File: gengraph_random.h

package info (click to toggle)
r-cran-igraph 1.0.1-1~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 18,160 kB
  • sloc: ansic: 173,529; cpp: 19,365; fortran: 4,550; yacc: 1,164; tcl: 931; lex: 484; makefile: 149; sh: 9
file content (212 lines) | stat: -rw-r--r-- 7,448 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/*
 *
 * gengraph - generation of random simple connected graphs with prescribed
 *            degree sequence
 *
 * Copyright (C) 2006  Fabien Viger
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
#ifndef RNG_H
#define RNG_H

#include "igraph_random.h"
#include <iostream>
using namespace std;

namespace KW_RNG {

typedef signed int  sint;
typedef unsigned int uint;
typedef signed long  slong;
typedef unsigned long ulong;

class RNG
{
public:
  RNG() { }
  RNG(ulong z_, ulong w_, ulong jsr_, ulong jcong_ ) { 
    IGRAPH_UNUSED(z_); IGRAPH_UNUSED(w_); IGRAPH_UNUSED(jsr_); 
    IGRAPH_UNUSED(jcong_);
  };
  ~RNG() { }

  void init(ulong z_, ulong w_, ulong jsr_, ulong jcong_ ) {
    IGRAPH_UNUSED(z_); IGRAPH_UNUSED(w_); IGRAPH_UNUSED(jsr_); 
    IGRAPH_UNUSED(jcong_);    
  }
  long rand_int31() { return RNG_INT31(); }
  double rand_halfopen01()   // (0,1]
  { return RNG_UNIF01(); }
  int binomial(double pp, int n) { return RNG_BINOM(n,pp); }
};

} // namespace KW_RNG

/* This was the original RNG, but now we use the igraph version */

// __________________________________________________________________________
// random.h   - a Random Number Generator Class
// random.cpp - contains the non-inline class methods

// __________________________________________________________________________
// This C++ code uses the simple, very fast "KISS" (Keep It Simple
// Stupid) random number generator suggested by George Marsaglia in a
// Usenet posting from 1999.  He describes it as "one of my favorite
// generators".  It generates high-quality random numbers that
// apparently pass all commonly used tests for randomness.  In fact, it
// generates random numbers by combining the results of three other good
// random number generators that have different periods and are
// constructed from completely different algorithms.  It does not have
// the ultra-long period of some other generators - a "problem" that can
// be fixed fairly easily - but that seems to be its only potential
// problem.  The period is about 2^123.

// The ziggurat method of Marsaglia is used to generate exponential and
// normal variates.  The method as well as source code can be found in
// the article "The Ziggurat Method for Generating Random Variables" by
// Marsaglia and Tsang, Journal of Statistical Software 5, 2000.

// The method for generating gamma variables appears in "A Simple Method
// for Generating Gamma Variables" by Marsaglia and Tsang, ACM
// Transactions on Mathematical Software, Vol. 26, No 3, Sep 2000, pages
// 363-372.

// The code for Poisson and Binomial random numbers comes from
// Numerical Recipes in C.

// Some of this code is unlikely to work correctly as is on 64 bit
// machines.

// #include <cstdlib>
// #include <ctime>
// #ifdef _WIN32
// #include <process.h>
// #define getpid _getpid
// #else
// #include <unistd.h>
// #endif

// //#ifdef _WIN32
//   static const double PI   =  3.1415926535897932;
//   static const double AD_l =  0.6931471805599453;
//   static const double AD_a =  5.7133631526454228;
//   static const double AD_b =  3.4142135623730950;
//   static const double AD_c = -1.6734053240284925;
//   static const double AD_p =  0.9802581434685472;
//   static const double AD_A =  5.6005707569738080;
//   static const double AD_B =  3.3468106480569850;
//   static const double AD_H =  0.0026106723602095;
//   static const double AD_D =  0.0857864376269050;
// //#endif //_WIN32

// namespace KW_RNG {

// class RNG
// {
// private:
//   ulong z, w, jsr, jcong; // Seeds

//   ulong kn[128], ke[256];
//   double wn[128],fn[128], we[256],fe[256];

// /*
// #ifndef _WIN32
//   static const double PI   =  3.1415926535897932;
//   static const double AD_l =  0.6931471805599453;
//   static const double AD_a =  5.7133631526454228;
//   static const double AD_b =  3.4142135623730950;
//   static const double AD_c = -1.6734053240284925;
//   static const double AD_p =  0.9802581434685472;
//   static const double AD_A =  5.6005707569738080;
//   static const double AD_B =  3.3468106480569850;
//   static const double AD_H =  0.0026106723602095;
//   static const double AD_D =  0.0857864376269050;
// #endif //_WIN32
// */

// public:
//   RNG() { init(); zigset(); }
//   RNG(ulong z_, ulong w_, ulong jsr_, ulong jcong_ ) :
//     z(z_), w(w_), jsr(jsr_), jcong(jcong_) { zigset(); }
//   ~RNG() { }


//   inline ulong znew() 
//     { return (z = 36969 * (z & 65535) + (z >> 16)); }
//   inline ulong wnew() 
//     { return (w = 18000 * (w & 65535) + (w >> 16)); }
//   inline ulong MWC()  
//     { return (((znew() & 65535) << 16) + wnew()); }
//   inline ulong SHR3()
//     { jsr ^= ((jsr & 32767) << 17); jsr ^= (jsr >> 13); return (jsr ^= ((jsr << 5) & 0xFFFFFFFF)); }
//   inline ulong CONG() 
//     { return (jcong = (69069 * jcong + 1234567) & 0xFFFFFFFF); }
//   inline double RNOR() {
//     slong h = rand_int32();
//     ulong i = h & 127;
//     return (((ulong) abs((sint) h) < kn[i]) ? h * wn[i] : nfix(h, i));
//   }
//   inline double REXP() {
//     ulong j = rand_int32();
//     ulong i = j & 255;
//     return ((j < ke[i]) ? j * we[i] : efix(j, i));
//   }

//   double nfix(slong h, ulong i);
//   double efix(ulong j, ulong i);
//   void zigset();

//   inline void init()
//     { ulong yo = time(0) + getpid();
//       z = w = jsr = jcong = yo; }
//   inline void init(ulong z_, ulong w_, ulong jsr_, ulong jcong_ )
//     { z = z_; w = w_; jsr = jsr_; jcong = jcong_; }

//   inline ulong rand_int32()         // [0,2^32-1]
//     { return ((MWC() ^ CONG()) + SHR3()) & 0xFFFFFFFF; }
//   inline long rand_int31()          // [0,2^31-1]
//     { return long(rand_int32() >> 1);}
//   inline double rand_closed01()     // [0,1]
//     { return ((double) rand_int32() / 4294967295.0); }
//   inline double rand_open01()       // (0,1)
//     { return (((double) rand_int32() + 0.5) / 4294967296.0); }
//   inline double rand_halfclosed01() // [0,1)
//     { return ((double) rand_int32() / 4294967296.0); }
//   inline double rand_halfopen01()   // (0,1]
//     { return (((double) rand_int32() + 0.5) / 4294967295.5); }

//   // Continuous Distributions
//   inline double uniform(double x = 0.0, double y = 1.0)
//     { return rand_closed01() * (y - x) + x; }
//   inline double normal(double mu = 0.0, double sd = 1.0)
//     { return RNOR() * sd + mu; }
//   inline double exponential(double lambda = 1)
//     { return REXP() / lambda; }
//   double gamma(double shape = 1, double scale = 1);
//   double chi_square(double df)
//     { return gamma(df / 2.0, 0.5); }
//   double beta(double a1, double a2)
//     { double x1 = gamma(a1, 1); return (x1 / (x1 + gamma(a2, 1))); }

//   // Discrete Distributions
//   double poisson(double lambda);
//   int binomial(double pp, int n);

// }; // class RNG

// } // namespace

#endif // RNG_H