1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
|
#' Independent vertex sets
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `maximal.independent.vertex.sets()` was renamed to `max_ivs()` to create a more
#' consistent API.
#' @inheritParams max_ivs
#' @keywords internal
#' @export
maximal.independent.vertex.sets <- function(graph) { # nocov start
lifecycle::deprecate_soft("2.0.0", "maximal.independent.vertex.sets()", "max_ivs()")
max_ivs(graph = graph)
} # nocov end
#' Functions to find cliques, i.e. complete subgraphs in a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `maximal.cliques.count()` was renamed to `count_max_cliques()` to create a more
#' consistent API.
#' @inheritParams count_max_cliques
#' @keywords internal
#' @export
maximal.cliques.count <- function(graph, min = NULL, max = NULL, subset = NULL) { # nocov start
lifecycle::deprecate_soft("2.0.0", "maximal.cliques.count()", "count_max_cliques()")
count_max_cliques(graph = graph, min = min, max = max, subset = subset)
} # nocov end
#' Functions to find cliques, i.e. complete subgraphs in a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `maximal.cliques()` was renamed to `max_cliques()` to create a more
#' consistent API.
#' @inheritParams max_cliques
#' @keywords internal
#' @export
maximal.cliques <- function(graph, min = NULL, max = NULL, subset = NULL, file = NULL) { # nocov start
lifecycle::deprecate_soft("2.0.0", "maximal.cliques()", "max_cliques()")
max_cliques(graph = graph, min = min, max = max, subset = subset, file = file)
} # nocov end
#' Independent vertex sets
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `largest.independent.vertex.sets()` was renamed to `largest_ivs()` to create a more
#' consistent API.
#' @inheritParams largest_ivs
#' @keywords internal
#' @export
largest.independent.vertex.sets <- function(graph) { # nocov start
lifecycle::deprecate_soft("2.0.0", "largest.independent.vertex.sets()", "largest_ivs()")
largest_ivs(graph = graph)
} # nocov end
#' Functions to find cliques, i.e. complete subgraphs in a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `largest.cliques()` was renamed to `largest_cliques()` to create a more
#' consistent API.
#' @inheritParams largest_cliques
#' @keywords internal
#' @export
largest.cliques <- function(graph) { # nocov start
lifecycle::deprecate_soft("2.0.0", "largest.cliques()", "largest_cliques()")
largest_cliques(graph = graph)
} # nocov end
#' Independent vertex sets
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `independent.vertex.sets()` was renamed to `ivs()` to create a more
#' consistent API.
#' @inheritParams ivs
#' @keywords internal
#' @export
independent.vertex.sets <- function(graph, min = NULL, max = NULL) { # nocov start
lifecycle::deprecate_soft("2.0.0", "independent.vertex.sets()", "ivs()")
ivs(graph = graph, min = min, max = max)
} # nocov end
#' Independent vertex sets
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `independence.number()` was renamed to `ivs_size()` to create a more
#' consistent API.
#' @inheritParams ivs_size
#' @keywords internal
#' @export
independence.number <- function(graph) { # nocov start
lifecycle::deprecate_soft("2.0.0", "independence.number()", "ivs_size()")
ivs_size(graph = graph)
} # nocov end
#' Functions to find cliques, i.e. complete subgraphs in a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `clique.number()` was renamed to `clique_num()` to create a more
#' consistent API.
#' @inheritParams clique_num
#' @keywords internal
#' @export
clique.number <- function(graph) { # nocov start
lifecycle::deprecate_soft("2.0.0", "clique.number()", "clique_num()")
clique_num(graph = graph)
} # nocov end
# IGraph R package
# Copyright (C) 2006-2012 Gabor Csardi <csardi.gabor@gmail.com>
# 334 Harvard street, Cambridge, MA 02139 USA
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301 USA
#
###################################################################
#' Functions to find cliques, i.e. complete subgraphs in a graph
#'
#' These functions find all, the largest or all the maximal cliques in an
#' undirected graph. The size of the largest clique can also be calculated.
#'
#' `cliques()` find all complete subgraphs in the input graph, obeying the
#' size limitations given in the `min` and `max` arguments.
#'
#' `largest_cliques()` finds all largest cliques in the input graph. A
#' clique is largest if there is no other clique including more vertices.
#'
#' `max_cliques()` finds all maximal cliques in the input graph. A
#' clique is maximal if it cannot be extended to a larger clique. The largest
#' cliques are always maximal, but a maximal clique is not necessarily the
#' largest.
#'
#' `count_max_cliques()` counts the maximal cliques.
#'
#' `clique_num()` calculates the size of the largest clique(s).
#'
#' `clique_size_counts()` returns a numeric vector representing a histogram
#' of clique sizes, between the given minimum and maximum clique size.
#'
#' @inheritParams weighted_cliques
#' @param graph The input graph, directed graphs will be considered as
#' undirected ones, multiple edges and loops are ignored.
#' @param min Numeric constant, lower limit on the size of the cliques to find.
#' `NULL` means no limit, i.e. it is the same as 0.
#' @param max Numeric constant, upper limit on the size of the cliques to find.
#' `NULL` means no limit.
#' @return `cliques()`, `largest_cliques()` and `clique_num()`
#' return a list containing numeric vectors of vertex ids. Each list element is
#' a clique, i.e. a vertex sequence of class [`igraph.vs()`][V].
#'
#' `max_cliques()` returns `NULL`, invisibly, if its `file`
#' argument is not `NULL`. The output is written to the specified file in
#' this case.
#'
#' `clique_num()` and `count_max_cliques()` return an integer
#' scalar.
#'
#' `clique_size_counts()` returns a numeric vector with the clique sizes such that
#' the i-th item belongs to cliques of size i. Trailing zeros are currently
#' truncated, but this might change in future versions.
#'
#' @author Tamas Nepusz \email{ntamas@@gmail.com} and Gabor Csardi
#' \email{csardi.gabor@@gmail.com}
#' @references For maximal cliques the following algorithm is implemented:
#' David Eppstein, Maarten Loffler, Darren Strash: Listing All Maximal Cliques
#' in Sparse Graphs in Near-optimal Time. <https://arxiv.org/abs/1006.5440>
#' @family cliques
#' @export
#' @keywords graphs
#' @examples
#'
#' # this usually contains cliques of size six
#' g <- sample_gnp(100, 0.3)
#' clique_num(g)
#' cliques(g, min = 6)
#' largest_cliques(g)
#'
#' # To have a bit less maximal cliques, about 100-200 usually
#' g <- sample_gnp(100, 0.03)
#' max_cliques(g)
#' @cdocs igraph_cliques
cliques <- cliques_impl
#' @rdname cliques
#' @export
#' @cdocs igraph_largest_cliques
largest_cliques <- largest_cliques_impl
#' @rdname cliques
#' @param subset If not `NULL`, then it must be a vector of vertex ids,
#' numeric or symbolic if the graph is named. The algorithm is run from these
#' vertices only, so only a subset of all maximal cliques is returned. See the
#' Eppstein paper for details. This argument makes it possible to easily
#' parallelize the finding of maximal cliques.
#' @param file If not `NULL`, then it must be a file name, i.e. a
#' character scalar. The output of the algorithm is written to this file. (If
#' it exists, then it will be overwritten.) Each clique will be a separate line
#' in the file, given with the numeric ids of its vertices, separated by
#' whitespace.
#' @export
max_cliques <- function(graph, min = NULL, max = NULL, subset = NULL, file = NULL) {
ensure_igraph(graph)
if (is.null(min)) {
min <- 0
}
if (is.null(max)) {
max <- 0
}
if (!is.null(subset)) {
subset <- as.numeric(as_igraph_vs(graph, subset) - 1)
}
if (!is.null(file)) {
if (!is.character(file) ||
length(grep("://", file, fixed = TRUE)) > 0 ||
length(grep("~", file, fixed = TRUE)) > 0) {
tmpfile <- TRUE
origfile <- file
file <- tempfile()
} else {
tmpfile <- FALSE
}
on.exit(.Call(R_igraph_finalizer))
res <- .Call(
R_igraph_maximal_cliques_file, graph, subset, file,
as.numeric(min), as.numeric(max)
)
if (tmpfile) {
buffer <- read.graph.toraw(file)
write.graph.fromraw(buffer, origfile)
}
invisible(NULL)
} else {
on.exit(.Call(R_igraph_finalizer))
res <- .Call(
R_igraph_maximal_cliques, graph, subset,
as.numeric(min), as.numeric(max)
)
res <- lapply(res, function(x) x + 1)
if (igraph_opt("return.vs.es")) {
res <- lapply(res, unsafe_create_vs, graph = graph, verts = V(graph))
}
res
}
}
#' @rdname cliques
#' @export
count_max_cliques <- function(graph, min = NULL, max = NULL,
subset = NULL) {
# Argument checks
ensure_igraph(graph)
if (is.null(min)) {
min <- 0
}
if (is.null(max)) {
max <- 0
}
min <- as.numeric(min)
max <- as.numeric(max)
if (!is.null(subset)) {
subset <- as.numeric(as_igraph_vs(graph, subset) - 1)
}
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_maximal_cliques_count, graph, subset, min, max)
res
}
#' @rdname cliques
#' @export
#' @cdocs igraph_clique_number
clique_num <- clique_number_impl
#' Functions to find weighted cliques, i.e. vertex-weighted complete subgraphs in a graph
#'
#' These functions find all, the largest or all the maximal weighted cliques in
#' an undirected graph. The weight of a clique is the sum of the weights of its
#' vertices.
#'
#' `weighted_cliques()` finds all complete subgraphs in the input graph,
#' obeying the weight limitations given in the `min` and `max`
#' arguments.
#'
#' `largest_weighted_cliques()` finds all largest weighted cliques in the
#' input graph. A clique is largest if there is no other clique whose total
#' weight is larger than the weight of this clique.
#'
#' `weighted_clique_num()` calculates the weight of the largest weighted clique(s).
#'
#' @param graph The input graph, directed graphs will be considered as
#' undirected ones, multiple edges and loops are ignored.
#' @param min.weight Numeric constant, lower limit on the weight of the cliques to find.
#' `NULL` means no limit, i.e. it is the same as 0.
#' @param max.weight Numeric constant, upper limit on the weight of the cliques to find.
#' `NULL` means no limit.
#' @param vertex.weights Vertex weight vector. If the graph has a `weight`
#' vertex attribute, then this is used by default. If the graph does not have a
#' `weight` vertex attribute and this argument is `NULL`, then every
#' vertex is assumed to have a weight of 1. Note that the current implementation
#' of the weighted clique finder supports positive integer weights only.
#' @param maximal Specifies whether to look for all weighted cliques (`FALSE`)
#' or only the maximal ones (`TRUE`).
#' @return `weighted_cliques()` and `largest_weighted_cliques()` return a
#' list containing numeric vectors of vertex IDs. Each list element is a weighted
#' clique, i.e. a vertex sequence of class [`igraph.vs()`][V].
#'
#' `weighted_clique_num()` returns an integer scalar.
#'
#' @author Tamas Nepusz \email{ntamas@@gmail.com} and Gabor Csardi
#' \email{csardi.gabor@@gmail.com}
#' @family cliques
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- make_graph("zachary")
#' V(g)$weight <- 1
#' V(g)[c(1, 2, 3, 4, 14)]$weight <- 3
#' weighted_cliques(g)
#' weighted_cliques(g, maximal = TRUE)
#' largest_weighted_cliques(g)
#' weighted_clique_num(g)
#' @cdocs igraph_weighted_cliques
weighted_cliques <- weighted_cliques_impl
#' @export
#' @rdname cliques
#' @cdocs igraph_largest_weighted_cliques
largest_weighted_cliques <- largest_weighted_cliques_impl
#' @export
#' @rdname cliques
#' @cdocs igraph_weighted_clique_number
weighted_clique_num <- weighted_clique_number_impl
#' Independent vertex sets
#'
#' A vertex set is called independent if there no edges between any two
#' vertices in it. These functions find independent vertex sets in undirected
#' graphs
#'
#' `ivs()` finds all independent vertex sets in the
#' network, obeying the size limitations given in the `min` and `max`
#' arguments.
#'
#' `largest_ivs()` finds the largest independent vertex
#' sets in the graph. An independent vertex set is largest if there is no
#' independent vertex set with more vertices.
#'
#' `max_ivs()` finds the maximal independent vertex
#' sets in the graph. An independent vertex set is maximal if it cannot be
#' extended to a larger independent vertex set. The largest independent vertex
#' sets are maximal, but the opposite is not always true.
#'
#' `ivs_size()` calculate the size of the largest independent
#' vertex set(s).
#'
#' `independence_number()` is an alias for `ivs_size()`.
#'
#' These functions use the algorithm described by Tsukiyama et al., see
#' reference below.
#'
#' @param graph The input graph, directed graphs are considered as undirected,
#' loop edges and multiple edges are ignored.
#' @param min Numeric constant, limit for the minimum size of the independent
#' vertex sets to find. `NULL` means no limit.
#' @param max Numeric constant, limit for the maximum size of the independent
#' vertex sets to find. `NULL` means no limit.
#' @return `ivs()`,
#' `largest_ivs()` and
#' `max_ivs()` return a list containing numeric
#' vertex ids, each list element is an independent vertex set.
#'
#' `ivs_size()` returns an integer constant.
#' @author Tamas Nepusz \email{ntamas@@gmail.com} ported it from the Very Nauty
#' Graph Library by Keith Briggs (<http://keithbriggs.info/>) and Gabor
#' Csardi \email{csardi.gabor@@gmail.com} wrote the R interface and this manual
#' page.
#' @references S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirawaka. A new
#' algorithm for generating all the maximal independent sets. *SIAM J
#' Computing*, 6:505--517, 1977.
#' @family cliques
#' @export
#' @keywords graphs
#' @examples
#'
#' # Do not run, takes a couple of seconds
#'
#' # A quite dense graph
#' set.seed(42)
#' g <- sample_gnp(100, 0.9)
#' ivs_size(g)
#' ivs(g, min = ivs_size(g))
#' largest_ivs(g)
#' # Empty graph
#' induced_subgraph(g, largest_ivs(g)[[1]])
#'
#' length(max_ivs(g))
ivs <- function(graph, min = NULL, max = NULL) {
ensure_igraph(graph)
if (is.null(min)) {
min <- 0
}
if (is.null(max)) {
max <- 0
}
on.exit(.Call(R_igraph_finalizer))
res <- .Call(
R_igraph_independent_vertex_sets, graph, as.numeric(min),
as.numeric(max)
)
res <- lapply(res, `+`, 1)
if (igraph_opt("return.vs.es")) {
res <- lapply(res, unsafe_create_vs, graph = graph, verts = V(graph))
}
res
}
#' @rdname ivs
#' @export
largest_ivs <- function(graph) {
ensure_igraph(graph)
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_largest_independent_vertex_sets, graph)
res <- lapply(res, `+`, 1)
if (igraph_opt("return.vs.es")) {
res <- lapply(res, unsafe_create_vs, graph = graph, verts = V(graph))
}
res
}
#' @rdname ivs
#' @export
max_ivs <- function(graph) {
ensure_igraph(graph)
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_maximal_independent_vertex_sets, graph)
res <- lapply(res, `+`, 1)
if (igraph_opt("return.vs.es")) {
res <- lapply(res, unsafe_create_vs, graph = graph, verts = V(graph))
}
res
}
#' Maximal independent vertex sets in the graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `maximal_ivs()` was renamed to `max_ivs()` to create a more
#' consistent API.
#' @export
#' @inheritParams max_ivs
#' @keywords internal
maximal_ivs <- function(graph) {
lifecycle::deprecate_soft("2.1.0", "maximal_ivs()", "max_ivs()")
max_ivs(graph)
}
#' @rdname ivs
#' @export
ivs_size <- function(graph) {
ensure_igraph(graph)
on.exit(.Call(R_igraph_finalizer))
.Call(R_igraph_independence_number, graph)
}
#' @rdname ivs
#' @export
independence_number <- ivs_size
#' @rdname cliques
#' @export
#' @cdocs igraph_maximal_cliques_hist
#' @cdocs igraph_clique_size_hist
clique_size_counts <- function(graph, min = 0, max = 0, maximal = FALSE) {
if (maximal) {
maximal_cliques_hist_impl(graph, min, max)
} else {
clique_size_hist_impl(graph, min, max)
}
}
|