c     |     exiting _naup2.                     |
c     | iri points to the IMAGINARY part of the |
c     |     Ritz values computed by _neigh      |
c     |     before exiting _naup2.              |
c     | ibd points to the Ritz estimates        |
c     |     computed by _neigh before exiting   |
c     |     _naup2.                             |
c     %-----------------------------------------%
c
      irr = ipntr(14)+ncv*ncv
      iri = irr+ncv
      ibd = iri+ncv
c
c     %------------------------------------%
c     | RNORM is B-norm of the RESID(1:N). |
c     %------------------------------------%
c
      rnorm = workl(ih+2)
      workl(ih+2) = zero
c     
      if (rvec) then
c     
c        %-------------------------------------------%
c        | Get converged Ritz value on the boundary. |
c        | Note: converged Ritz values have been     |
c        | placed in the first NCONV locations in    |
c        | workl(ritzr) and workl(ritzi).  They have |
c        | been sorted (in _naup2) according to the  |
c        | WHICH selection criterion.                |
c        %-------------------------------------------%
c
         if (which .eq. 'LM' .or. which .eq. 'SM') then
            thres = dlapy2( workl(ritzr), workl(ritzi) )
         else if (which .eq. 'LR' .or. which .eq. 'SR') then
            thres = workl(ritzr)
         else if (which .eq. 'LI' .or. which .eq. 'SI') then
            thres = abs( workl(ritzi) )
         end if
c
         if (msglvl .gt. 2) then
            call igraphdvout(logfil, 1, thres, ndigit,
     &           '_neupd: Threshold eigenvalue used for re-ordering')
         end if
c
c        %----------------------------------------------------------%
c        | Check to see if all converged Ritz values appear at the  |
c        | top of the upper quasi-triangular matrix computed by     |
c        | _neigh in _naup2.  This is done in the following way:    |
c        |                                                          |
c        | 1) For each Ritz value obtained from _neigh, compare it  |
c        |    with the threshold Ritz value computed above to       |
c        |    determine whether it is a wanted one.                 |
c        |                                                          | 
c        | 2) If it is wanted, then check the corresponding Ritz    |
c        |    estimate to see if it has converged.  If it has, set  |
c        |    correponding entry in the logical array SELECT to     |
c        |    .TRUE..                                               |
c        |                                                          |
c        | If SELECT(j) = .TRUE. and j > NCONV, then there is a     |
c        | converged Ritz value that does not appear at the top of  |
c        | the upper quasi-triangular matrix computed by _neigh in  |
c        | _naup2.  Reordering is needed.                           |
c        %----------------------------------------------------------%
c
         reord = .false.
         ktrord = 0
         do 10 j = 0, ncv-1
            select(j+1) = .false.
            if (which .eq. 'LM') then
               if (dlapy2(workl(irr+j), workl(iri+j))
     &            .ge. thres) then
                  temp1 = max( eps23, 
     &                         dlapy2( workl(irr+j), workl(iri+j) ) )
                  if (workl(ibd+j) .le. tol*temp1)
     &               select(j+1) = .true.
               end if
            else if (which .eq. 'SM') then
               if (dlapy2(workl(irr+j), workl(iri+j))
     &            .le. thres) then
                  temp1 = max( eps23,
     &                         dlapy2( workl(irr+j), workl(iri+j) ) )
                  if (workl(ibd+j) .le. tol*temp1)
     &               select(j+1) = .true.
               end if
            else if (which .eq. 'LR') then
               if (workl(irr+j) .ge. thres) then
                  temp1 = max( eps23,
     &                         dlapy2( workl(irr+j), workl(iri+j) ) )
                  if (workl(ibd+j) .le. tol*temp1)
     &               select(j+1) = .true.
               end if
            else if (which .eq. 'SR') then
               if (workl(irr+j) .le. thres) then
                  temp1 = max( eps23,
     &                         dlapy2( workl(irr+j), workl(iri+j) ) )
                  if (workl(ibd+j) .le. tol*temp1)
     &               select(j+1) = .true.
               end if
            else if (which .eq. 'LI') then
               if (abs(workl(iri+j)) .ge. thres) then
                  temp1 = max( eps23,
     &                         dlapy2( workl(irr+j), workl(iri+j) ) )
                  if (workl(ibd+j) .le. tol*temp1)
     &               select(j+1) = .true.
               end if
            else if (which .eq. 'SI') then
               if (abs(workl(iri+j)) .le. thres) then
                  temp1 = max( eps23,
     &                         dlapy2( workl(irr+j), workl(iri+j) ) )
                  if (workl(ibd+j) .le. tol*temp1)
     &               select(j+1) = .true.
               end if
            end if
            if (j+1 .gt. nconv ) reord = ( select(j+1) .or. reord )
            if (select(j+1)) ktrord = ktrord + 1
 10      continue 
c
         if (msglvl .gt. 2) then
             call igraphivout(logfil, 1, ktrord, ndigit,
     &            '_neupd: Number of specified eigenvalues')
             call igraphivout(logfil, 1, nconv, ndigit,
     &            '_neupd: Number of "converged" eigenvalues')
         end if
c
c        %-----------------------------------------------------------%
c        | Call LAPACK routine dlahqr to compute the real Schur form |
c        | of the upper Hessenberg matrix returned by DNAUPD.        |
c        | Make a copy of the upper Hessenberg matrix.               |
c        | Initialize the Schur vector matrix Q to the identity.     |
c        %-----------------------------------------------------------%
c     
         call dcopy (ldh*ncv, workl(ih), 1, workl(iuptri), 1)
         call dlaset ('All', ncv, ncv, zero, one, workl(invsub), ldq)
         call dlahqr (.true., .true., ncv, 1, ncv, workl(iuptri), ldh,
     &        workl(iheigr), workl(iheigi), 1, ncv, 
     &        workl(invsub), ldq, ierr)
         call dcopy (ncv, workl(invsub+ncv-1), ldq, workl(ihbds), 1)
c     
         if (ierr .ne. 0) then
            info = -8
            go to 9000
         end if
c     
         if (msglvl .gt. 1) then
            call igraphdvout (logfil, ncv, workl(iheigr), ndigit,
     &           '_neupd: Real part of the eigenvalues of H')
            call igraphdvout (logfil, ncv, workl(iheigi), ndigit,
     &           '_neupd: Imaginary part of the Eigenvalues of H')
            call igraphdvout (logfil, ncv, workl(ihbds), ndigit,
     &           '_neupd: Last row of the Schur vector matrix')
            if (msglvl .gt. 3) then
               call igraphdmout (logfil, ncv, ncv, workl(iuptri), ldh, 
     &              ndigit,
     &              '_neupd: The upper quasi-triangular matrix ')
            end if
         end if 
c
         if (reord) then
c     
c           %-----------------------------------------------------%
c           | Reorder the computed upper quasi-triangular matrix. | 
c           %-----------------------------------------------------%
c     
            call dtrsen ('None', 'V', select, ncv, workl(iuptri), ldh, 
     &           workl(invsub), ldq, workl(iheigr), workl(iheigi), 
     &           nconv, conds, sep, workl(ihbds), ncv, iwork, 1, ierr)
c
            if (ierr .eq. 1) then
               info = 1
               go to 9000
            end if
c
            if (msglvl .gt. 2) then
                call igraphdvout (logfil, ncv, workl(iheigr), ndigit,
     &           '_neupd: Real part of the eigenvalues of H--reordered')
                call igraphdvout (logfil, ncv, workl(iheigi), ndigit,
     &           '_neupd: Imag part of the eigenvalues of H--reordered')
                if (msglvl .gt. 3) then
                   call igraphdmout (logfil, ncv, ncv, workl(iuptri), 
     &                  ldq, ndigit,
     &              '_neupd: Quasi-triangular matrix after re-ordering')
                end if
            end if
c     
         end if
c
c        %---------------------------------------%
c        | Copy the last row of the Schur vector |
c        | into workl(ihbds).  This will be used |
c        | to compute the Ritz estimates of      |
c        | converged Ritz values.                |
c        %---------------------------------------%
c
         call dcopy(ncv, workl(invsub+ncv-1), ldq, workl(ihbds), 1)
c
c        %----------------------------------------------------%
c        | Place the computed eigenvalues of H into DR and DI |
c        | if a spectral transformation was not used.         |
c        %----------------------------------------------------%
c
         if (type .eq. 'REGULR') then 
            call dcopy (nconv, workl(iheigr), 1, dr, 1)
            call dcopy (nconv, workl(iheigi), 1, di, 1)
         end if
c     
c        %----------------------------------------------------------%
c        | Compute the QR factorization of the matrix representing  |
c        | the wanted invariant subspace located in the first NCONV |
c        | columns of workl(invsub,ldq).                            |
c        %----------------------------------------------------------%
c     
         call dgeqr2 (ncv, nconv, workl(invsub), ldq, workev, 
     &        workev(ncv+1), ierr)
c
c        %---------------------------------------------------------%
c        | * Postmultiply V by Q using dorm2r.                     |   
c        | * Copy the first NCONV columns of VQ into Z.            |
c        | * Postmultiply Z by R.                                  |
c        | The N by NCONV matrix Z is now a matrix representation  |
c        | of the approximate invariant subspace associated with   |
c        | the Ritz values in workl(iheigr) and workl(iheigi)      |
c        | The first NCONV columns of V are now approximate Schur  |
c        | vectors associated with the real upper quasi-triangular |
c        | matrix of order NCONV in workl(iuptri)                  |
c        %---------------------------------------------------------%
c     
         call dorm2r ('Right', 'Notranspose', n, ncv, nconv,
     &        workl(invsub), ldq, workev, v, ldv, workd(n+1), ierr)
         call dlacpy ('All', n, nconv, v, ldv, z, ldz)
c
         do 20 j=1, nconv
c     
c           %---------------------------------------------------%
c           | Perform both a column and row scaling if the      |
c           | diagonal element of workl(invsub,ldq) is negative |
c           | I'm lazy and don't take advantage of the upper    |
c           | quasi-triangular form of workl(iuptri,ldq)        |
c           | Note that since Q is orthogonal, R is a diagonal  |
c           | matrix consisting of plus or minus ones           |
c           %---------------------------------------------------%
c     
            if (workl(invsub+(j-1)*ldq+j-1) .lt. zero) then
               call dscal (nconv, -one, workl(iuptri+j-1), ldq)
               call dscal (nconv, -one, workl(iuptri+(j-1)*ldq), 1)
            end if
c     
 20      continue
c     
         if (howmny .eq. 'A') then
c     
c           %--------------------------------------------%
c           | Compute the NCONV wanted eigenvectors of T | 
c           | located in workl(iuptri,ldq).              |
c           %--------------------------------------------%
c     
            do 30 j=1, ncv
               if (j .le. nconv) then
                  select(j) = .true.
               else
                  select(j) = .false.
               end if
 30         continue
c
            call dtrevc ('Right', 'Select', select, ncv, workl(iuptri), 
     &           ldq, vl, 1, workl(invsub), ldq, ncv, outncv, workev,
     &           ierr)
c
            if (ierr .ne. 0) then
                info = -9
                go to 9000
            end if
c     
c           %------------------------------------------------%
c           | Scale the returning eigenvectors so that their |
c           | Euclidean norms are all one. LAPACK subroutine |
c           | dtrevc returns each eigenvector normalized so  |
c           | that the element of largest magnitude has      |
c           | magnitude 1;                                   |
c           %------------------------------------------------%
c     
            iconj = 0
            do 40 j=1, nconv
c
               if ( workl(iheigi+j-1) .eq. zero ) then
c     
c                 %----------------------%
c                 | real eigenvalue case |
c                 %----------------------%
c     
                  temp = dnrm2( ncv, workl(invsub+(j-1)*ldq), 1 )
                  call dscal ( ncv, one / temp, 
     &                 workl(invsub+(j-1)*ldq), 1 )
c
               else
c     
c                 %-------------------------------------------%
c                 | Complex conjugate pair case. Note that    |
c                 | since the real and imaginary part of      |
c                 | the eigenvector are stored in consecutive |
c                 | columns, we further normalize by the      |
c                 | square root of two.                       |
c                 %-------------------------------------------%
c
                  if (iconj .eq. 0) then
                     temp = dlapy2( dnrm2( ncv, workl(invsub+(j-1)*ldq),
     &                      1 ), dnrm2( ncv, workl(invsub+j*ldq),  1) )
                     call dscal ( ncv, one / temp, 
     &                      workl(invsub+(j-1)*ldq), 1 )
                     call dscal ( ncv, one / temp, 
     &                      workl(invsub+j*ldq), 1 )
                     iconj = 1
                  else
                     iconj = 0
                  end if
c
               end if
c
 40         continue
c
            call dgemv('T', ncv, nconv, one, workl(invsub),
     &                ldq, workl(ihbds), 1, zero,  workev, 1)
c
            iconj = 0
            do 45 j=1, nconv
               if (workl(iheigi+j-1) .ne. zero) then
c
c                 %-------------------------------------------%
c                 | Complex conjugate pair case. Note that    |
c                 | since the real and imaginary part of      |
c                 | the eigenvector are stored in consecutive |
c                 %-------------------------------------------%
c
                  if (iconj .eq. 0) then
                     workev(j) = dlapy2(workev(j), workev(j+1))
                     workev(j+1) = workev(j)
                     iconj = 1
                  else
                     iconj = 0
                  end if
               end if
 45         continue
c
            if (msglvl .gt. 2) then
               call dcopy(ncv, workl(invsub+ncv-1), ldq,
     &                    workl(ihbds), 1)
               call igraphdvout (logfil, ncv, workl(ihbds), ndigit,
     &              '_neupd: Last row of the eigenvector matrix for T')
               if (msglvl .gt. 3) then
                  call igraphdmout (logfil, ncv, ncv, workl(invsub), 
     &                 ldq, ndigit, 
     &                 '_neupd: The eigenvector matrix for T')
               end if
            end if
c
c           %---------------------------------------%
c           | Copy Ritz estimates into workl(ihbds) |
c           %---------------------------------------%
c
            call dcopy(nconv, workev, 1, workl(ihbds), 1)
c
c           %---------------------------------------------------------%
c           | Compute the QR factorization of the eigenvector matrix  |
c           | associated with leading portion of T in the first NCONV |
c           | columns of workl(invsub,ldq).                           |
c           %---------------------------------------------------------%
c     
            call dgeqr2 (ncv, nconv, workl(invsub), ldq, workev, 
     &                   workev(ncv+1), ierr)
c     
c           %----------------------------------------------%
c           | * Postmultiply Z by Q.                       |   
c           | * Postmultiply Z by R.                       |
c           | The N by NCONV matrix Z is now contains the  | 
c           | Ritz vectors associated with the Ritz values |
c           | in workl(iheigr) and workl(iheigi).          |
c           %----------------------------------------------%
c     
            call dorm2r ('Right', 'Notranspose', n, ncv, nconv,
     &           workl(invsub), ldq, workev, z, ldz, workd(n+1), ierr)
c     
            call dtrmm ('Right', 'Upper', 'No transpose', 'Non-unit',
     &                  n, nconv, one, workl(invsub), ldq, z, ldz)
c     
         end if
c     
      else 
c
c        %------------------------------------------------------%
c        | An approximate invariant subspace is not needed.     |
c        | Place the Ritz values computed DNAUPD into DR and DI |
c        %------------------------------------------------------%
c
         call dcopy (nconv, workl(ritzr), 1, dr, 1)
         call dcopy (nconv, workl(ritzi), 1, di, 1)
         call dcopy (nconv, workl(ritzr), 1, workl(iheigr), 1)
         call dcopy (nconv, workl(ritzi), 1, workl(iheigi), 1)
         call dcopy (nconv, workl(bounds), 1, workl(ihbds), 1)
      end if
c 
c     %------------------------------------------------%
c     | Transform the Ritz values and possibly vectors |
c     | and corresponding error bounds of OP to those  |
c     | of A*x = lambda*B*x.                           |
c     %------------------------------------------------%
c
      if (type .eq. 'REGULR') then
c
         if (rvec) 
     &      call dscal (ncv, rnorm, workl(ihbds), 1)     
c     
      else 
c     
c        %---------------------------------------%
c        |   A spectral transformation was used. |
c        | * Determine the Ritz estimates of the |
c        |   Ritz values in the original system. |
c        %---------------------------------------%
c     
         if (type .eq. 'SHIFTI') then
c
            if (rvec) 
     &         call dscal (ncv, rnorm, workl(ihbds), 1)
c
            do 50 k=1, ncv
               temp = dlapy2( workl(iheigr+k-1), 
     &                        workl(iheigi+k-1) )
               workl(ihbds+k-1) = abs( workl(ihbds+k-1) ) 
     &                          / temp / temp
 50         continue
c
         else if (type .eq. 'REALPT') then
c
            do 60 k=1, ncv
 60         continue
c
         else if (type .eq. 'IMAGPT') then
c
            do 70 k=1, ncv
 70         continue
c
         end if
c     
c        %-----------------------------------------------------------%
c        | *  Transform the Ritz values back to the original system. |
c        |    For TYPE = 'SHIFTI' the transformation is              |
c        |             lambda = 1/theta + sigma                      |
c        |    For TYPE = 'REALPT' or 'IMAGPT' the user must from     |
c        |    Rayleigh quotients or a projection. See remark 3 above.| 
c        | NOTES:                                                    |
c        | *The Ritz vectors are not affected by the transformation. |
c        %-----------------------------------------------------------%
c     
         if (type .eq. 'SHIFTI') then 
c
            do 80 k=1, ncv
               temp = dlapy2( workl(iheigr+k-1), 
     &                        workl(iheigi+k-1) )
               workl(iheigr+k-1) = workl(iheigr+k-1) / temp / temp 
     &                           + sigmar   
               workl(iheigi+k-1) = -workl(iheigi+k-1) / temp / temp
     &                           + sigmai   
 80         continue
c
            call dcopy (nconv, workl(iheigr), 1, dr, 1)
            call dcopy (nconv, workl(iheigi), 1, di, 1)
c
         else if (type .eq. 'REALPT' .or. type .eq. 'IMAGPT') then
c
            call dcopy (nconv, workl(iheigr), 1, dr, 1)
            call dcopy (nconv, workl(iheigi), 1, di, 1)
c
         end if
c
      end if
c
      if (type .eq. 'SHIFTI' .and. msglvl .gt. 1) then
         call igraphdvout (logfil, nconv, dr, ndigit,
     &   '_neupd: Untransformed real part of the Ritz valuess.')
         call igraphdvout (logfil, nconv, di, ndigit,
     &   '_neupd: Untransformed imag part of the Ritz valuess.')
         call igraphdvout (logfil, nconv, workl(ihbds), ndigit,
     &   '_neupd: Ritz estimates of untransformed Ritz values.')
      else if (type .eq. 'REGULR' .and. msglvl .gt. 1) then
         call igraphdvout (logfil, nconv, dr, ndigit,
     &   '_neupd: Real parts of converged Ritz values.')
         call igraphdvout (logfil, nconv, di, ndigit,
     &   '_neupd: Imag parts of converged Ritz values.')
         call igraphdvout (logfil, nconv, workl(ihbds), ndigit,
     &   '_neupd: Associated Ritz estimates.')
      end if
c 
c     %-------------------------------------------------%
c     | Eigenvector Purification step. Formally perform |
c     | one of inverse subspace iteration. Only used    |
c     | for MODE = 2.                                   |
c     %-------------------------------------------------%
c
      if (rvec .and. howmny .eq. 'A' .and. type .eq. 'SHIFTI') then
c
c        %------------------------------------------------%
c        | Purify the computed Ritz vectors by adding a   |
c        | little bit of the residual vector:             |
c        |                      T                         |
c        |          resid(:)*( e    s ) / theta           |
c        |                      NCV                       |
c        | where H s = s theta. Remember that when theta  |
c        | has nonzero imaginary part, the corresponding  |
c        | Ritz vector is stored across two columns of Z. |
c        %------------------------------------------------%
c
         iconj = 0
         do 110 j=1, nconv
            if (workl(iheigi+j-1) .eq. zero) then
               workev(j) =  workl(invsub+(j-1)*ldq+ncv-1) /
     &                      workl(iheigr+j-1)
            else if (iconj .eq. 0) then
               temp = dlapy2( workl(iheigr+j-1), workl(iheigi+j-1) )
               workev(j) = ( workl(invsub+(j-1)*ldq+ncv-1) * 
     &                       workl(iheigr+j-1) +
     &                       workl(invsub+j*ldq+ncv-1) * 
     &                       workl(iheigi+j-1) ) / temp / temp
               workev(j+1) = ( workl(invsub+j*ldq+ncv-1) * 
     &                         workl(iheigr+j-1) -
     &                         workl(invsub+(j-1)*ldq+ncv-1) * 
     &                         workl(iheigi+j-1) ) / temp / temp
               iconj = 1
            else
               iconj = 0
            end if
 110     continue
c
c        %---------------------------------------%
c        | Perform a rank one update to Z and    |
c        | purify all the Ritz vectors together. |
c        %---------------------------------------%
c
         call dger (n, nconv, one, resid, 1, workev, 1, z, ldz)
c
      end if
c
 9000 continue
c
      return
c     
c     %---------------%
c     | End of DNEUPD |
c     %---------------%
c
      end