File: adjacency.R

package info (click to toggle)
r-cran-igraph 2.1.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 27,044 kB
  • sloc: ansic: 204,981; cpp: 21,711; fortran: 4,090; yacc: 1,229; lex: 519; sh: 52; makefile: 8
file content (543 lines) | stat: -rw-r--r-- 17,988 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543

#' Create graphs from adjacency matrices
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.adjacency()` was renamed to `graph_from_adjacency_matrix()` to create a more
#' consistent API.
#' @inheritParams graph_from_adjacency_matrix
#' @keywords internal
#' @export
graph.adjacency <- function(adjmatrix, mode = c("directed", "undirected", "max", "min", "upper", "lower", "plus"), weighted = NULL, diag = TRUE, add.colnames = NULL, add.rownames = NA) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "graph.adjacency()", "graph_from_adjacency_matrix()")
  graph_from_adjacency_matrix(adjmatrix = adjmatrix, mode = mode, weighted = weighted, diag = diag, add.colnames = add.colnames, add.rownames = add.rownames)
} # nocov end

## ----------------------------------------------------------------
##
##   IGraph R package
##   Copyright (C) 2005-2014  Gabor Csardi <csardi.gabor@gmail.com>
##   334 Harvard street, Cambridge, MA 02139 USA
##
##   This program is free software; you can redistribute it and/or modify
##   it under the terms of the GNU General Public License as published by
##   the Free Software Foundation; either version 2 of the License, or
##   (at your option) any later version.
##
##   This program is distributed in the hope that it will be useful,
##   but WITHOUT ANY WARRANTY; without even the implied warranty of
##   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##   GNU General Public License for more details.
##
##   You should have received a copy of the GNU General Public License
##   along with this program; if not, write to the Free Software
##   Foundation, Inc.,  51 Franklin Street, Fifth Floor, Boston, MA
##   02110-1301 USA
##
## -----------------------------------------------------------------

#' Create graphs from adjacency matrices
#'
#' `graph_from_adjacency_matrix()` is a flexible function for creating `igraph`
#' graphs from adjacency matrices.
#'
#' The order of the vertices are preserved, i.e. the vertex corresponding to
#' the first row will be vertex 0 in the graph, etc.
#'
#' `graph_from_adjacency_matrix()` operates in two main modes, depending on the
#' `weighted` argument.
#'
#' If this argument is `NULL` then an unweighted graph is created and an
#' element of the adjacency matrix gives the number of edges to create between
#' the two corresponding vertices.  The details depend on the value of the
#' `mode` argument: \describe{ \item{"directed"}{The graph will be
#' directed and a matrix element gives the number of edges between two
#' vertices.} \item{"undirected"}{This is exactly the same as `max`,
#' for convenience. Note that it is *not* checked whether the matrix is
#' symmetric.} \item{"max"}{An undirected graph will be created and
#' `max(A(i,j), A(j,i))` gives the number of edges.}
#' \item{"upper"}{An undirected graph will be created, only the upper
#' right triangle (including the diagonal) is used for the number of edges.}
#' \item{"lower"}{An undirected graph will be created, only the lower
#' left triangle (including the diagonal) is used for creating the edges.}
#' \item{"min"}{undirected graph will be created with `min(A(i,j),
#' A(j,i))` edges between vertex `i` and `j`.} \item{"plus"}{
#' undirected graph will be created with `A(i,j)+A(j,i)` edges between
#' vertex `i` and `j`.} }
#'
#' If the `weighted` argument is not `NULL` then the elements of the
#' matrix give the weights of the edges (if they are not zero).  The details
#' depend on the value of the `mode` argument: \describe{
#' \item{"directed"}{The graph will be directed and a matrix element
#' gives the edge weights.} \item{"undirected"}{First we check that the
#' matrix is symmetric. It is an error if not. Then only the upper triangle is
#' used to create a weighted undirected graph.} \item{"max"}{An
#' undirected graph will be created and `max(A(i,j), A(j,i))` gives the
#' edge weights.} \item{"upper"}{An undirected graph will be created,
#' only the upper right triangle (including the diagonal) is used (for the edge
#' weights).} \item{"lower"}{An undirected graph will be created, only
#' the lower left triangle (including the diagonal) is used for creating the
#' edges.} \item{"min"}{An undirected graph will be created,
#' `min(A(i,j), A(j,i))` gives the edge weights.} \item{"plus"}{An
#' undirected graph will be created, `A(i,j)+A(j,i)` gives the edge
#' weights.} }
#'
#' @param adjmatrix A square adjacency matrix. From igraph version 0.5.1 this
#'   can be a sparse matrix created with the `Matrix` package.
#' @param mode Character scalar, specifies how igraph should interpret the
#'   supplied matrix. See also the `weighted` argument, the interpretation
#'   depends on that too. Possible values are: `directed`,
#'   `undirected`, `upper`, `lower`, `max`, `min`,
#'   `plus`. See details below.
#' @param weighted This argument specifies whether to create a weighted graph
#'   from an adjacency matrix. If it is `NULL` then an unweighted graph is
#'   created and the elements of the adjacency matrix gives the number of edges
#'   between the vertices. If it is a character constant then for every non-zero
#'   matrix entry an edge is created and the value of the entry is added as an
#'   edge attribute named by the `weighted` argument. If it is `TRUE`
#'   then a weighted graph is created and the name of the edge attribute will be
#'   `weight`. See also details below.
#' @param diag Logical scalar, whether to include the diagonal of the matrix in
#'   the calculation. If this is `FALSE` then the diagonal is zerod out
#'   first.
#' @param add.colnames Character scalar, whether to add the column names as
#'   vertex attributes. If it is \sQuote{`NULL`} (the default) then, if
#'   present, column names are added as vertex attribute \sQuote{name}. If
#'   \sQuote{`NA`} then they will not be added.  If a character constant,
#'   then it gives the name of the vertex attribute to add.
#' @param add.rownames Character scalar, whether to add the row names as vertex
#'   attributes. Possible values the same as the previous argument. By default
#'   row names are not added. If \sQuote{`add.rownames`} and
#'   \sQuote{`add.colnames`} specify the same vertex attribute, then the
#'   former is ignored.
#' @return An igraph graph object.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [make_graph()] and [graph_from_literal()] for other ways to
#' create graphs.
#' @keywords graphs
#' @examples
#'
#' g1 <- sample(
#'     x = 0:1, size = 100, replace = TRUE,
#'     prob = c(0.9, 0.1)
#'   ) %>%
#'   matrix(ncol = 10) %>%
#'   graph_from_adjacency_matrix()
#'
#' g2 <- sample(
#'     x = 0:5, size = 100, replace = TRUE,
#'     prob = c(0.9, 0.02, 0.02, 0.02, 0.02, 0.02)
#' ) %>%
#'   matrix(ncol = 10) %>%
#'   graph_from_adjacency_matrix(weighted = TRUE)
#' E(g2)$weight
#'
#' ## various modes for weighted graphs, with some tests
#' non_zero_sort <- function(x) sort(x[x != 0])
#' adj_matrix <- matrix(runif(100), 10)
#' adj_matrix[adj_matrix < 0.5] <- 0
#' g3 <- graph_from_adjacency_matrix(
#'   (adj_matrix + t(adj_matrix)) / 2,
#'   weighted = TRUE,
#'   mode = "undirected"
#' )
#'
#' g4 <- graph_from_adjacency_matrix(
#'   adj_matrix,
#'   weighted = TRUE,
#'   mode = "max"
#' )
#' expected_g4_weights <- non_zero_sort(
#'   pmax(adj_matrix, t(adj_matrix))[upper.tri(adj_matrix, diag = TRUE)]
#' )
#' actual_g4_weights <- sort(E(g4)$weight)
#' all(expected_g4_weights == actual_g4_weights)
#'
#' g5 <- graph_from_adjacency_matrix(
#'   adj_matrix,
#'   weighted = TRUE,
#'   mode = "min"
#' )
#' expected_g5_weights <- non_zero_sort(
#'   pmin(adj_matrix, t(adj_matrix))[upper.tri(adj_matrix, diag = TRUE)]
#' )
#' actual_g5_weights <- sort(E(g5)$weight)
#' all(expected_g5_weights == actual_g5_weights)
#'
#' g6 <- graph_from_adjacency_matrix(
#'   adj_matrix,
#'   weighted = TRUE,
#'   mode = "upper"
#' )
#' expected_g6_weights <- non_zero_sort(adj_matrix[upper.tri(adj_matrix, diag = TRUE)])
#' actual_g6_weights <- sort(E(g6)$weight)
#' all(expected_g6_weights == actual_g6_weights)
#'
#' g7 <- graph_from_adjacency_matrix(
#'   adj_matrix,
#'   weighted = TRUE,
#'   mode = "lower"
#' )
#' expected_g7_weights <- non_zero_sort(adj_matrix[lower.tri(adj_matrix, diag = TRUE)])
#' actual_g7_weights <- sort(E(g7)$weight)
#' all(expected_g7_weights == actual_g7_weights)
#'
#' g8 <- graph_from_adjacency_matrix(
#'   adj_matrix,
#'   weighted = TRUE,
#'   mode = "plus"
#' )
#' halve_diag <- function(x) {
#'   diag(x) <- diag(x) / 2
#'   x
#' }
#' expected_g8_weights <- non_zero_sort(
#'   halve_diag(adj_matrix + t(adj_matrix)
#' )[lower.tri(adj_matrix, diag = TRUE)])
#' actual_g8_weights <- sort(E(g8)$weight)
#' all(expected_g8_weights == actual_g8_weights)
#'
#' g9 <- graph_from_adjacency_matrix(
#'   adj_matrix,
#'   weighted = TRUE,
#'   mode = "plus",
#'   diag = FALSE
#' )
#' zero_diag <- function(x) {
#'   diag(x) <- 0
#' }
#' expected_g9_weights <- non_zero_sort((zero_diag(adj_matrix + t(adj_matrix)))[lower.tri(adj_matrix)])
#' actual_g9_weights <- sort(E(g9)$weight)
#' all(expected_g9_weights == actual_g9_weights)
#'
#' ## row/column names
#' rownames(adj_matrix) <- sample(letters, nrow(adj_matrix))
#' colnames(adj_matrix) <- seq(ncol(adj_matrix))
#' g10 <- graph_from_adjacency_matrix(
#'   adj_matrix,
#'   weighted = TRUE,
#'   add.rownames = "code"
#' )
#' summary(g10)
#'
#' @export
graph_from_adjacency_matrix <- function(adjmatrix,
                                        mode = c(
                                          "directed", "undirected", "max",
                                          "min", "upper", "lower", "plus"
                                        ),
                                        weighted = NULL, diag = TRUE,
                                        add.colnames = NULL, add.rownames = NA) {

  mode <- igraph.match.arg(mode)

  if (!is.matrix(adjmatrix) && !inherits(adjmatrix, "Matrix")) {
    lifecycle::deprecate_soft(
      "1.6.0",
      "graph_from_adjacency_matrix(adjmatrix = 'must be a matrix')"
    )
    adjmatrix <- as.matrix(1)
  }

  if (mode == "undirected") {
    if (!is_symmetric(adjmatrix)) {
      lifecycle::deprecate_soft(
        "1.6.0",
        "graph_from_adjacency_matrix(adjmatrix = 'must be symmetric with mode = \"undirected\"')",
        details = 'Use mode = "max" to achieve the original behavior.'
      )
      mode <- "max"
    }
  }

  if (inherits(adjmatrix, "Matrix")) {
    res <- graph.adjacency.sparse(adjmatrix, mode = mode, weighted = weighted, diag = diag)
  } else {
    res <- graph.adjacency.dense(adjmatrix, mode = mode, weighted = weighted, diag = diag)
  }

  ## Add columns and row names as attributes
  if (is.null(add.colnames)) {
    if (!is.null(colnames(adjmatrix))) {
      add.colnames <- "name"
    } else {
      add.colnames <- NA
    }
  } else if (!is.na(add.colnames)) {
    if (is.null(colnames(adjmatrix))) {
      cli::cli_warn("No column names to add")
      add.colnames <- NA
    }
  }

  if (is.null(add.rownames)) {
    if (!is.null(rownames(adjmatrix))) {
      add.rownames <- "name"
    } else {
      add.colnames <- NA
    }
  } else if (!is.na(add.rownames)) {
    if (is.null(rownames(adjmatrix))) {
      cli::cli_warn("No row names to add")
      add.rownames <- NA
    }
  }

  if (!is.na(add.rownames) && !is.na(add.colnames) &&
    add.rownames == add.colnames) {
    cli::cli_warn("Same attribute for columns and rows, row names are ignored")
    add.rownames <- NA
  }

  if (!is.na(add.colnames)) {
    res <- set_vertex_attr(res, add.colnames, value = colnames(adjmatrix))
  }
  if (!is.na(add.rownames)) {
    res <- set_vertex_attr(res, add.rownames, value = rownames(adjmatrix))
  }

  res
}

is_symmetric <- function(x) {
  if (inherits(x, "Matrix")) {
    return(Matrix::isSymmetric(x, tol = 0, tol1 = 0))
  }

  if (is.matrix(x)) {
    return(isSymmetric.matrix(x, tol = 0, tol1 = 0))
  }

  return(isSymmetric(x, tol = 0, tol1 = 0))
}

#' @rdname graph_from_adjacency_matrix
#' @param ... Passed to `graph_from_adjacency_matrix()`.
#' @family adjacency
#' @export
from_adjacency <- function(...) constructor_spec(graph_from_adjacency_matrix, ...)

graph.adjacency.dense <- function(
    adjmatrix,
    mode,
    weighted = NULL,
    diag = c("once", "twice", "ignore")) {
  mode <- switch(mode,
    "directed" = 0L,
    "undirected" = 1L,
    "upper" = 2L,
    "lower" = 3L,
    "min" = 4L,
    "plus" = 5L,
    "max" = 6L
  )

  if (is.logical(diag)) {
    diag <- ifelse(diag, "once", "ignore")
  }
  diag <- igraph.match.arg(diag)
  diag <- switch(diag,
    "ignore" = 0L,
    "twice" = 1L,
    "once" = 2L
  )

  if (nrow(adjmatrix) != ncol(adjmatrix)) {
    stop("Adjacency matrices must be square.")
  }

  mode(adjmatrix) <- "double"

  if (isTRUE(weighted)) {
    weighted <- "weight"
  } else if (!is.character(weighted)) {
    weighted <- NULL
  }

  on.exit(.Call(R_igraph_finalizer))
  if (is.null(weighted)) {
    res <- .Call(R_igraph_adjacency, adjmatrix, mode, diag)
  } else {
    res <- .Call(R_igraph_weighted_adjacency, adjmatrix, mode, diag)
    res <- set_edge_attr(res$graph, weighted, value = res$weights)
  }

  res
}

## helper function to replace Matrix::summary() in a way that ensures that we
## have a third column even when Matrix::summary() returned the non-zero
## cell coordinates only
mysummary <- function(x) {
  result <- Matrix::summary(x)
  if (ncol(result) < 3) {
    result <- cbind(result, 1)
  }
  result
}


graph.adjacency.sparse <- function(adjmatrix, mode, weighted = NULL, diag = TRUE) {
  if (!is.null(weighted)) {
    if (is.logical(weighted) && weighted) {
      weighted <- "weight"
    }
    if (!is.character(weighted)) {
      stop("invalid value supplied for `weighted' argument, please see docs.")
    }
  }

  if (nrow(adjmatrix) != ncol(adjmatrix)) {
    stop("not a square matrix")
  }

  vc <- nrow(adjmatrix)

  ## to remove non-redundancies that can persist in a dgtMatrix
  if (inherits(adjmatrix, "dgTMatrix")) {
    adjmatrix <- as(adjmatrix, "CsparseMatrix")
  } else if (inherits(adjmatrix, "ddiMatrix")) {
    adjmatrix <- as(adjmatrix, "CsparseMatrix")
  }

  if (mode == "directed") {
    ## DIRECTED
    el <- mysummary(adjmatrix)
    if (!diag) {
      el <- el[el[, 1] != el[, 2], ]
    }
  } else if (mode == "undirected") {
    ## UNDIRECTED, must be symmetric if weighted
    if (!is.null(weighted) && !Matrix::isSymmetric(adjmatrix)) {
      stop("Please supply a symmetric matrix if you want to create a weighted graph with mode=UNDIRECTED.")
    }
    if (diag) {
      adjmatrix <- Matrix::tril(adjmatrix)
    } else {
      if (vc == 1) {
        # Work around Matrix glitch
        adjmatrix <- as(matrix(0), "dgCMatrix")
      } else {
        adjmatrix <- Matrix::tril(adjmatrix, -1)
      }
    }
    el <- mysummary(adjmatrix)
    rm(adjmatrix)
  } else if (mode == "max") {
    ## MAXIMUM
    el <- mysummary(adjmatrix)
    rm(adjmatrix)
    if (!diag) {
      el <- el[el[, 1] != el[, 2], ]
    }
    el <- el[el[, 3] != 0, ]
    w <- el[, 3]
    el <- el[, 1:2]
    el <- cbind(pmin(el[, 1], el[, 2]), pmax(el[, 1], el[, 2]))
    o <- order(el[, 1], el[, 2])
    el <- el[o, , drop = FALSE]
    w <- w[o]
    if (nrow(el) > 1) {
      dd <- el[2:nrow(el), 1] == el[1:(nrow(el) - 1), 1] &
        el[2:nrow(el), 2] == el[1:(nrow(el) - 1), 2]
      dd <- which(dd)
      if (length(dd) > 0) {
        mw <- pmax(w[dd], w[dd + 1])
        w[dd] <- mw
        w[dd + 1] <- mw
        el <- el[-dd, , drop = FALSE]
        w <- w[-dd]
      }
    }
    el <- cbind(el, w)
  } else if (mode == "upper") {
    ## UPPER
    if (diag) {
      adjmatrix <- Matrix::triu(adjmatrix)
    } else {
      adjmatrix <- Matrix::triu(adjmatrix, 1)
    }
    el <- mysummary(adjmatrix)
    rm(adjmatrix)
    if (!diag) {
      el <- el[el[, 1] != el[, 2], ]
    }
  } else if (mode == "lower") {
    ## LOWER
    if (diag) {
      adjmatrix <- Matrix::tril(adjmatrix)
    } else {
      if (vc == 1) {
        # Work around Matrix glitch
        adjmatrix <- as(matrix(0), "dgCMatrix")
      } else {
        adjmatrix <- Matrix::tril(adjmatrix, -1)
      }
    }
    el <- mysummary(adjmatrix)
    rm(adjmatrix)
    if (!diag) {
      el <- el[el[, 1] != el[, 2], ]
    }
  } else if (mode == "min") {
    ## MINIMUM
    adjmatrix <- sign(adjmatrix) * sign(Matrix::t(adjmatrix)) * adjmatrix
    el <- mysummary(adjmatrix)
    rm(adjmatrix)
    if (!diag) {
      el <- el[el[, 1] != el[, 2], ]
    }
    el <- el[el[, 3] != 0, ]
    w <- el[, 3]
    el <- el[, 1:2]
    el <- cbind(pmin(el[, 1], el[, 2]), pmax(el[, 1], el[, 2]))
    o <- order(el[, 1], el[, 2])
    el <- el[o, ]
    w <- w[o]
    if (nrow(el) > 1) {
      dd <- el[2:nrow(el), 1] == el[1:(nrow(el) - 1), 1] &
        el[2:nrow(el), 2] == el[1:(nrow(el) - 1), 2]
      dd <- which(dd)
      if (length(dd) > 0) {
        mw <- pmin(w[dd], w[dd + 1])
        w[dd] <- mw
        w[dd + 1] <- mw
        el <- el[-dd, ]
        w <- w[-dd]
      }
    }
    el <- cbind(el, w)
  } else if (mode == "plus") {
    ## PLUS
    adjmatrix <- adjmatrix + Matrix::t(adjmatrix)
    if (diag) {
      adjmatrix <- Matrix::tril(adjmatrix)
    } else {
      if (vc == 1) {
        # Work around Matrix glitch
        adjmatrix <- as(matrix(0), "dgCMatrix")
      } else {
        adjmatrix <- Matrix::tril(adjmatrix, -1)
      }
    }
    el <- mysummary(adjmatrix)
    rm(adjmatrix)
    if (diag) {
      loop <- el[, 1] == el[, 2]
      el[loop, 3] <- el[loop, 3] / 2
    }
    el <- el[el[, 3] != 0, ]
  }

  if (!is.null(weighted)) {
    res <- make_empty_graph(n = vc, directed = (mode == "directed"))
    weight <- list(el[, 3])
    names(weight) <- weighted
    res <- add_edges(res, edges = t(as.matrix(el[, 1:2])), attr = weight)
  } else {
    edges <- unlist(apply(el, 1, function(x) rep(unname(x[1:2]), x[3])))
    res <- make_graph(n = vc, edges, directed = (mode == "directed"))
  }
  res
}