1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
#' Assortativity coefficient
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `assortativity.nominal()` was renamed to `assortativity_nominal()` to create a more
#' consistent API.
#' @inheritParams assortativity_nominal
#' @keywords internal
#' @export
assortativity.nominal <- function(graph, types, directed = TRUE, normalized = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "assortativity.nominal()", "assortativity_nominal()")
assortativity_nominal(graph = graph, types = types, directed = directed, normalized = normalized)
} # nocov end
#' Assortativity coefficient
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `assortativity.degree()` was renamed to `assortativity_degree()` to create a more
#' consistent API.
#' @inheritParams assortativity_degree
#' @keywords internal
#' @export
assortativity.degree <- function(graph, directed = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "assortativity.degree()", "assortativity_degree()")
assortativity_degree(graph = graph, directed = directed)
} # nocov end
## -----------------------------------------------------------------------
##
## IGraph R package
## Copyright (C) 2015 Gabor Csardi <csardi.gabor@gmail.com>
## 334 Harvard street, Cambridge, MA 02139 USA
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
## 02110-1301 USA
##
## -----------------------------------------------------------------------
#' Assortativity coefficient
#'
#' The assortativity coefficient is positive if similar vertices (based on some
#' external property) tend to connect to each, and negative otherwise.
#'
#' The assortativity coefficient measures the level of homophyly of the graph,
#' based on some vertex labeling or values assigned to vertices. If the
#' coefficient is high, that means that connected vertices tend to have the
#' same labels or similar assigned values.
#'
#' M.E.J. Newman defined two kinds of assortativity coefficients, the first one
#' is for categorical labels of vertices. `assortativity_nominal()`
#' calculates this measure. It is defined as
#'
#' \deqn{r=\frac{\sum_i e_{ii}-\sum_i a_i b_i}{1-\sum_i a_i b_i}}{
#' r=(sum(e(i,i), i) - sum(a(i)b(i), i)) / (1 - sum(a(i)b(i), i))}
#'
#' where \eqn{e_{ij}}{e(i,j)} is the fraction of edges connecting vertices of
#' type \eqn{i} and \eqn{j}, \eqn{a_i=\sum_j e_{ij}}{a(i)=sum(e(i,j), j)} and
#' \eqn{b_j=\sum_i e_{ij}}{b(j)=sum(e(i,j), i)}.
#'
#' The second assortativity variant is based on values assigned to the
#' vertices. `assortativity()` calculates this measure. It is defined as
#'
#' \deqn{r=\frac1{\sigma_q^2}\sum_{jk} jk(e_{jk}-q_j q_k)}{
#' sum(jk(e(j,k)-q(j)q(k)), j, k) / sigma(q)^2}
#'
#' for undirected graphs (\eqn{q_i=\sum_j e_{ij}}{q(i)=sum(e(i,j), j)}) and as
#'
#' \deqn{r=\frac1{\sigma_o\sigma_i}\sum_{jk}jk(e_{jk}-q_j^o q_k^i)}{
#' sum(jk(e(j,k)-qout(j)qin(k)), j, k) / sigma(qin) / sigma(qout) }
#'
#' for directed ones. Here \eqn{q_i^o=\sum_j e_{ij}}{qout(i)=sum(e(i,j), j)},
#' \eqn{q_i^i=\sum_j e_{ji}}{qin(i)=sum(e(j,i), j)}, moreover,
#' \eqn{\sigma_q}{\sigma(q)}, \eqn{\sigma_o}{\sigma(qout)} and
#' \eqn{\sigma_i}{\sigma(qin)} are the standard deviations of \eqn{q},
#' \eqn{q^o}{qout} and \eqn{q^i}{qin}, respectively.
#'
#' The reason of the difference is that in directed networks the relationship
#' is not symmetric, so it is possible to assign different values to the
#' outgoing and the incoming end of the edges.
#'
#' `assortativity_degree()` uses vertex degree as vertex values
#' and calls `assortativity()`.
#'
#' Undirected graphs are effectively treated as directed ones with all-reciprocal edges.
#' Thus, self-loops are taken into account twice in undirected graphs.
#'
#' @aliases assortativity
#' @param graph The input graph, it can be directed or undirected.
#' @param values The vertex values, these can be arbitrary numeric values.
#' @inheritParams rlang::args_dots_empty
#' @param values.in A second value vector to use for the incoming edges when
#' calculating assortativity for a directed graph.
#' Supply `NULL` here if
#' you want to use the same values for outgoing and incoming edges.
#' This
#' argument is ignored (with a warning) if it is not `NULL` and undirected
#' assortativity coefficient is being calculated.
#' @param directed Logical scalar, whether to consider edge directions for
#' directed graphs.
#' This argument is ignored for undirected graphs.
#' Supply
#' `TRUE` here to do the natural thing, i.e. use directed version of the
#' measure for directed graphs and the undirected version for undirected
#' graphs.
#' @param normalized Boolean, whether to compute the normalized assortativity.
#' The non-normalized nominal assortativity is identical to modularity.
#' The non-normalized value-based assortativity is simply the covariance of the
#' values at the two ends of edges.
#' @param types1,types2
#' `r lifecycle::badge("deprecated")`
#' Deprecated aliases for `values` and `values.in`, respectively.
#' @return A single real number.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references M. E. J. Newman: Mixing patterns in networks, *Phys. Rev.
#' E* 67, 026126 (2003) <https://arxiv.org/abs/cond-mat/0209450>
#'
#' M. E. J. Newman: Assortative mixing in networks, *Phys. Rev. Lett.* 89,
#' 208701 (2002) <https://arxiv.org/abs/cond-mat/0205405>
#' @keywords graphs
#' @export
#' @examples
#'
#' # random network, close to zero
#' assortativity_degree(sample_gnp(10000, 3 / 10000))
#'
#' # BA model, tends to be dissortative
#' assortativity_degree(sample_pa(10000, m = 4))
#' @cdocs igraph_assortativity
assortativity <- function(graph,
values,
...,
values.in = NULL,
directed = TRUE,
normalized = TRUE,
types1 = NULL,
types2 = NULL) {
if (...length() > 0) {
lifecycle::deprecate_soft(
"1.6.0",
"assortativity(... =)",
details = "Arguments `values` and `values.in` must be named."
)
dots <- list(...)
dots[["graph"]] <- graph
if (!missing(types2)) {
dots[["types2"]] <- types2
}
if (!missing(directed)) {
dots[["directed"]] <- directed
}
if (missing(values)) {
dots[["types1"]] <- types1
} else {
dots[["types1"]] <- values
}
return(inject(assortativity_legacy(!!!dots)))
}
if (missing(values)) {
lifecycle::deprecate_soft(
"1.6.0",
"assortativity(types1 =)",
"assortativity(values =)"
)
values <- types1
}
if (!is.null(types2)) {
lifecycle::deprecate_soft(
"1.6.0",
"assortativity(types2 =)",
"assortativity(values.in =)"
)
stopifnot(is.null(values.in))
values.in <- types2
}
assortativity_impl(graph, values, values.in, directed, normalized)
}
assortativity_legacy <- function(graph, types1, types2 = NULL, directed = TRUE) {
assortativity_impl(graph, types1, types2, directed)
}
#' @param types Vector giving the vertex types. They as assumed to be integer
#' numbers, starting with one. Non-integer values are converted to integers
#' with [as.integer()].
#' @rdname assortativity
#' @export
#' @cdocs igraph_assortativity_nominal
assortativity_nominal <- assortativity_nominal_impl
#' @rdname assortativity
#' @export
#' @cdocs igraph_assortativity_degree
assortativity_degree <- assortativity_degree_impl
|