1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
|
#' Create graphs from adjacency matrices
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.adjacency()` was renamed to `graph_from_adjacency_matrix()` to create a more
#' consistent API.
#' @inheritParams graph_from_adjacency_matrix
#' @keywords internal
#' @export
graph.adjacency <- function(adjmatrix, mode = c("directed", "undirected", "max", "min", "upper", "lower", "plus"), weighted = NULL, diag = TRUE, add.colnames = NULL, add.rownames = NA) { # nocov start
lifecycle::deprecate_soft("2.0.0", "graph.adjacency()", "graph_from_adjacency_matrix()")
graph_from_adjacency_matrix(adjmatrix = adjmatrix, mode = mode, weighted = weighted, diag = diag, add.colnames = add.colnames, add.rownames = add.rownames)
} # nocov end
## ----------------------------------------------------------------
##
## IGraph R package
## Copyright (C) 2005-2014 Gabor Csardi <csardi.gabor@gmail.com>
## 334 Harvard street, Cambridge, MA 02139 USA
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
## 02110-1301 USA
##
## -----------------------------------------------------------------
#' Create graphs from adjacency matrices
#'
#' `graph_from_adjacency_matrix()` is a flexible function for creating `igraph`
#' graphs from adjacency matrices.
#'
#' The order of the vertices are preserved, i.e. the vertex corresponding to
#' the first row will be vertex 0 in the graph, etc.
#'
#' `graph_from_adjacency_matrix()` operates in two main modes, depending on the
#' `weighted` argument.
#'
#' If this argument is `NULL` then an unweighted graph is created and an
#' element of the adjacency matrix gives the number of edges to create between
#' the two corresponding vertices. The details depend on the value of the
#' `mode` argument: \describe{ \item{"directed"}{The graph will be
#' directed and a matrix element gives the number of edges between two
#' vertices.} \item{"undirected"}{This is exactly the same as `max`,
#' for convenience. Note that it is *not* checked whether the matrix is
#' symmetric.} \item{"max"}{An undirected graph will be created and
#' `max(A(i,j), A(j,i))` gives the number of edges.}
#' \item{"upper"}{An undirected graph will be created, only the upper
#' right triangle (including the diagonal) is used for the number of edges.}
#' \item{"lower"}{An undirected graph will be created, only the lower
#' left triangle (including the diagonal) is used for creating the edges.}
#' \item{"min"}{undirected graph will be created with `min(A(i,j),
#' A(j,i))` edges between vertex `i` and `j`.} \item{"plus"}{
#' undirected graph will be created with `A(i,j)+A(j,i)` edges between
#' vertex `i` and `j`.} }
#'
#' If the `weighted` argument is not `NULL` then the elements of the
#' matrix give the weights of the edges (if they are not zero). The details
#' depend on the value of the `mode` argument: \describe{
#' \item{"directed"}{The graph will be directed and a matrix element
#' gives the edge weights.} \item{"undirected"}{First we check that the
#' matrix is symmetric. It is an error if not. Then only the upper triangle is
#' used to create a weighted undirected graph.} \item{"max"}{An
#' undirected graph will be created and `max(A(i,j), A(j,i))` gives the
#' edge weights.} \item{"upper"}{An undirected graph will be created,
#' only the upper right triangle (including the diagonal) is used (for the edge
#' weights).} \item{"lower"}{An undirected graph will be created, only
#' the lower left triangle (including the diagonal) is used for creating the
#' edges.} \item{"min"}{An undirected graph will be created,
#' `min(A(i,j), A(j,i))` gives the edge weights.} \item{"plus"}{An
#' undirected graph will be created, `A(i,j)+A(j,i)` gives the edge
#' weights.} }
#'
#' @param adjmatrix A square adjacency matrix. From igraph version 0.5.1 this
#' can be a sparse matrix created with the `Matrix` package.
#' @param mode Character scalar, specifies how igraph should interpret the
#' supplied matrix. See also the `weighted` argument, the interpretation
#' depends on that too. Possible values are: `directed`,
#' `undirected`, `upper`, `lower`, `max`, `min`,
#' `plus`. See details below.
#' @param weighted This argument specifies whether to create a weighted graph
#' from an adjacency matrix. If it is `NULL` then an unweighted graph is
#' created and the elements of the adjacency matrix gives the number of edges
#' between the vertices. If it is a character constant then for every non-zero
#' matrix entry an edge is created and the value of the entry is added as an
#' edge attribute named by the `weighted` argument. If it is `TRUE`
#' then a weighted graph is created and the name of the edge attribute will be
#' `weight`. See also details below.
#' @param diag Logical scalar, whether to include the diagonal of the matrix in
#' the calculation. If this is `FALSE` then the diagonal is zerod out
#' first.
#' @param add.colnames Character scalar, whether to add the column names as
#' vertex attributes. If it is \sQuote{`NULL`} (the default) then, if
#' present, column names are added as vertex attribute \sQuote{name}. If
#' \sQuote{`NA`} then they will not be added. If a character constant,
#' then it gives the name of the vertex attribute to add.
#' @param add.rownames Character scalar, whether to add the row names as vertex
#' attributes. Possible values the same as the previous argument. By default
#' row names are not added. If \sQuote{`add.rownames`} and
#' \sQuote{`add.colnames`} specify the same vertex attribute, then the
#' former is ignored.
#' @return An igraph graph object.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [make_graph()] and [graph_from_literal()] for other ways to
#' create graphs.
#' @keywords graphs
#' @examples
#'
#' g1 <- sample(
#' x = 0:1, size = 100, replace = TRUE,
#' prob = c(0.9, 0.1)
#' ) %>%
#' matrix(ncol = 10) %>%
#' graph_from_adjacency_matrix()
#'
#' g2 <- sample(
#' x = 0:5, size = 100, replace = TRUE,
#' prob = c(0.9, 0.02, 0.02, 0.02, 0.02, 0.02)
#' ) %>%
#' matrix(ncol = 10) %>%
#' graph_from_adjacency_matrix(weighted = TRUE)
#' E(g2)$weight
#'
#' ## various modes for weighted graphs, with some tests
#' non_zero_sort <- function(x) sort(x[x != 0])
#' adj_matrix <- matrix(runif(100), 10)
#' adj_matrix[adj_matrix < 0.5] <- 0
#' g3 <- graph_from_adjacency_matrix(
#' (adj_matrix + t(adj_matrix)) / 2,
#' weighted = TRUE,
#' mode = "undirected"
#' )
#'
#' g4 <- graph_from_adjacency_matrix(
#' adj_matrix,
#' weighted = TRUE,
#' mode = "max"
#' )
#' expected_g4_weights <- non_zero_sort(
#' pmax(adj_matrix, t(adj_matrix))[upper.tri(adj_matrix, diag = TRUE)]
#' )
#' actual_g4_weights <- sort(E(g4)$weight)
#' all(expected_g4_weights == actual_g4_weights)
#'
#' g5 <- graph_from_adjacency_matrix(
#' adj_matrix,
#' weighted = TRUE,
#' mode = "min"
#' )
#' expected_g5_weights <- non_zero_sort(
#' pmin(adj_matrix, t(adj_matrix))[upper.tri(adj_matrix, diag = TRUE)]
#' )
#' actual_g5_weights <- sort(E(g5)$weight)
#' all(expected_g5_weights == actual_g5_weights)
#'
#' g6 <- graph_from_adjacency_matrix(
#' adj_matrix,
#' weighted = TRUE,
#' mode = "upper"
#' )
#' expected_g6_weights <- non_zero_sort(adj_matrix[upper.tri(adj_matrix, diag = TRUE)])
#' actual_g6_weights <- sort(E(g6)$weight)
#' all(expected_g6_weights == actual_g6_weights)
#'
#' g7 <- graph_from_adjacency_matrix(
#' adj_matrix,
#' weighted = TRUE,
#' mode = "lower"
#' )
#' expected_g7_weights <- non_zero_sort(adj_matrix[lower.tri(adj_matrix, diag = TRUE)])
#' actual_g7_weights <- sort(E(g7)$weight)
#' all(expected_g7_weights == actual_g7_weights)
#'
#' g8 <- graph_from_adjacency_matrix(
#' adj_matrix,
#' weighted = TRUE,
#' mode = "plus"
#' )
#' halve_diag <- function(x) {
#' diag(x) <- diag(x) / 2
#' x
#' }
#' expected_g8_weights <- non_zero_sort(
#' halve_diag(adj_matrix + t(adj_matrix)
#' )[lower.tri(adj_matrix, diag = TRUE)])
#' actual_g8_weights <- sort(E(g8)$weight)
#' all(expected_g8_weights == actual_g8_weights)
#'
#' g9 <- graph_from_adjacency_matrix(
#' adj_matrix,
#' weighted = TRUE,
#' mode = "plus",
#' diag = FALSE
#' )
#' zero_diag <- function(x) {
#' diag(x) <- 0
#' }
#' expected_g9_weights <- non_zero_sort((zero_diag(adj_matrix + t(adj_matrix)))[lower.tri(adj_matrix)])
#' actual_g9_weights <- sort(E(g9)$weight)
#' all(expected_g9_weights == actual_g9_weights)
#'
#' ## row/column names
#' rownames(adj_matrix) <- sample(letters, nrow(adj_matrix))
#' colnames(adj_matrix) <- seq(ncol(adj_matrix))
#' g10 <- graph_from_adjacency_matrix(
#' adj_matrix,
#' weighted = TRUE,
#' add.rownames = "code"
#' )
#' summary(g10)
#'
#' @export
graph_from_adjacency_matrix <- function(adjmatrix,
mode = c(
"directed", "undirected", "max",
"min", "upper", "lower", "plus"
),
weighted = NULL, diag = TRUE,
add.colnames = NULL, add.rownames = NA) {
mode <- igraph.match.arg(mode)
if (!is.matrix(adjmatrix) && !inherits(adjmatrix, "Matrix")) {
lifecycle::deprecate_soft(
"1.6.0",
"graph_from_adjacency_matrix(adjmatrix = 'must be a matrix')"
)
adjmatrix <- as.matrix(1)
}
if (mode == "undirected") {
if (!is_symmetric(adjmatrix)) {
lifecycle::deprecate_soft(
"1.6.0",
"graph_from_adjacency_matrix(adjmatrix = 'must be symmetric with mode = \"undirected\"')",
details = 'Use mode = "max" to achieve the original behavior.'
)
mode <- "max"
}
}
if (inherits(adjmatrix, "Matrix")) {
res <- graph.adjacency.sparse(adjmatrix, mode = mode, weighted = weighted, diag = diag)
} else {
res <- graph.adjacency.dense(adjmatrix, mode = mode, weighted = weighted, diag = diag)
}
## Add columns and row names as attributes
if (is.null(add.colnames)) {
if (!is.null(colnames(adjmatrix))) {
add.colnames <- "name"
} else {
add.colnames <- NA
}
} else if (!is.na(add.colnames)) {
if (is.null(colnames(adjmatrix))) {
cli::cli_warn("No column names to add")
add.colnames <- NA
}
}
if (is.null(add.rownames)) {
if (!is.null(rownames(adjmatrix))) {
add.rownames <- "name"
} else {
add.colnames <- NA
}
} else if (!is.na(add.rownames)) {
if (is.null(rownames(adjmatrix))) {
cli::cli_warn("No row names to add")
add.rownames <- NA
}
}
if (!is.na(add.rownames) && !is.na(add.colnames) &&
add.rownames == add.colnames) {
cli::cli_warn("Same attribute for columns and rows, row names are ignored")
add.rownames <- NA
}
if (!is.na(add.colnames)) {
res <- set_vertex_attr(res, add.colnames, value = colnames(adjmatrix))
}
if (!is.na(add.rownames)) {
res <- set_vertex_attr(res, add.rownames, value = rownames(adjmatrix))
}
res
}
is_symmetric <- function(x) {
if (inherits(x, "Matrix")) {
return(Matrix::isSymmetric(x, tol = 0, tol1 = 0))
}
if (is.matrix(x)) {
return(isSymmetric.matrix(x, tol = 0, tol1 = 0))
}
return(isSymmetric(x, tol = 0, tol1 = 0))
}
#' @rdname graph_from_adjacency_matrix
#' @param ... Passed to `graph_from_adjacency_matrix()`.
#' @family adjacency
#' @export
from_adjacency <- function(...) constructor_spec(graph_from_adjacency_matrix, ...)
graph.adjacency.dense <- function(
adjmatrix,
mode,
weighted = NULL,
diag = c("once", "twice", "ignore")) {
mode <- switch(mode,
"directed" = 0L,
"undirected" = 1L,
"upper" = 2L,
"lower" = 3L,
"min" = 4L,
"plus" = 5L,
"max" = 6L
)
if (is.logical(diag)) {
diag <- ifelse(diag, "once", "ignore")
}
diag <- igraph.match.arg(diag)
diag <- switch(diag,
"ignore" = 0L,
"twice" = 1L,
"once" = 2L
)
if (nrow(adjmatrix) != ncol(adjmatrix)) {
stop("Adjacency matrices must be square.")
}
mode(adjmatrix) <- "double"
if (isTRUE(weighted)) {
weighted <- "weight"
} else if (!is.character(weighted)) {
weighted <- NULL
}
on.exit(.Call(R_igraph_finalizer))
if (is.null(weighted)) {
res <- .Call(R_igraph_adjacency, adjmatrix, mode, diag)
} else {
res <- .Call(R_igraph_weighted_adjacency, adjmatrix, mode, diag)
res <- set_edge_attr(res$graph, weighted, value = res$weights)
}
res
}
## helper function to replace Matrix::summary() in a way that ensures that we
## have a third column even when Matrix::summary() returned the non-zero
## cell coordinates only
mysummary <- function(x) {
result <- Matrix::summary(x)
if (ncol(result) < 3) {
result <- cbind(result, 1)
}
result
}
graph.adjacency.sparse <- function(adjmatrix, mode, weighted = NULL, diag = TRUE) {
if (!is.null(weighted)) {
if (is.logical(weighted) && weighted) {
weighted <- "weight"
}
if (!is.character(weighted)) {
stop("invalid value supplied for `weighted' argument, please see docs.")
}
}
if (nrow(adjmatrix) != ncol(adjmatrix)) {
stop("not a square matrix")
}
vc <- nrow(adjmatrix)
## to remove non-redundancies that can persist in a dgtMatrix
if (inherits(adjmatrix, "dgTMatrix")) {
adjmatrix <- as(adjmatrix, "CsparseMatrix")
} else if (inherits(adjmatrix, "ddiMatrix")) {
adjmatrix <- as(adjmatrix, "CsparseMatrix")
}
if (mode == "directed") {
## DIRECTED
el <- mysummary(adjmatrix)
if (!diag) {
el <- el[el[, 1] != el[, 2], ]
}
} else if (mode == "undirected") {
## UNDIRECTED, must be symmetric if weighted
if (!is.null(weighted) && !Matrix::isSymmetric(adjmatrix)) {
stop("Please supply a symmetric matrix if you want to create a weighted graph with mode=UNDIRECTED.")
}
if (diag) {
adjmatrix <- Matrix::tril(adjmatrix)
} else {
if (vc == 1) {
# Work around Matrix glitch
adjmatrix <- as(matrix(0), "dgCMatrix")
} else {
adjmatrix <- Matrix::tril(adjmatrix, -1)
}
}
el <- mysummary(adjmatrix)
rm(adjmatrix)
} else if (mode == "max") {
## MAXIMUM
el <- mysummary(adjmatrix)
rm(adjmatrix)
if (!diag) {
el <- el[el[, 1] != el[, 2], ]
}
el <- el[el[, 3] != 0, ]
w <- el[, 3]
el <- el[, 1:2]
el <- cbind(pmin(el[, 1], el[, 2]), pmax(el[, 1], el[, 2]))
o <- order(el[, 1], el[, 2])
el <- el[o, , drop = FALSE]
w <- w[o]
if (nrow(el) > 1) {
dd <- el[2:nrow(el), 1] == el[1:(nrow(el) - 1), 1] &
el[2:nrow(el), 2] == el[1:(nrow(el) - 1), 2]
dd <- which(dd)
if (length(dd) > 0) {
mw <- pmax(w[dd], w[dd + 1])
w[dd] <- mw
w[dd + 1] <- mw
el <- el[-dd, , drop = FALSE]
w <- w[-dd]
}
}
el <- cbind(el, w)
} else if (mode == "upper") {
## UPPER
if (diag) {
adjmatrix <- Matrix::triu(adjmatrix)
} else {
adjmatrix <- Matrix::triu(adjmatrix, 1)
}
el <- mysummary(adjmatrix)
rm(adjmatrix)
if (!diag) {
el <- el[el[, 1] != el[, 2], ]
}
} else if (mode == "lower") {
## LOWER
if (diag) {
adjmatrix <- Matrix::tril(adjmatrix)
} else {
if (vc == 1) {
# Work around Matrix glitch
adjmatrix <- as(matrix(0), "dgCMatrix")
} else {
adjmatrix <- Matrix::tril(adjmatrix, -1)
}
}
el <- mysummary(adjmatrix)
rm(adjmatrix)
if (!diag) {
el <- el[el[, 1] != el[, 2], ]
}
} else if (mode == "min") {
## MINIMUM
adjmatrix <- sign(adjmatrix) * sign(Matrix::t(adjmatrix)) * adjmatrix
el <- mysummary(adjmatrix)
rm(adjmatrix)
if (!diag) {
el <- el[el[, 1] != el[, 2], ]
}
el <- el[el[, 3] != 0, ]
w <- el[, 3]
el <- el[, 1:2]
el <- cbind(pmin(el[, 1], el[, 2]), pmax(el[, 1], el[, 2]))
o <- order(el[, 1], el[, 2])
el <- el[o, ]
w <- w[o]
if (nrow(el) > 1) {
dd <- el[2:nrow(el), 1] == el[1:(nrow(el) - 1), 1] &
el[2:nrow(el), 2] == el[1:(nrow(el) - 1), 2]
dd <- which(dd)
if (length(dd) > 0) {
mw <- pmin(w[dd], w[dd + 1])
w[dd] <- mw
w[dd + 1] <- mw
el <- el[-dd, ]
w <- w[-dd]
}
}
el <- cbind(el, w)
} else if (mode == "plus") {
## PLUS
adjmatrix <- adjmatrix + Matrix::t(adjmatrix)
if (diag) {
adjmatrix <- Matrix::tril(adjmatrix)
} else {
if (vc == 1) {
# Work around Matrix glitch
adjmatrix <- as(matrix(0), "dgCMatrix")
} else {
adjmatrix <- Matrix::tril(adjmatrix, -1)
}
}
el <- mysummary(adjmatrix)
rm(adjmatrix)
if (diag) {
loop <- el[, 1] == el[, 2]
el[loop, 3] <- el[loop, 3] / 2
}
el <- el[el[, 3] != 0, ]
}
if (!is.null(weighted)) {
res <- make_empty_graph(n = vc, directed = (mode == "directed"))
weight <- list(el[, 3])
names(weight) <- weighted
res <- add_edges(res, edges = t(as.matrix(el[, 1:2])), attr = weight)
} else {
edges <- unlist(apply(el, 1, function(x) rep(unname(x[1:2]), x[3])))
res <- make_graph(n = vc, edges, directed = (mode == "directed"))
}
res
}
|