1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
|
#' Find subgraph centrality scores of network positions
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `subgraph.centrality()` was renamed to `subgraph_centrality()` to create a more
#' consistent API.
#' @inheritParams subgraph_centrality
#' @keywords internal
#' @export
subgraph.centrality <- function(graph, diag = FALSE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "subgraph.centrality()", "subgraph_centrality()")
subgraph_centrality(graph = graph, diag = diag)
} # nocov end
#' The Page Rank algorithm
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `page.rank()` was renamed to `page_rank()` to create a more
#' consistent API.
#' @inheritParams page_rank
#' @keywords internal
#' @export
page.rank <- function(graph, algo = c("prpack", "arpack"), vids = V(graph), directed = TRUE, damping = 0.85, personalized = NULL, weights = NULL, options = NULL) { # nocov start
lifecycle::deprecate_soft("2.0.0", "page.rank()", "page_rank()")
page_rank(graph = graph, algo = algo, vids = vids, directed = directed, damping = damping, personalized = personalized, weights = weights, options = options)
} # nocov end
#' Kleinberg's hub and authority centrality scores.
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `hub.score()` was renamed to `hub_score()` to create a more
#' consistent API.
#' @inheritParams hub_score
#' @keywords internal
#' @export
hub.score <- function(graph, scale = TRUE, weights = NULL, options = arpack_defaults()) { # nocov start
lifecycle::deprecate_warn("2.0.0", "hub.score()", "hits_scores()")
hub_score(graph = graph, scale = scale, weights = weights, options = options)
} # nocov end
#' Kleinberg's hub and authority centrality scores.
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `authority.score()` was renamed to `authority_score()` to create a more
#' consistent API.
#' @inheritParams authority_score
#' @keywords internal
#' @export
authority.score <- function(graph, scale = TRUE, weights = NULL, options = arpack_defaults()) { # nocov start
lifecycle::deprecate_warn("2.0.0", "authority.score()", "hits_scores()")
authority_score(graph = graph, scale = scale, weights = weights, options = options)
} # nocov end
#' Strength or weighted vertex degree
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.strength()` was renamed to `strength()` to create a more
#' consistent API.
#' @inheritParams strength
#' @keywords internal
#' @export
graph.strength <- function(graph, vids = V(graph), mode = c("all", "out", "in", "total"), loops = TRUE, weights = NULL) { # nocov start
lifecycle::deprecate_soft("2.0.0", "graph.strength()", "strength()")
strength(graph = graph, vids = vids, mode = mode, loops = loops, weights = weights)
} # nocov end
#' Eigenvalues and eigenvectors of the adjacency matrix of a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.eigen()` was renamed to `spectrum()` to create a more
#' consistent API.
#' @inheritParams spectrum
#' @keywords internal
#' @export
graph.eigen <- function(graph, algorithm = c("arpack", "auto", "lapack", "comp_auto", "comp_lapack", "comp_arpack"), which = list(), options = arpack_defaults()) { # nocov start
lifecycle::deprecate_soft("2.0.0", "graph.eigen()", "spectrum()")
spectrum(graph = graph, algorithm = algorithm, which = which, options = options)
} # nocov end
#' Graph diversity
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.diversity()` was renamed to `diversity()` to create a more
#' consistent API.
#' @inheritParams diversity
#' @keywords internal
#' @export
graph.diversity <- function(graph, weights = NULL, vids = V(graph)) { # nocov start
lifecycle::deprecate_soft("2.0.0", "graph.diversity()", "diversity()")
diversity(graph = graph, weights = weights, vids = vids)
} # nocov end
#' Find Eigenvector Centrality Scores of Network Positions
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `evcent()` was renamed to `eigen_centrality()` to create a more
#' consistent API.
#' @inheritParams eigen_centrality
#' @keywords internal
#' @export
evcent <- function(graph, directed = FALSE, scale = TRUE, weights = NULL, options = arpack_defaults()) { # nocov start
lifecycle::deprecate_soft("2.0.0", "evcent()", "eigen_centrality()")
eigen_centrality(graph = graph, directed = directed, scale = scale, weights = weights, options = options)
} # nocov end
#' Vertex and edge betweenness centrality
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `edge.betweenness()` was renamed to `edge_betweenness()` to create a more
#' consistent API.
#' @inheritParams edge_betweenness
#' @keywords internal
#' @export
edge.betweenness <- function(graph, e = E(graph), directed = TRUE, weights = NULL, cutoff = -1) { # nocov start
lifecycle::deprecate_soft("2.0.0", "edge.betweenness()", "edge_betweenness()")
edge_betweenness(graph = graph, e = e, directed = directed, weights = weights, cutoff = cutoff)
} # nocov end
#' Find Bonacich Power Centrality Scores of Network Positions
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `bonpow()` was renamed to `power_centrality()` to create a more
#' consistent API.
#' @inheritParams power_centrality
#' @keywords internal
#' @export
bonpow <- function(graph, nodes = V(graph), loops = FALSE, exponent = 1, rescale = FALSE, tol = 1e-7, sparse = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "bonpow()", "power_centrality()")
power_centrality(graph = graph, nodes = nodes, loops = loops, exponent = exponent, rescale = rescale, tol = tol, sparse = sparse)
} # nocov end
#' Find Bonacich alpha centrality scores of network positions
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `alpha.centrality()` was renamed to `alpha_centrality()` to create a more
#' consistent API.
#' @inheritParams alpha_centrality
#' @keywords internal
#' @export
alpha.centrality <- function(graph, nodes = V(graph), alpha = 1, loops = FALSE, exo = 1, weights = NULL, tol = 1e-7, sparse = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "alpha.centrality()", "alpha_centrality()")
alpha_centrality(graph = graph, nodes = nodes, alpha = alpha, loops = loops, exo = exo, weights = weights, tol = tol, sparse = sparse)
} # nocov end
# IGraph R package
# Copyright (C) 2005-2012 Gabor Csardi <csardi.gabor@gmail.com>
# 334 Harvard street, Cambridge, MA 02139 USA
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301 USA
#
###################################################################
#' Deprecated version of `betweenness()`
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' Use [`betweenness()`] with the `cutoff` argument instead.
#' @param vids The vertices for which the vertex betweenness estimation will be
#' calculated.
#' @inheritParams betweenness
#' @keywords internal
#' @export
estimate_betweenness <- function(graph, vids = V(graph), directed = TRUE, cutoff, weights = NULL) {
lifecycle::deprecate_soft(
"1.6.0",
"estimate_betweenness()",
"betweenness()",
details = "with the cutoff argument."
)
betweenness(graph, v = vids, directed = directed, cutoff = cutoff, weights = weights)
}
#' @export
betweenness.estimate <- estimate_betweenness
#' Vertex and edge betweenness centrality
#'
#' The vertex and edge betweenness are (roughly) defined by the number of
#' geodesics (shortest paths) going through a vertex or an edge.
#'
#' The vertex betweenness of vertex `v` is defined by
#'
#' \deqn{\sum_{i\ne j, i\ne v, j\ne v} g_{ivj}/g_{ij}}{sum( g_ivj / g_ij,
#' i!=j,i!=v,j!=v)}
#'
#' The edge betweenness of edge `e` is defined by
#'
#' \deqn{\sum_{i\ne j} g_{iej}/g_{ij}.}{sum( g_iej / g_ij, i!=j).}
#'
#' `betweenness()` calculates vertex betweenness, `edge_betweenness()`
#' calculates edge betweenness.
#'
#' Here \eqn{g_{ij}}{g_ij} is the total number of shortest paths between vertices
#' \eqn{i} and \eqn{j} while \eqn{g_{ivj}} is the number of those shortest paths
#' which pass though vertex \eqn{v}.
#'
#' Both functions allow you to consider only paths of length `cutoff` or
#' smaller; this can be run for larger graphs, as the running time is not
#' quadratic (if `cutoff` is small). If `cutoff` is negative (the default),
#' then the function calculates the exact betweenness scores. Since igraph 1.6.0,
#' a `cutoff` value of zero is treated literally, i.e. paths of length larger
#' than zero are ignored.
#'
#' For calculating the betweenness a similar algorithm to the one proposed by
#' Brandes (see References) is used.
#'
#' @aliases betweenness.estimate
#' @aliases edge.betweenness.estimate
#' @param graph The graph to analyze.
#' @param v The vertices for which the vertex betweenness will be calculated.
#' @param directed Logical, whether directed paths should be considered while
#' determining the shortest paths.
#' @param weights Optional positive weight vector for calculating weighted
#' betweenness. If the graph has a `weight` edge attribute, then this is
#' used by default. Weights are used to calculate weighted shortest paths,
#' so they are interpreted as distances.
#' @param normalized Logical scalar, whether to normalize the betweenness
#' scores. If `TRUE`, then the results are normalized by the number of ordered
#' or unordered vertex pairs in directed and undirected graphs, respectively.
#' In an undirected graph,
#' \deqn{B^n=\frac{2B}{(n-1)(n-2)},}{Bnorm=2 B / ((n-1)(n-2)),}
#' where
#' \eqn{B^n}{Bnorm} is the normalized, \eqn{B} the raw betweenness, and
#' \eqn{n} is the number of vertices in the graph. Note that the same
#' normalization factor is used even when setting a `cutoff` on the considered
#' shortest path lengths, even though the number of vertex pairs reachable
#' from each other may be less than \eqn{(n-1)(n-2)/2}.
#' @param cutoff The maximum shortest path length to consider when calculating
#' betweenness. If negative, then there is no such limit.
#' @return A numeric vector with the betweenness score for each vertex in
#' `v` for `betweenness()`.
#'
#' A numeric vector with the edge betweenness score for each edge in `e`
#' for `edge_betweenness()`.
#'
#' @note `edge_betweenness()` might give false values for graphs with
#' multiple edges.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [closeness()], [degree()], [harmonic_centrality()]
#' @references Freeman, L.C. (1979). Centrality in Social Networks I:
#' Conceptual Clarification. *Social Networks*, 1, 215-239.
#' \doi{10.1016/0378-8733(78)90021-7}
#'
#' Ulrik Brandes, A Faster Algorithm for Betweenness Centrality. *Journal
#' of Mathematical Sociology* 25(2):163-177, 2001.
#' \doi{10.1080/0022250X.2001.9990249}
#' @family centrality
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- sample_gnp(10, 3 / 10)
#' betweenness(g)
#' edge_betweenness(g)
#'
betweenness <- function(graph, v = V(graph), directed = TRUE, weights = NULL,
normalized = FALSE, cutoff = -1) {
ensure_igraph(graph)
v <- as_igraph_vs(graph, v)
directed <- as.logical(directed)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
cutoff <- as.numeric(cutoff)
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_betweenness_cutoff, graph, v - 1, directed, weights, cutoff)
if (normalized) {
vc <- as.numeric(vcount(graph))
if (is_directed(graph) && directed) {
res <- res / (vc * vc - 3 * vc + 2)
} else {
res <- 2 * res / (vc * vc - 3 * vc + 2)
}
}
if (igraph_opt("add.vertex.names") && is_named(graph)) {
names(res) <- V(graph)$name[v]
}
res
}
#' @rdname betweenness
#' @param e The edges for which the edge betweenness will be calculated.
#' @export
edge_betweenness <- function(graph, e = E(graph),
directed = TRUE, weights = NULL, cutoff = -1) {
# Argument checks
ensure_igraph(graph)
e <- as_igraph_es(graph, e)
directed <- as.logical(directed)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
cutoff <- as.numeric(cutoff)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_edge_betweenness_cutoff, graph, directed, weights, cutoff)
res[as.numeric(e)]
}
#' Deprecated version of `edge_betweenness()`
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' Use [`edge_betweenness()`] with the `cutoff` argument instead.
#' @inheritParams edge_betweenness
#' @keywords internal
#' @export
estimate_edge_betweenness <- function(graph, e = E(graph),
directed = TRUE, cutoff, weights = NULL) {
lifecycle::deprecate_soft(
"1.6.0",
"estimate_edge_betweenness()",
"edge_betweenness()",
details = "with the cutoff argument."
)
edge_betweenness(graph, e, directed = directed, cutoff = cutoff, weights = weights)
}
#' @export
edge.betweenness.estimate <- estimate_edge_betweenness
#' Closeness centrality of vertices
#'
#' Closeness centrality measures how many steps are required to access every other
#' vertex from a given vertex.
#'
#' The closeness centrality of a vertex is defined as the inverse of the
#' sum of distances to all the other vertices in the graph:
#'
#' \deqn{\frac{1}{\sum_{i\ne v} d_{vi}}}{1/sum( d(v,i), i != v)}
#'
#' If there is no (directed) path between vertex `v` and `i`, then
#' `i` is omitted from the calculation. If no other vertices are reachable
#' from `v`, then its closeness is returned as NaN.
#'
# " You may use the \code{cutoff} argument to consider only paths of length
#' `cutoff` or smaller. This can be run for larger graphs, as the running
#' time is not quadratic (if `cutoff` is small). If `cutoff` is
#' negative (which is the default), then the function calculates the exact
#' closeness scores. Since igraph 1.6.0, a `cutoff` value of zero is treated
#' literally, i.e. path with a length greater than zero are ignored.
#'
#' Closeness centrality is meaningful only for connected graphs. In disconnected
#' graphs, consider using the harmonic centrality with
#' [harmonic_centrality()]
#'
#' @aliases closeness.estimate
#' @param graph The graph to analyze.
#' @param vids The vertices for which closeness will be calculated.
#' @param mode Character string, defined the types of the paths used for
#' measuring the distance in directed graphs. \dQuote{in} measures the paths
#' *to* a vertex, \dQuote{out} measures paths *from* a vertex,
#' *all* uses undirected paths. This argument is ignored for undirected
#' graphs.
#' @param normalized Logical scalar, whether to calculate the normalized
#' closeness, i.e. the inverse average distance to all reachable vertices.
#' The non-normalized closeness is the inverse of the sum of distances to
#' all reachable vertices.
#' @param weights Optional positive weight vector for calculating weighted
#' closeness. If the graph has a `weight` edge attribute, then this is
#' used by default. Weights are used for calculating weighted shortest
#' paths, so they are interpreted as distances.
#' @param cutoff The maximum path length to consider when calculating the
#' closeness. If zero or negative then there is no such limit.
#' @return Numeric vector with the closeness values of all the vertices in
#' `v`.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references Freeman, L.C. (1979). Centrality in Social Networks I:
#' Conceptual Clarification. *Social Networks*, 1, 215-239.
#' @family centrality
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- make_ring(10)
#' g2 <- make_star(10)
#' closeness(g)
#' closeness(g2, mode = "in")
#' closeness(g2, mode = "out")
#' closeness(g2, mode = "all")
#'
closeness <- function(graph, vids = V(graph),
mode = c("out", "in", "all", "total"), weights = NULL,
normalized = FALSE, cutoff = -1) {
# Argument checks
ensure_igraph(graph)
vids <- as_igraph_vs(graph, vids)
mode <- switch(igraph.match.arg(mode),
"out" = 1,
"in" = 2,
"all" = 3,
"total" = 3
)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
normalized <- as.logical(normalized)
cutoff <- as.numeric(cutoff)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_closeness_cutoff, graph, vids - 1, mode, weights, normalized, cutoff)$res
if (igraph_opt("add.vertex.names") && is_named(graph)) {
names(res) <- V(graph)$name[vids]
}
res
}
#' Deprecated version of `closeness()`
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' Use [`closeness()`] with the `cutoff` argument instead.
#' @inheritParams closeness
#' @keywords internal
#' @export
estimate_closeness <- function(graph, vids = V(graph), mode = c("out", "in", "all", "total"), cutoff, weights = NULL, normalized = FALSE) {
lifecycle::deprecate_soft(
"1.6.0",
"estimate_closeness()",
"closeness()",
details = "with the cutoff argument."
)
closeness(graph, vids, mode = mode, weights = weights, normalized = normalized, cutoff = cutoff)
}
#' @export
closeness.estimate <- estimate_closeness
#' @rdname arpack
#' @family arpack
#' @export
arpack_defaults <- function() {
list(
bmat = "I", n = 0, which = "XX", nev = 1, tol = 0.0,
ncv = 3, ldv = 0, ishift = 1, maxiter = 3000, nb = 1,
mode = 1, start = 0, sigma = 0.0, sigmai = 0.0
)
}
#' ARPACK eigenvector calculation
#'
#' Interface to the ARPACK library for calculating eigenvectors of sparse
#' matrices
#'
#' ARPACK is a library for solving large scale eigenvalue problems. The
#' package is designed to compute a few eigenvalues and corresponding
#' eigenvectors of a general \eqn{n} by \eqn{n} matrix \eqn{A}. It is most
#' appropriate for large sparse or structured matrices \eqn{A} where structured
#' means that a matrix-vector product `w <- Av` requires order \eqn{n}
#' rather than the usual order \eqn{n^2} floating point operations.
#'
#' This function is an interface to ARPACK. igraph does not contain all ARPACK
#' routines, only the ones dealing with symmetric and non-symmetric eigenvalue
#' problems using double precision real numbers.
#'
#' The eigenvalue calculation in ARPACK (in the simplest case) involves the
#' calculation of the \eqn{Av} product where \eqn{A} is the matrix we work with
#' and \eqn{v} is an arbitrary vector. The function supplied in the `fun`
#' argument is expected to perform this product. If the product can be done
#' efficiently, e.g. if the matrix is sparse, then `arpack()` is usually
#' able to calculate the eigenvalues very quickly.
#'
#' The `options` argument specifies what kind of calculation to perform.
#' It is a list with the following members, they correspond directly to ARPACK
#' parameters. On input it has the following fields: \describe{
#' \item{bmat}{Character constant, possible values: \sQuote{`I`}, standard
#' eigenvalue problem, \eqn{Ax=\lambda x}{A*x=lambda*x}; and \sQuote{`G`},
#' generalized eigenvalue problem, \eqn{Ax=\lambda B x}{A*x=lambda B*x}.
#' Currently only \sQuote{`I`} is supported.} \item{n}{Numeric scalar. The
#' dimension of the eigenproblem. You only need to set this if you call
#' [arpack()] directly. (I.e. not needed for
#' [eigen_centrality()], [page_rank()], etc.)}
#' \item{which}{Specify which eigenvalues/vectors to compute, character
#' constant with exactly two characters.
#'
#' Possible values for symmetric input matrices: \describe{
#' \item{"LA"}{Compute `nev` largest (algebraic) eigenvalues.}
#' \item{"SA"}{Compute `nev` smallest (algebraic)
#' eigenvalues.} \item{"LM"}{Compute `nev` largest (in
#' magnitude) eigenvalues.} \item{"SM"}{Compute `nev` smallest
#' (in magnitude) eigenvalues.} \item{"BE"}{Compute `nev`
#' eigenvalues, half from each end of the spectrum. When `nev` is odd,
#' compute one more from the high end than from the low end.} }
#'
#' Possible values for non-symmetric input matrices: \describe{
#' \item{"LM"}{Compute `nev` eigenvalues of largest
#' magnitude.} \item{"SM"}{Compute `nev` eigenvalues of
#' smallest magnitude.} \item{"LR"}{Compute `nev` eigenvalues
#' of largest real part.} \item{"SR"}{Compute `nev`
#' eigenvalues of smallest real part.} \item{"LI"}{Compute
#' `nev` eigenvalues of largest imaginary part.}
#' \item{"SI"}{Compute `nev` eigenvalues of smallest imaginary
#' part.} }
#'
#' This parameter is sometimes overwritten by the various functions, e.g.
#' [page_rank()] always sets \sQuote{`LM`}. }
#' \item{nev}{Numeric scalar. The number of eigenvalues to be computed.}
#' \item{tol}{Numeric scalar. Stopping criterion: the relative accuracy of the
#' Ritz value is considered acceptable if its error is less than `tol`
#' times its estimated value. If this is set to zero then machine precision is
#' used.} \item{ncv}{Number of Lanczos vectors to be generated.}
#' \item{ldv}{Numberic scalar. It should be set to zero in the current
#' implementation.} \item{ishift}{Either zero or one. If zero then the shifts
#' are provided by the user via reverse communication. If one then exact shifts
#' with respect to the reduced tridiagonal matrix \eqn{T}. Please always set
#' this to one.} \item{maxiter}{Maximum number of Arnoldi update iterations
#' allowed. } \item{nb}{Blocksize to be used in the recurrence. Please always
#' leave this on the default value, one.} \item{mode}{The type of the
#' eigenproblem to be solved. Possible values if the input matrix is
#' symmetric: \describe{ \item{1}{\eqn{Ax=\lambda x}{A*x=lambda*x}, \eqn{A} is
#' symmetric.} \item{2}{\eqn{Ax=\lambda Mx}{A*x=lambda*M*x}, \eqn{A} is
#' symmetric, \eqn{M} is symmetric positive definite.} \item{3}{\eqn{Kx=\lambda
#' Mx}{K*x=lambda*M*x}, \eqn{K} is symmetric, \eqn{M} is symmetric positive
#' semi-definite.} \item{4}{\eqn{Kx=\lambda KGx}{K*x=lambda*KG*x}, \eqn{K} is
#' symmetric positive semi-definite, \eqn{KG} is symmetric indefinite.}
#' \item{5}{\eqn{Ax=\lambda Mx}{A*x=lambda*M*x}, \eqn{A} is symmetric, \eqn{M}
#' is symmetric positive semi-definite. (Cayley transformed mode.)} } Please
#' note that only `mode==1` was tested and other values might not work
#' properly.
#'
#' Possible values if the input matrix is not symmetric: \describe{
#' \item{1}{\eqn{Ax=\lambda x}{A*x=lambda*x}.} \item{2}{\eqn{Ax=\lambda
#' Mx}{A*x=lambda*M*x}, \eqn{M} is symmetric positive definite.}
#' \item{3}{\eqn{Ax=\lambda Mx}{A*x=lambda*M*x}, \eqn{M} is symmetric
#' semi-definite.} \item{4}{\eqn{Ax=\lambda Mx}{A*x=lambda*M*x}, \eqn{M} is
#' symmetric semi-definite.} } Please note that only `mode==1` was tested
#' and other values might not work properly. } \item{start}{Not used
#' currently. Later it be used to set a starting vector.} \item{sigma}{Not used
#' currently.} \item{sigmai}{Not use currently.}
#'
#' On output the following additional fields are added: \describe{
#' \item{info}{Error flag of ARPACK. Possible values: \describe{
#' \item{0}{Normal exit.} \item{1}{Maximum number of iterations taken.}
#' \item{3}{No shifts could be applied during a cycle of the Implicitly
#' restarted Arnoldi iteration. One possibility is to increase the size of
#' `ncv` relative to `nev`.} }
#'
#' ARPACK can return more error conditions than these, but they are converted
#' to regular igraph errors. } \item{iter}{Number of Arnoldi iterations
#' taken.} \item{nconv}{Number of \dQuote{converged} Ritz values. This
#' represents the number of Ritz values that satisfy the convergence critetion.
#' } \item{numop}{Total number of matrix-vector multiplications.}
#' \item{numopb}{Not used currently.} \item{numreo}{Total number of steps of
#' re-orthogonalization.} } } Please see the ARPACK documentation for
#' additional details.
#'
#' @aliases arpack arpack-options arpack.unpack.complex
#' @aliases arpack_defaults
#' @param func The function to perform the matrix-vector multiplication. ARPACK
#' requires to perform these by the user. The function gets the vector \eqn{x}
#' as the first argument, and it should return \eqn{Ax}, where \eqn{A} is the
#' \dQuote{input matrix}. (The input matrix is never given explicitly.) The
#' second argument is `extra`.
#' @param extra Extra argument to supply to `func`.
#' @param sym Logical scalar, whether the input matrix is symmetric. Always
#' supply `TRUE` here if it is, since it can speed up the computation.
#' @param options Options to ARPACK, a named list to overwrite some of the
#' default option values. See details below.
#' @param env The environment in which `func` will be evaluated.
#' @param complex Whether to convert the eigenvectors returned by ARPACK into R
#' complex vectors. By default this is not done for symmetric problems (these
#' only have real eigenvectors/values), but only non-symmetric ones. If you
#' have a non-symmetric problem, but you're sure that the results will be real,
#' then supply `FALSE` here.
#' @return A named list with the following members: \item{values}{Numeric
#' vector, the desired eigenvalues.} \item{vectors}{Numeric matrix, the desired
#' eigenvectors as columns. If `complex=TRUE` (the default for
#' non-symmetric problems), then the matrix is complex.} \item{options}{A named
#' list with the supplied `options` and some information about the
#' performed calculation, including an ARPACK exit code. See the details above.
#' }
#' @author Rich Lehoucq, Kristi Maschhoff, Danny Sorensen, Chao Yang for
#' ARPACK, Gabor Csardi \email{csardi.gabor@@gmail.com} for the R interface.
#' @seealso [eigen_centrality()], [page_rank()],
#' [hub_score()], [cluster_leading_eigen()] are some of the
#' functions in igraph that use ARPACK.
#' @references D.C. Sorensen, Implicit Application of Polynomial Filters in a
#' k-Step Arnoldi Method. *SIAM J. Matr. Anal. Apps.*, 13 (1992), pp
#' 357-385.
#'
#' R.B. Lehoucq, Analysis and Implementation of an Implicitly Restarted Arnoldi
#' Iteration. *Rice University Technical Report* TR95-13, Department of
#' Computational and Applied Mathematics.
#'
#' B.N. Parlett & Y. Saad, Complex Shift and Invert Strategies for Real
#' Matrices. *Linear Algebra and its Applications*, vol 88/89, pp 575-595,
#' (1987).
#' @keywords graphs
#' @examples
#'
#' # Identity matrix
#' f <- function(x, extra = NULL) x
#' arpack(f, options = list(n = 10, nev = 2, ncv = 4), sym = TRUE)
#'
#' # Graph laplacian of a star graph (undirected), n>=2
#' # Note that this is a linear operation
#' f <- function(x, extra = NULL) {
#' y <- x
#' y[1] <- (length(x) - 1) * x[1] - sum(x[-1])
#' for (i in 2:length(x)) {
#' y[i] <- x[i] - x[1]
#' }
#' y
#' }
#'
#' arpack(f, options = list(n = 10, nev = 1, ncv = 3), sym = TRUE)
#'
#' # double check
#' eigen(laplacian_matrix(make_star(10, mode = "undirected")))
#'
#' ## First three eigenvalues of the adjacency matrix of a graph
#' ## We need the 'Matrix' package for this
#' if (require(Matrix)) {
#' set.seed(42)
#' g <- sample_gnp(1000, 5 / 1000)
#' M <- as_adjacency_matrix(g, sparse = TRUE)
#' f2 <- function(x, extra = NULL) {
#' cat(".")
#' as.vector(M %*% x)
#' }
#' baev <- arpack(f2, sym = TRUE, options = list(
#' n = vcount(g), nev = 3, ncv = 8,
#' which = "LM", maxiter = 2000
#' ))
#' }
#' @family arpack
#' @export
arpack <- function(func, extra = NULL, sym = FALSE, options = arpack_defaults(),
env = parent.frame(), complex = !sym) {
if (is.function(options)) {
lifecycle::deprecate_soft(
"1.6.0",
"arpack(options = 'must be a list')",
details = c("`arpack_defaults()` is now a function, use `options = arpack_defaults()` instead of `options = arpack_defaults`.")
)
options <- options()
}
if (!is.list(options) ||
(is.null(names(options)) && length(options) != 0)) {
stop("options must be a named list")
}
if (any(names(options) == "")) {
stop("all options must be named")
}
defaults <- arpack_defaults()
if (any(!names(options) %in% names(defaults))) {
stop(
"unkown ARPACK option(s): ",
paste(setdiff(names(options), names(defaults)),
collapse = ", "
)
)
}
options <- modify_list(defaults, options)
if (sym && complex) {
complex <- FALSE
cli::cli_warn("Symmetric matrix, setting {.arg complex} to {.code FALSE}.")
}
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_arpack, func, extra, options, env, sym)
if (complex) {
rew <- arpack.unpack.complex(
res$vectors, res$values,
min(res$options$nev, res$options$nconv)
)
res$vectors <- rew$vectors
res$values <- rew$values
res$values <- apply(res$values, 1, function(x) x[1] + x[2] * 1i)
dim(res$vectors) <- c(nrow(res$vectors) * 2, ncol(res$vectors) / 2)
res$vectors <- apply(res$vectors, 2, function(x) {
l <- length(x) / 2
x[1:l] + x[(l + 1):length(x)] * 1i
})
} else {
if (is.matrix(res$values)) {
if (!all(res$values[, 2] == 0)) {
cli::cli_warn("Dropping imaginary parts of eigenvalues.")
}
res$values <- res$values[, 1]
}
res$vectors <- res$vectors[, 1:length(res$values)]
}
res
}
arpack.unpack.complex <- function(vectors, values, nev) {
# Argument checks
vectors[] <- as.numeric(vectors)
values[] <- as.numeric(values)
nev <- as.numeric(nev)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_arpack_unpack_complex, vectors, values, nev)
res
}
#' Find subgraph centrality scores of network positions
#'
#' Subgraph centrality of a vertex measures the number of subgraphs a vertex
#' participates in, weighting them according to their size.
#'
#' The subgraph centrality of a vertex is defined as the number of closed walks
#' originating at the vertex, where longer walks are downweighted by the
#' factorial of their length.
#'
#' Currently the calculation is performed by explicitly calculating all
#' eigenvalues and eigenvectors of the adjacency matrix of the graph. This
#' effectively means that the measure can only be calculated for small graphs.
#'
#' @param graph The input graph. It will be treated as undirected.
#' @param diag Boolean scalar, whether to include the diagonal of the adjacency
#' matrix in the analysis. Giving `FALSE` here effectively eliminates the
#' loops edges from the graph before the calculation.
#' @return A numeric vector, the subgraph centrality scores of the vertices.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com} based on the Matlab
#' code by Ernesto Estrada
#' @seealso [eigen_centrality()], [page_rank()]
#' @references Ernesto Estrada, Juan A. Rodriguez-Velazquez: Subgraph
#' centrality in Complex Networks. *Physical Review E* 71, 056103 (2005).
#' @family centrality
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- sample_pa(100, m = 4, dir = FALSE)
#' sc <- subgraph_centrality(g)
#' cor(degree(g), sc)
#'
subgraph_centrality <- function(graph, diag = FALSE) {
A <- as_adjacency_matrix(graph)
if (!diag) {
diag(A) <- 0
}
# Ignore edge directions in directed graphs
if (is_directed(graph)) {
A <- A + Matrix::t(A)
}
# This calls lapack and creates a dense matrix, but accepts the sparse matrix A
# We can choose to convert A to a dense matrix right away, but it doesn't matter
eig <- eigen(A, symmetric = TRUE)
res <- as.vector(eig$vectors^2 %*% exp(eig$values))
if (igraph_opt("add.vertex.names") && is_named(graph)) {
names(res) <- vertex_attr(graph, "name")
}
res
}
#' Eigenvalues and eigenvectors of the adjacency matrix of a graph
#'
#' Calculate selected eigenvalues and eigenvectors of a (supposedly sparse)
#' graph.
#'
#' The `which` argument is a list and it specifies which eigenvalues and
#' corresponding eigenvectors to calculate: There are eight options:
#' \enumerate{ \item Eigenvalues with the largest magnitude. Set `pos` to
#' `LM`, and `howmany` to the number of eigenvalues you want. \item
#' Eigenvalues with the smallest magnitude. Set `pos` to `SM` and
#' `howmany` to the number of eigenvalues you want. \item Largest
#' eigenvalues. Set `pos` to `LA` and `howmany` to the number of
#' eigenvalues you want. \item Smallest eigenvalues. Set `pos` to
#' `SA` and `howmany` to the number of eigenvalues you want. \item
#' Eigenvalues from both ends of the spectrum. Set `pos` to `BE` and
#' `howmany` to the number of eigenvalues you want. If `howmany` is
#' odd, then one more eigenvalue is returned from the larger end. \item
#' Selected eigenvalues. This is not (yet) implemented currently. \item
#' Eigenvalues in an interval. This is not (yet) implemented. \item All
#' eigenvalues. This is not implemented yet. The standard `eigen` function
#' does a better job at this, anyway. }
#'
#' Note that ARPACK might be unstable for graphs with multiple components, e.g.
#' graphs with isolate vertices.
#'
#' @aliases spectrum igraph.eigen.default
#' @param graph The input graph, can be directed or undirected.
#' @param algorithm The algorithm to use. Currently only `arpack` is
#' implemented, which uses the ARPACK solver. See also [arpack()].
#' @param which A list to specify which eigenvalues and eigenvectors to
#' calculate. By default the leading (i.e. largest magnitude) eigenvalue and
#' the corresponding eigenvector is calculated.
#' @param options Options for the ARPACK solver. See
#' [arpack_defaults()].
#' @return Depends on the algorithm used.
#'
#' For `arpack` a list with three entries is returned: \item{options}{See
#' the return value for `arpack()` for a complete description.}
#' \item{values}{Numeric vector, the eigenvalues.} \item{vectors}{Numeric
#' matrix, with the eigenvectors as columns.}
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [as_adjacency_matrix()] to create a (sparse) adjacency matrix.
#' @keywords graphs
#' @examples
#'
#' ## Small example graph, leading eigenvector by default
#' kite <- make_graph("Krackhardt_kite")
#' spectrum(kite)[c("values", "vectors")]
#'
#' ## Double check
#' eigen(as_adjacency_matrix(kite, sparse = FALSE))$vectors[, 1]
#'
#' ## Should be the same as 'eigen_centrality' (but rescaled)
#' cor(eigen_centrality(kite)$vector, spectrum(kite)$vectors)
#'
#' ## Smallest eigenvalues
#' spectrum(kite, which = list(pos = "SM", howmany = 2))$values
#'
#' @family centrality
#' @export
spectrum <- function(graph, algorithm=c("arpack", "auto", "lapack", "comp_auto", "comp_lapack", "comp_arpack"), which=list(), options=arpack_defaults()) {
if (is.function(options)) {
lifecycle::deprecate_soft(
"1.6.0",
"spectrum(options = 'must be a list')",
details = c("`arpack_defaults()` is now a function, use `options = arpack_defaults()` instead of `options = arpack_defaults`.")
)
options <- options()
}
eigen_adjacency_impl(graph,
algorithm = algorithm,
which = which,
options = options)
}
eigen_defaults <- function() {
list(
pos = "LM", howmany = 1L, il = -1L, iu = -1L,
vl = -Inf, vu = Inf, vestimate = 0L,
balance = "none"
)
}
#' Eigenvector centrality of vertices
#'
#' `eigen_centrality()` takes a graph (`graph`) and returns the
#' eigenvector centralities of the vertices `v` within it.
#'
#' Eigenvector centrality scores correspond to the values of the principal
#' eigenvector of the graph's adjacency matrix; these scores may, in turn, be
#' interpreted as arising from a reciprocal process in which the centrality of
#' each actor is proportional to the sum of the centralities of those actors to
#' whom he or she is connected. In general, vertices with high eigenvector
#' centralities are those which are connected to many other vertices which are,
#' in turn, connected to many others (and so on). The perceptive may realize
#' that this implies that the largest values will be obtained by individuals in
#' large cliques (or high-density substructures). This is also intelligible
#' from an algebraic point of view, with the first eigenvector being closely
#' related to the best rank-1 approximation of the adjacency matrix (a
#' relationship which is easy to see in the special case of a diagonalizable
#' symmetric real matrix via the \eqn{SLS^-1}{$S \Lambda S^{-1}$}
#' decomposition).
#'
#' The adjacency matrix used in the eigenvector centrality calculation assumes
#' that loop edges are counted *twice* in undirected graphs; this is because
#' each loop edge has *two* endpoints that are both connected to the same vertex,
#' and you could traverse the loop edge via either endpoint.
#'
#' In the directed case, the left eigenvector of the adjacency matrix is
#' calculated. In other words, the centrality of a vertex is proportional to
#' the sum of centralities of vertices pointing to it.
#'
#' Eigenvector centrality is meaningful only for (strongly) connected graphs.
#' Undirected graphs that are not connected should be decomposed into connected
#' components, and the eigenvector centrality calculated for each separately.
#' This function does not verify that the graph is connected. If it is not, in
#' the undirected case the scores of all but one component will be zeros.
#'
#' Also note that the adjacency matrix of a directed acyclic graph or the
#' adjacency matrix of an empty graph does not possess positive eigenvalues,
#' therefore the eigenvector centrality is not defined for these graphs.
#' igraph will return an eigenvalue of zero in such cases. The eigenvector
#' centralities will all be equal for an empty graph and will all be zeros for
#' a directed acyclic graph. Such pathological cases can be detected by checking
#' whether the eigenvalue is very close to zero.
#'
#' From igraph version 0.5 this function uses ARPACK for the underlying
#' computation, see [arpack()] for more about ARPACK in igraph.
#'
#' @param graph Graph to be analyzed.
#' @param directed Logical scalar, whether to consider direction of the edges
#' in directed graphs. It is ignored for undirected graphs.
#' @param scale `r lifecycle::badge("deprecated")` Normalization will always take
#' place.
#' @param weights A numerical vector or `NULL`. This argument can be used
#' to give edge weights for calculating the weighted eigenvector centrality of
#' vertices. If this is `NULL` and the graph has a `weight` edge
#' attribute then that is used. If `weights` is a numerical vector then it is
#' used, even if the graph has a `weight` edge attribute. If this is
#' `NA`, then no edge weights are used (even if the graph has a
#' `weight` edge attribute). Note that if there are negative edge weights
#' and the direction of the edges is considered, then the eigenvector might be
#' complex. In this case only the real part is reported.
#' This function interprets weights as connection strength. Higher
#' weights spread the centrality better.
#' @param options A named list, to override some ARPACK options. See
#' [arpack()] for details.
#' @return A named list with components: \item{vector}{A vector containing the
#' centrality scores.} \item{value}{The eigenvalue corresponding to the
#' calculated eigenvector, i.e. the centrality scores.} \item{options}{A named
#' list, information about the underlying ARPACK computation. See
#' [arpack()] for the details.}
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com} and Carter T. Butts
#' (<http://www.faculty.uci.edu/profile.cfm?faculty_id=5057>) for the
#' manual page.
#' @references Bonacich, P. (1987). Power and Centrality: A Family of
#' Measures. *American Journal of Sociology*, 92, 1170-1182.
#' @keywords graphs
#' @examples
#'
#' # Generate some test data
#' g <- make_ring(10, directed = FALSE)
#' # Compute eigenvector centrality scores
#' eigen_centrality(g)
#' @family centrality
#' @export
#' @cdocs igraph_eigenvector_centrality
eigen_centrality <- function(graph,
directed = FALSE,
scale = deprecated(),
weights = NULL,
options = arpack_defaults()) {
if (is.function(options)) {
lifecycle::deprecate_soft(
"1.6.0",
"eigen_centrality(options = 'must be a list')",
details = c("`arpack_defaults()` is now a function, use `options = arpack_defaults()` instead of `options = arpack_defaults`.")
)
options <- options()
}
if (lifecycle::is_present(scale)) {
if (isTRUE(scale)) {
lifecycle::deprecate_soft(
"2.1.1",
"eigen_centrality(scale)",
details = "eigen_centrality() will always behave as if scale=TRUE were used."
)
} else {
lifecycle::deprecate_warn(
"2.1.1",
"eigen_centrality(scale = 'always as if TRUE')",
details = "Normalization is always performed")
}
}
eigenvector_centrality_impl(graph = graph,
directed = directed,
scale = TRUE,
weights = weights,
options = options)
}
#' Strength or weighted vertex degree
#'
#' Summing up the edge weights of the adjacent edges for each vertex.
#'
#'
#' @param graph The input graph.
#' @param vids The vertices for which the strength will be calculated.
#' @param mode Character string, \dQuote{out} for out-degree, \dQuote{in} for
#' in-degree or \dQuote{all} for the sum of the two. For undirected graphs this
#' argument is ignored.
#' @param loops Logical; whether the loop edges are also counted.
#' @param weights Weight vector. If the graph has a `weight` edge
#' attribute, then this is used by default. If the graph does not have a
#' `weight` edge attribute and this argument is `NULL`, then a
#' [degree()] is called. If this is `NA`, then no edge weights are used
#' (even if the graph has a `weight` edge attribute).
#' @return A numeric vector giving the strength of the vertices.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [degree()] for the unweighted version.
#' @references Alain Barrat, Marc Barthelemy, Romualdo Pastor-Satorras,
#' Alessandro Vespignani: The architecture of complex weighted networks, Proc.
#' Natl. Acad. Sci. USA 101, 3747 (2004)
#' @keywords graphs
#' @examples
#'
#' g <- make_star(10)
#' E(g)$weight <- seq(ecount(g))
#' strength(g)
#' strength(g, mode = "out")
#' strength(g, mode = "in")
#'
#' # No weights
#' g <- make_ring(10)
#' strength(g)
#' @family centrality
#' @export
#' @cdocs igraph_strength
strength <- strength_impl
#' Graph diversity
#'
#' Calculates a measure of diversity for all vertices.
#'
#' The diversity of a vertex is defined as the (scaled) Shannon entropy of the
#' weights of its incident edges:
#' \deqn{D(i)=\frac{H(i)}{\log k_i}}{D(i)=H(i)/log(k[i])}
#' and
#' \deqn{H(i)=-\sum_{j=1}^{k_i} p_{ij}\log p_{ij},}{H(i) =
#' -sum(p[i,j] log(p[i,j]), j=1..k[i]),} where
#' \deqn{p_{ij}=\frac{w_{ij}}{\sum_{l=1}^{k_i}}V_{il},}{p[i,j] = w[i,j] /
#' sum(w[i,l], l=1..k[i]),} and \eqn{k_i}{k[i]} is the (total) degree of vertex
#' \eqn{i}, \eqn{w_{ij}}{w[i,j]} is the weight of the edge(s) between vertices
#' \eqn{i} and \eqn{j}.
#'
#' For vertices with degree less than two the function returns `NaN`.
#'
#' @param graph The input graph. Edge directions are ignored.
#' @param weights `NULL`, or the vector of edge weights to use for the
#' computation. If `NULL`, then the \sQuote{weight} attibute is used. Note
#' that this measure is not defined for unweighted graphs.
#' @param vids The vertex ids for which to calculate the measure.
#' @return A numeric vector, its length is the number of vertices.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references Nathan Eagle, Michael Macy and Rob Claxton: Network Diversity
#' and Economic Development, *Science* **328**, 1029--1031, 2010.
#' @keywords graphs
#' @examples
#'
#' g1 <- sample_gnp(20, 2 / 20)
#' g2 <- sample_gnp(20, 2 / 20)
#' g3 <- sample_gnp(20, 5 / 20)
#' E(g1)$weight <- 1
#' E(g2)$weight <- runif(ecount(g2))
#' E(g3)$weight <- runif(ecount(g3))
#' diversity(g1)
#' diversity(g2)
#' diversity(g3)
#' @family centrality
#' @export
#' @cdocs igraph_diversity
diversity <- diversity_impl
#' Kleinberg's hub and authority centrality scores.
#'
#' The hub scores of the vertices are defined as the principal eigenvector
#' of \eqn{A A^T}{A*t(A)}, where \eqn{A} is the adjacency matrix of the
#' graph.
#'
#' Similarly, the authority scores of the vertices are defined as the principal
#' eigenvector of \eqn{A^T A}{t(A)*A}, where \eqn{A} is the adjacency matrix of
#' the graph.
#'
#' For undirected matrices the adjacency matrix is symmetric and the hub
#' scores are the same as authority scores.
#'
#' @param graph The input graph.
#' @param scale Logical scalar, whether to scale the result to have a maximum
#' score of one. If no scaling is used then the result vector has unit length
#' in the Euclidean norm.
#' @param weights Optional positive weight vector for calculating weighted
#' scores. If the graph has a `weight` edge attribute, then this is used
#' by default.
#' This function interprets edge weights as connection strengths. In the
#' random surfer model, an edge with a larger weight is more likely to be
#' selected by the surfer.
#' @param options A named list, to override some ARPACK options. See
#' [arpack()] for details.
#' @inheritParams rlang::args_dots_empty
#' @return A named list with members:
#' \item{hub}{The hub score of the vertices.}
#' \item{authority}{The authority score of the vertices.}
#' \item{value}{The corresponding eigenvalue of the calculated
#' principal eigenvector.}
#' \item{options}{Some information about the ARPACK computation, it has
#' the same members as the `options` member returned
#' by [arpack()], see that for documentation.}
#' @seealso [eigen_centrality()] for eigenvector centrality,
#' [page_rank()] for the Page Rank scores. [arpack()] for
#' the underlining machinery of the computation.
#' @references J. Kleinberg. Authoritative sources in a hyperlinked
#' environment. *Proc. 9th ACM-SIAM Symposium on Discrete Algorithms*,
#' 1998. Extended version in *Journal of the ACM* 46(1999). Also appears
#' as IBM Research Report RJ 10076, May 1997.
#'
#' @export
#' @examples
#' ## An in-star
#' g <- make_star(10)
#' hits_scores(g)
#'
#' ## A ring
#' g2 <- make_ring(10)
#' hits_scores(g2)
#' @family centrality
#' @cdocs igraph_hub_and_authority_scores
hits_scores <- function(graph, ..., scale=TRUE, weights=NULL, options=arpack_defaults()) {
rlang::check_dots_empty()
hub_and_authority_scores_impl(graph = graph,
scale = scale,
weights = weights,
options = options)
}
#' @title Kleinberg's authority centrality scores.
#' @rdname hub_score
#' @param options A named list, to override some ARPACK options. See
#' [arpack()] for details.
#' @export
authority_score <- function(graph, scale=TRUE, weights=NULL, options=arpack_defaults()) {
lifecycle::deprecate_soft("2.1.0", "authority_score()", "hits_scores()")
if (is.function(options)) {
lifecycle::deprecate_soft(
"1.6.0",
I("arpack_defaults"),
"arpack_defaults()",
details = c("So the function arpack_defaults(), not an object called arpack_defaults.")
)
options <- arpack_defaults()
}
scores <- hits_scores(
graph = graph,
scale = scale,
weights = weights,
options = options)
scores$hub <- NULL
rlang::set_names(scores, c("vector", "value", "options"))
}
#' @title Kleinberg's hub centrality scores.
#' @rdname hub_score
#' @param graph The input graph.
#' @param scale Logical scalar, whether to scale the result to have a maximum
#' score of one. If no scaling is used then the result vector has unit length
#' in the Euclidean norm.
#' @param weights Optional positive weight vector for calculating weighted
#' scores. If the graph has a `weight` edge attribute, then this is used
#' by default.
#' This function interprets edge weights as connection strengths. In the
#' random surfer model, an edge with a larger weight is more likely to be
#' selected by the surfer.
#' @param options A named list, to override some ARPACK options. See
#' [arpack()] for details.
#' @family centrality
#' @export
hub_score <- function(graph, scale=TRUE, weights=NULL, options=arpack_defaults()) {
lifecycle::deprecate_soft("2.0.3", "hub_score()", "hits_scores()")
if (is.function(options)) {
lifecycle::deprecate_soft(
"1.6.0",
I("arpack_defaults"),
"arpack_defaults()",
details = c("So the function arpack_defaults(), not an object called arpack_defaults.")
)
options <- arpack_defaults()
}
scores <- hits_scores(
graph = graph,
scale = scale,
weights = weights,
options = options)
scores$authority <- NULL
rlang::set_names(scores, c("vector", "value", "options"))
}
#' The Page Rank algorithm
#'
#' Calculates the Google PageRank for the specified vertices.
#'
#' For the explanation of the PageRank algorithm, see the following webpage:
#' <http://infolab.stanford.edu/~backrub/google.html>, or the following
#' reference:
#'
#' Sergey Brin and Larry Page: The Anatomy of a Large-Scale Hypertextual Web
#' Search Engine. Proceedings of the 7th World-Wide Web Conference, Brisbane,
#' Australia, April 1998.
#'
#' The `page_rank()` function can use either the PRPACK library or ARPACK
#' (see [arpack()]) to perform the calculation.
#'
#' Please note that the PageRank of a given vertex depends on the PageRank of
#' all other vertices, so even if you want to calculate the PageRank for only
#' some of the vertices, all of them must be calculated. Requesting the
#' PageRank for only some of the vertices does not result in any performance
#' increase at all.
#'
#' @param graph The graph object.
#' @param algo Character scalar, which implementation to use to carry out the
#' calculation. The default is `"prpack"`, which uses the PRPACK library
#' (<https://github.com/dgleich/prpack>) to calculate PageRank scores
#' by solving a set of linear equations. This is a new implementation in igraph
#' version 0.7, and the suggested one, as it is the most stable and the fastest
#' for all but small graphs. `"arpack"` uses the ARPACK library, the
#' default implementation from igraph version 0.5 until version 0.7. It computes
#' PageRank scores by solving an eingevalue problem.
#' @param vids The vertices of interest.
#' @param directed Logical, if true directed paths will be considered for
#' directed graphs. It is ignored for undirected graphs.
#' @param damping The damping factor (\sQuote{d} in the original paper).
#' @param personalized Optional vector giving a probability distribution to
#' calculate personalized PageRank. For personalized PageRank, the probability
#' of jumping to a node when abandoning the random walk is not uniform, but it
#' is given by this vector. The vector should contains an entry for each vertex
#' and it will be rescaled to sum up to one.
#' @param weights A numerical vector or `NULL`. This argument can be used
#' to give edge weights for calculating the weighted PageRank of vertices. If
#' this is `NULL` and the graph has a `weight` edge attribute then
#' that is used. If `weights` is a numerical vector then it used, even if
#' the graph has a `weights` edge attribute. If this is `NA`, then no
#' edge weights are used (even if the graph has a `weight` edge attribute.
#' This function interprets edge weights as connection strengths. In the
#' random surfer model, an edge with a larger weight is more likely to be
#' selected by the surfer.
#' @param options A named list, to override some ARPACK options. See
#' [arpack()] for details. This argument is ignored if the PRPACK
#' implementation is used.
#' @return A named list with entries: \item{vector}{A
#' numeric vector with the PageRank scores.} \item{value}{When using the ARPACK
#' method, the eigenvalue corresponding to the eigenvector with the PageRank scores
#' is returned here. It is expected to be exactly one, and can be used to check
#' that ARPACK has successfully converged to the expected eingevector. When using
#' the PRPACK method, it is always set to 1.0.} \item{options}{Some information
#' about the underlying ARPACK calculation. See [arpack()] for details.
#' This entry is `NULL` if not the ARPACK implementation was used.}
#'
#' @author Tamas Nepusz \email{ntamas@@gmail.com} and Gabor Csardi
#' \email{csardi.gabor@@gmail.com}
#' @seealso Other centrality scores: [closeness()],
#' [betweenness()], [degree()]
#' @references Sergey Brin and Larry Page: The Anatomy of a Large-Scale
#' Hypertextual Web Search Engine. Proceedings of the 7th World-Wide Web
#' Conference, Brisbane, Australia, April 1998.
#' @keywords graphs
#' @examples
#'
#' g <- sample_gnp(20, 5 / 20, directed = TRUE)
#' page_rank(g)$vector
#'
#' g2 <- make_star(10)
#' page_rank(g2)$vector
#'
#' # Personalized PageRank
#' g3 <- make_ring(10)
#' page_rank(g3)$vector
#' reset <- seq(vcount(g3))
#' page_rank(g3, personalized = reset)$vector
#' @family centrality
#' @export
#' @cdocs igraph_personalized_pagerank
page_rank <- personalized_pagerank_impl
#' Harmonic centrality of vertices
#'
#' The harmonic centrality of a vertex is the mean inverse distance to all other
#' vertices. The inverse distance to an unreachable vertex is considered to be zero.
#'
#' The `cutoff` argument can be used to restrict the calculation to paths
#' of length `cutoff` or smaller only; this can be used for larger graphs
#' to speed up the calculation. If `cutoff` is negative (which is the
#' default), then the function calculates the exact harmonic centrality scores.
#'
#' @param graph The graph to analyze.
#' @param vids The vertices for which harmonic centrality will be calculated.
#' @param mode Character string, defining the types of the paths used for
#' measuring the distance in directed graphs. \dQuote{out} follows paths along
#' the edge directions only, \dQuote{in} traverses the edges in reverse, while
#' \dQuote{all} ignores edge directions. This argument is ignored for undirected
#' graphs.
#' @param normalized Logical scalar, whether to calculate the normalized
#' harmonic centrality. If true, the result is the mean inverse path length to
#' other vertices, i.e. it is normalized by the number of vertices minus one.
#' If false, the result is the sum of inverse path lengths to other vertices.
#' @param weights Optional positive weight vector for calculating weighted
#' harmonic centrality. If the graph has a `weight` edge attribute, then
#' this is used by default. Weights are used for calculating weighted shortest
#' paths, so they are interpreted as distances.
#' @param cutoff The maximum path length to consider when calculating the
#' harmonic centrality. There is no such limit when the cutoff is negative. Note that
#' zero cutoff means that only paths of at most length 0 are considered.
#' @return Numeric vector with the harmonic centrality scores of all the vertices in
#' `v`.
#' @seealso [betweenness()], [closeness()]
#' @references M. Marchiori and V. Latora, Harmony in the small-world,
#' *Physica A* 285, pp. 539-546 (2000).
#' @family centrality
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- make_ring(10)
#' g2 <- make_star(10)
#' harmonic_centrality(g)
#' harmonic_centrality(g2, mode = "in")
#' harmonic_centrality(g2, mode = "out")
#' harmonic_centrality(g %du% make_full_graph(5), mode = "all")
#'
#' @cdocs igraph_harmonic_centrality_cutoff
harmonic_centrality <- harmonic_centrality_cutoff_impl
bonpow.dense <- function(graph, nodes = V(graph),
loops = FALSE, exponent = 1,
rescale = FALSE, tol = 1e-7) {
ensure_igraph(graph)
d <- as_adjacency_matrix(graph)
if (!loops) {
diag(d) <- 0
}
n <- vcount(graph)
id <- matrix(0, nrow = n, ncol = n)
diag(id) <- 1
# ev <- apply(solve(id-exponent*d,tol=tol)%*%d,1,sum)
ev <- solve(id - exponent * d, tol = tol) %*% apply(d, 1, sum)
if (rescale) {
ev <- ev / sum(ev)
} else {
ev <- ev * sqrt(n / sum((ev)^2))
}
ev[as.numeric(nodes)]
}
bonpow.sparse <- function(graph, nodes = V(graph), loops = FALSE,
exponent = 1, rescale = FALSE, tol = 1e-07) {
## remove loops if requested
if (!loops) {
graph <- simplify(graph, remove.multiple = FALSE, remove.loops = TRUE)
}
vg <- vcount(graph)
## sparse adjacency matrix
d <- as_adjacency_matrix(graph, sparse = TRUE)
## sparse identity matrix
id <- as(Matrix::Matrix(diag(vg), doDiag = FALSE), "generalMatrix")
## solve it
ev <- Matrix::solve(id - exponent * d, degree(graph, mode = "out"), tol = tol)
if (rescale) {
ev <- ev / sum(ev)
} else {
ev <- ev * sqrt(vcount(graph) / sum((ev)^2))
}
ev[as.numeric(nodes)]
}
#' Find Bonacich Power Centrality Scores of Network Positions
#'
#' `power_centrality()` takes a graph (`dat`) and returns the Boncich power
#' centralities of positions (selected by `nodes`). The decay rate for
#' power contributions is specified by `exponent` (1 by default).
#'
#' Bonacich's power centrality measure is defined by
#' \eqn{C_{BP}\left(\alpha,\beta\right)=\alpha\left(\mathbf{I}-\beta\mathbf{A}\right)^{-1}\mathbf{A}\mathbf{1}}{C_BP(alpha,beta)=alpha
#' (I-beta A)^-1 A 1}, where \eqn{\beta}{beta} is an attenuation parameter (set
#' here by `exponent`) and \eqn{\mathbf{A}}{A} is the graph adjacency
#' matrix. (The coefficient \eqn{\alpha}{alpha} acts as a scaling parameter,
#' and is set here (following Bonacich (1987)) such that the sum of squared
#' scores is equal to the number of vertices. This allows 1 to be used as a
#' reference value for the ``middle'' of the centrality range.) When
#' \eqn{\beta \rightarrow }{beta->1/lambda_A1}\eqn{
#' 1/\lambda_{\mathbf{A}1}}{beta->1/lambda_A1} (the reciprocal of the largest
#' eigenvalue of \eqn{\mathbf{A}}{A}), this is to within a constant multiple of
#' the familiar eigenvector centrality score; for other values of \eqn{\beta},
#' the behavior of the measure is quite different. In particular, \eqn{\beta}
#' gives positive and negative weight to even and odd walks, respectively, as
#' can be seen from the series expansion
#' \eqn{C_{BP}\left(\alpha,\beta\right)=\alpha \sum_{k=0}^\infty \beta^k
#' }{C_BP(alpha,beta) = alpha sum( beta^k A^(k+1) 1, k in 0..infinity )}\eqn{
#' \mathbf{A}^{k+1} \mathbf{1}}{C_BP(alpha,beta) = alpha sum( beta^k A^(k+1) 1,
#' k in 0..infinity )} which converges so long as \eqn{|\beta|
#' }{|beta|<1/lambda_A1}\eqn{ < 1/\lambda_{\mathbf{A}1}}{|beta|<1/lambda_A1}.
#' The magnitude of \eqn{\beta}{beta} controls the influence of distant actors
#' on ego's centrality score, with larger magnitudes indicating slower rates of
#' decay. (High rates, hence, imply a greater sensitivity to edge effects.)
#'
#' Interpretively, the Bonacich power measure corresponds to the notion that
#' the power of a vertex is recursively defined by the sum of the power of its
#' alters. The nature of the recursion involved is then controlled by the
#' power exponent: positive values imply that vertices become more powerful as
#' their alters become more powerful (as occurs in cooperative relations),
#' while negative values imply that vertices become more powerful only as their
#' alters become *weaker* (as occurs in competitive or antagonistic
#' relations). The magnitude of the exponent indicates the tendency of the
#' effect to decay across long walks; higher magnitudes imply slower decay.
#' One interesting feature of this measure is its relative instability to
#' changes in exponent magnitude (particularly in the negative case). If your
#' theory motivates use of this measure, you should be very careful to choose a
#' decay parameter on a non-ad hoc basis.
#'
#' For directed networks, the Bonacich power measure can be understood as
#' similar to status in the network where higher status nodes have more edges
#' that point from them to others with status. Node A's centrality depends
#' on the centrality of all the nodes that A points toward, and their centrality
#' depends on the nodes they point toward, etc. Note, this means that a node
#' with an out-degree of 0 will have a Bonacich power centrality of 0 as they
#' do not point towards anyone. When using this with directed network it
#' is important to think about the edge direction and what it represents.
#'
#' @param graph the input graph.
#' @param nodes vertex sequence indicating which vertices are to be included in
#' the calculation. By default, all vertices are included.
#' @param loops boolean indicating whether or not the diagonal should be
#' treated as valid data. Set this true if and only if the data can contain
#' loops. `loops` is `FALSE` by default.
#' @param exponent exponent (decay rate) for the Bonacich power centrality
#' score; can be negative
#' @param rescale if true, centrality scores are rescaled such that they sum to
#' 1.
#' @param tol tolerance for near-singularities during matrix inversion (see
#' [solve()])
#' @param sparse Logical scalar, whether to use sparse matrices for the
#' calculation. The \sQuote{Matrix} package is required for sparse matrix
#' support
#' @return A vector, containing the centrality scores.
#' @note This function was ported (i.e. copied) from the SNA package.
#' @section Warning : Singular adjacency matrices cause no end of headaches for
#' this algorithm; thus, the routine may fail in certain cases. This will be
#' fixed when we get a better algorithm.
#' @author Carter T. Butts
#' (<http://www.faculty.uci.edu/profile.cfm?faculty_id=5057>), ported to
#' igraph by Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [eigen_centrality()] and [alpha_centrality()]
#' @references Bonacich, P. (1972). ``Factoring and Weighting Approaches to
#' Status Scores and Clique Identification.'' *Journal of Mathematical
#' Sociology*, 2, 113-120.
#'
#' Bonacich, P. (1987). ``Power and Centrality: A Family of Measures.''
#' *American Journal of Sociology*, 92, 1170-1182.
#' @keywords graphs
#' @family centrality
#' @export
#' @examples
#'
#' # Generate some test data from Bonacich, 1987:
#' g.c <- make_graph(c(1, 2, 1, 3, 2, 4, 3, 5), dir = FALSE)
#' g.d <- make_graph(c(1, 2, 1, 3, 1, 4, 2, 5, 3, 6, 4, 7), dir = FALSE)
#' g.e <- make_graph(c(1, 2, 1, 3, 1, 4, 2, 5, 2, 6, 3, 7, 3, 8, 4, 9, 4, 10), dir = FALSE)
#' g.f <- make_graph(
#' c(1, 2, 1, 3, 1, 4, 2, 5, 2, 6, 2, 7, 3, 8, 3, 9, 3, 10, 4, 11, 4, 12, 4, 13),
#' dir = FALSE
#' )
#' # Compute power centrality scores
#' for (e in seq(-0.5, .5, by = 0.1)) {
#' print(round(power_centrality(g.c, exp = e)[c(1, 2, 4)], 2))
#' }
#'
#' for (e in seq(-0.4, .4, by = 0.1)) {
#' print(round(power_centrality(g.d, exp = e)[c(1, 2, 5)], 2))
#' }
#'
#' for (e in seq(-0.4, .4, by = 0.1)) {
#' print(round(power_centrality(g.e, exp = e)[c(1, 2, 5)], 2))
#' }
#'
#' for (e in seq(-0.4, .4, by = 0.1)) {
#' print(round(power_centrality(g.f, exp = e)[c(1, 2, 5)], 2))
#' }
#'
power_centrality <- function(graph, nodes = V(graph),
loops = FALSE, exponent = 1,
rescale = FALSE, tol = 1e-7, sparse = TRUE) {
nodes <- as_igraph_vs(graph, nodes)
if (sparse) {
res <- bonpow.sparse(graph, nodes, loops, exponent, rescale, tol)
} else {
res <- bonpow.dense(graph, nodes, loops, exponent, rescale, tol)
}
if (igraph_opt("add.vertex.names") && is_named(graph)) {
names(res) <- vertex_attr(graph, "name", nodes)
}
res
}
alpha.centrality.dense <- function(graph, nodes = V(graph), alpha = 1,
loops = FALSE, exo = 1, weights = NULL,
tol = 1e-7) {
ensure_igraph(graph)
exo <- rep(exo, length.out = vcount(graph))
exo <- matrix(exo, ncol = 1)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
## weights == NULL and there is a "weight" edge attribute
attr <- "weight"
} else if (is.null(weights)) {
## weights == NULL, but there is no "weight" edge attribute
attr <- NULL
} else if (is.character(weights) && length(weights) == 1) {
## name of an edge attribute, nothing to do
attr <- "weight"
} else if (any(!is.na(weights))) {
## weights != NULL and weights != rep(NA, x)
graph <- set_edge_attr(graph, "weight", value = as.numeric(weights))
attr <- "weight"
} else {
## weights != NULL, but weights == rep(NA, x)
attr <- NULL
}
d <- t(as_adjacency_matrix(graph, attr = attr, sparse = FALSE))
if (!loops) {
diag(d) <- 0
}
n <- vcount(graph)
id <- matrix(0, nrow = n, ncol = n)
diag(id) <- 1
ev <- solve(id - alpha * d, tol = tol) %*% exo
ev[as.numeric(nodes)]
}
alpha.centrality.sparse <- function(graph, nodes = V(graph), alpha = 1,
loops = FALSE, exo = 1, weights = NULL,
tol = 1e-7) {
ensure_igraph(graph)
vc <- vcount(graph)
if (!loops) {
graph <- simplify(graph, remove.multiple = FALSE, remove.loops = TRUE)
}
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
## weights == NULL and there is a "weight" edge attribute
attr <- "weight"
} else if (is.null(weights)) {
## weights == NULL, but there is no "weight" edge attribute
attr <- NULL
} else if (is.character(weights) && length(weights) == 1) {
## name of an edge attribute, nothing to do
attr <- "weight"
} else if (any(!is.na(weights))) {
## weights != NULL and weights != rep(NA, x)
graph <- set_edge_attr(graph, "weight", value = as.numeric(weights))
attr <- "weight"
} else {
## weights != NULL, but weights == rep(NA, x)
attr <- NULL
}
M <- Matrix::t(as_adjacency_matrix(graph, attr = attr, sparse = TRUE))
## Create an identity matrix
M2 <- Matrix::sparseMatrix(dims = c(vc, vc), i = 1:vc, j = 1:vc, x = rep(1, vc))
## exo
exo <- cbind(rep(exo, length.out = vc))
## Solve the equation
M3 <- M2 - alpha * M
r <- Matrix::solve(M3, tol = tol, exo)
r[as.numeric(nodes)]
}
#' Find Bonacich alpha centrality scores of network positions
#'
#' `alpha_centrality()` calculates the alpha centrality of some (or all)
#' vertices in a graph.
#'
#' The alpha centrality measure can be considered as a generalization of
#' eigenvector centrality to directed graphs. It was proposed by Bonacich in
#' 2001 (see reference below).
#'
#' The alpha centrality of the vertices in a graph is defined as the solution
#' of the following matrix equation: \deqn{x=\alpha A^T x+e,}{x=alpha t(A)x+e,}
#' where \eqn{A}{A} is the (not necessarily symmetric) adjacency matrix of the
#' graph, \eqn{e}{e} is the vector of exogenous sources of status of the
#' vertices and \eqn{\alpha}{alpha} is the relative importance of the
#' endogenous versus exogenous factors.
#'
#' @param graph The input graph, can be directed or undirected. In undirected
#' graphs, edges are treated as if they were reciprocal directed ones.
#' @param nodes Vertex sequence, the vertices for which the alpha centrality
#' values are returned. (For technical reasons they will be calculated for all
#' vertices, anyway.)
#' @param alpha Parameter specifying the relative importance of endogenous
#' versus exogenous factors in the determination of centrality. See details
#' below.
#' @param loops Whether to eliminate loop edges from the graph before the
#' calculation.
#' @param exo The exogenous factors, in most cases this is either a constant --
#' the same factor for every node, or a vector giving the factor for every
#' vertex. Note that too long vectors will be truncated and too short vectors
#' will be replicated to match the number of vertices.
#' @param weights A character scalar that gives the name of the edge attribute
#' to use in the adjacency matrix. If it is `NULL`, then the
#' \sQuote{weight} edge attribute of the graph is used, if there is one.
#' Otherwise, or if it is `NA`, then the calculation uses the standard
#' adjacency matrix.
#' @param tol Tolerance for near-singularities during matrix inversion, see
#' [solve()].
#' @param sparse Logical scalar, whether to use sparse matrices for the
#' calculation. The \sQuote{Matrix} package is required for sparse matrix
#' support
#' @return A numeric vector contaning the centrality scores for the selected
#' vertices.
#' @section Warning: Singular adjacency matrices cause problems for this
#' algorithm, the routine may fail is certain cases.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [eigen_centrality()] and [power_centrality()]
#' @references Bonacich, P. and Lloyd, P. (2001). ``Eigenvector-like
#' measures of centrality for asymmetric relations'' *Social Networks*,
#' 23, 191-201.
#' @family centrality
#' @export
#' @keywords graphs
#' @examples
#'
#' # The examples from Bonacich's paper
#' g.1 <- make_graph(c(1, 3, 2, 3, 3, 4, 4, 5))
#' g.2 <- make_graph(c(2, 1, 3, 1, 4, 1, 5, 1))
#' g.3 <- make_graph(c(1, 2, 2, 3, 3, 4, 4, 1, 5, 1))
#' alpha_centrality(g.1)
#' alpha_centrality(g.2)
#' alpha_centrality(g.3, alpha = 0.5)
#'
alpha_centrality <- function(graph, nodes = V(graph), alpha = 1,
loops = FALSE, exo = 1, weights = NULL,
tol = 1e-7, sparse = TRUE) {
nodes <- as_igraph_vs(graph, nodes)
if (sparse) {
res <- alpha.centrality.sparse(
graph, nodes, alpha, loops,
exo, weights, tol
)
} else {
res <- alpha.centrality.dense(
graph, nodes, alpha, loops,
exo, weights, tol
)
}
if (igraph_opt("add.vertex.names") && is_named(graph)) {
names(res) <- vertex_attr(graph, "name", nodes)
}
res
}
|