1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
|
#' Creates a communities object.
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `create.communities()` was renamed to `make_clusters()` to create a more
#' consistent API.
#' @inheritParams make_clusters
#' @keywords internal
#' @export
create.communities <- function(graph, membership = NULL, algorithm = NULL, merges = NULL, modularity = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "create.communities()", "make_clusters()")
make_clusters(graph = graph, membership = membership, algorithm = algorithm, merges = merges, modularity = modularity)
} # nocov end
#' Community structure via short random walks
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `walktrap.community()` was renamed to `cluster_walktrap()` to create a more
#' consistent API.
#' @inheritParams cluster_walktrap
#' @keywords internal
#' @export
walktrap.community <- function(graph, weights = NULL, steps = 4, merges = TRUE, modularity = TRUE, membership = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "walktrap.community()", "cluster_walktrap()")
cluster_walktrap(graph = graph, weights = weights, steps = steps, merges = merges, modularity = modularity, membership = membership)
} # nocov end
#' Finding communities in graphs based on statistical meachanics
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `spinglass.community()` was renamed to `cluster_spinglass()` to create a more
#' consistent API.
#' @inheritParams cluster_spinglass
#' @keywords internal
#' @export
spinglass.community <- function(graph, weights = NULL, vertex = NULL, spins = 25, parupdate = FALSE, start.temp = 1, stop.temp = 0.01, cool.fact = 0.99, update.rule = c("config", "random", "simple"), gamma = 1.0, implementation = c("orig", "neg"), gamma.minus = 1.0) { # nocov start
lifecycle::deprecate_soft("2.0.0", "spinglass.community()", "cluster_spinglass()")
cluster_spinglass(graph = graph, weights = weights, vertex = vertex, spins = spins, parupdate = parupdate, start.temp = start.temp, stop.temp = stop.temp, cool.fact = cool.fact, update.rule = update.rule, gamma = gamma, implementation = implementation, gamma.minus = gamma.minus)
} # nocov end
#' Functions to deal with the result of network community detection
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `showtrace()` was renamed to `show_trace()` to create a more
#' consistent API.
#' @inheritParams show_trace
#' @keywords internal
#' @export
showtrace <- function(communities) { # nocov start
lifecycle::deprecate_soft("2.0.0", "showtrace()", "show_trace()")
show_trace(communities = communities)
} # nocov end
#' Optimal community structure
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `optimal.community()` was renamed to `cluster_optimal()` to create a more
#' consistent API.
#' @inheritParams cluster_optimal
#' @keywords internal
#' @export
optimal.community <- function(graph, weights = NULL) { # nocov start
lifecycle::deprecate_soft("2.0.0", "optimal.community()", "cluster_optimal()")
cluster_optimal(graph = graph, weights = weights)
} # nocov end
#' Finding community structure by multi-level optimization of modularity
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `multilevel.community()` was renamed to `cluster_louvain()` to create a more
#' consistent API.
#' @inheritParams cluster_louvain
#' @keywords internal
#' @export
multilevel.community <- function(graph, weights = NULL, resolution = 1) { # nocov start
lifecycle::deprecate_soft("2.0.0", "multilevel.community()", "cluster_louvain()")
cluster_louvain(graph = graph, weights = weights, resolution = resolution)
} # nocov end
#' Modularity of a community structure of a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `mod.matrix()` was renamed to `modularity_matrix()` to create a more
#' consistent API.
#' @inheritParams modularity_matrix
#' @keywords internal
#' @export
mod.matrix <- function(graph, membership, weights = NULL, resolution = 1, directed = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "mod.matrix()", "modularity_matrix()")
modularity_matrix(graph = graph, membership = membership, weights = weights, resolution = resolution, directed = directed)
} # nocov end
#' Community structure detecting based on the leading eigenvector of the community matrix
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `leading.eigenvector.community()` was renamed to `cluster_leading_eigen()` to create a more
#' consistent API.
#' @inheritParams cluster_leading_eigen
#' @keywords internal
#' @export
leading.eigenvector.community <- function(graph, steps = -1, weights = NULL, start = NULL, options = arpack_defaults(), callback = NULL, extra = NULL, env = parent.frame()) { # nocov start
lifecycle::deprecate_soft("2.0.0", "leading.eigenvector.community()", "cluster_leading_eigen()")
cluster_leading_eigen(graph = graph, steps = steps, weights = weights, start = start, options = options, callback = callback, extra = extra, env = env)
} # nocov end
#' Finding communities based on propagating labels
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `label.propagation.community()` was renamed to `cluster_label_prop()` to create a more
#' consistent API.
#' @inheritParams cluster_label_prop
#' @keywords internal
#' @export
label.propagation.community <- function(graph, weights = NULL, ..., mode = c("out", "in", "all"), initial = NULL, fixed = NULL) { # nocov start
lifecycle::deprecate_soft("2.0.0", "label.propagation.community()", "cluster_label_prop()")
cluster_label_prop(graph = graph, weights = weights, mode = mode, initial = initial, fixed = fixed, ...)
} # nocov end
#' Functions to deal with the result of network community detection
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `is.hierarchical()` was renamed to `is_hierarchical()` to create a more
#' consistent API.
#' @inheritParams is_hierarchical
#' @keywords internal
#' @export
is.hierarchical <- function(communities) { # nocov start
lifecycle::deprecate_soft("2.0.0", "is.hierarchical()", "is_hierarchical()")
is_hierarchical(communities = communities)
} # nocov end
#' Infomap community finding
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `infomap.community()` was renamed to `cluster_infomap()` to create a more
#' consistent API.
#' @inheritParams cluster_infomap
#' @keywords internal
#' @export
infomap.community <- function(graph, e.weights = NULL, v.weights = NULL, nb.trials = 10, modularity = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "infomap.community()", "cluster_infomap()")
cluster_infomap(graph = graph, e.weights = e.weights, v.weights = v.weights, nb.trials = nb.trials, modularity = modularity)
} # nocov end
#' Community structure via greedy optimization of modularity
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `fastgreedy.community()` was renamed to `cluster_fast_greedy()` to create a more
#' consistent API.
#' @inheritParams cluster_fast_greedy
#' @keywords internal
#' @export
fastgreedy.community <- function(graph, merges = TRUE, modularity = TRUE, membership = TRUE, weights = NULL) { # nocov start
lifecycle::deprecate_soft("2.0.0", "fastgreedy.community()", "cluster_fast_greedy()")
cluster_fast_greedy(graph = graph, merges = merges, modularity = modularity, membership = membership, weights = weights)
} # nocov end
#' Community structure detection based on edge betweenness
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `edge.betweenness.community()` was renamed to `cluster_edge_betweenness()` to create a more
#' consistent API.
#' @inheritParams cluster_edge_betweenness
#' @keywords internal
#' @export
edge.betweenness.community <- function(graph, weights = NULL, directed = TRUE, edge.betweenness = TRUE, merges = TRUE, bridges = TRUE, modularity = TRUE, membership = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "edge.betweenness.community()", "cluster_edge_betweenness()")
cluster_edge_betweenness(graph = graph, weights = weights, directed = directed, edge.betweenness = edge.betweenness, merges = merges, bridges = bridges, modularity = modularity, membership = membership)
} # nocov end
#' Community structure dendrogram plots
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `dendPlot()` was renamed to `plot_dendrogram()` to create a more
#' consistent API.
#' @inheritParams plot_dendrogram
#' @keywords internal
#' @export
dendPlot <- function(x, mode = igraph_opt("dend.plot.type"), ...) { # nocov start
lifecycle::deprecate_soft("2.0.0", "dendPlot()", "plot_dendrogram()")
plot_dendrogram(x = x, mode = mode, ...)
} # nocov end
#' Functions to deal with the result of network community detection
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `cutat()` was renamed to `cut_at()` to create a more
#' consistent API.
#' @inheritParams cut_at
#' @keywords internal
#' @export
cutat <- function(communities, no, steps) { # nocov start
lifecycle::deprecate_soft("2.0.0", "cutat()", "cut_at()")
cut_at(communities = communities, no = no, steps = steps)
} # nocov end
#' Contract several vertices into a single one
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `contract.vertices()` was renamed to `contract()` to create a more
#' consistent API.
#' @inheritParams contract
#' @keywords internal
#' @export
contract.vertices <- function(graph, mapping, vertex.attr.comb = igraph_opt("vertex.attr.comb")) { # nocov start
lifecycle::deprecate_soft("2.0.0", "contract.vertices()", "contract()")
contract(graph = graph, mapping = mapping, vertex.attr.comb = vertex.attr.comb)
} # nocov end
#' Functions to deal with the result of network community detection
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `code.length()` was renamed to `code_len()` to create a more
#' consistent API.
#' @inheritParams code_len
#' @keywords internal
#' @export
code.length <- function(communities) { # nocov start
lifecycle::deprecate_soft("2.0.0", "code.length()", "code_len()")
code_len(communities = communities)
} # nocov end
# IGraph R package
# Copyright (C) 2005-2012 Gabor Csardi <csardi.gabor@gmail.com>
# 334 Harvard street, Cambridge, MA 02139 USA
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301 USA
#
###################################################################
###################################################################
# Community structure
###################################################################
#' Functions to deal with the result of network community detection
#'
#' igraph community detection functions return their results as an object from
#' the `communities` class. This manual page describes the operations of
#' this class.
#'
#' Community structure detection algorithms try to find dense subgraphs in
#' directed or undirected graphs, by optimizing some criteria, and usually
#' using heuristics.
#'
#' igraph implements a number of community detection methods (see them below),
#' all of which return an object of the class `communities`. Because the
#' community structure detection algorithms are different, `communities`
#' objects do not always have the same structure. Nevertheless, they have some
#' common operations, these are documented here.
#'
#' The [print()] generic function is defined for `communities`, it
#' prints a short summary.
#'
#' The `length` generic function call be called on `communities` and
#' returns the number of communities.
#'
#' The `sizes()` function returns the community sizes, in the order of their
#' ids.
#'
#' `membership()` gives the division of the vertices, into communities. It
#' returns a numeric vector, one value for each vertex, the id of its
#' community. Community ids start from one. Note that some algorithms calculate
#' the complete (or incomplete) hierarchical structure of the communities, and
#' not just a single partitioning. For these algorithms typically the
#' membership for the highest modularity value is returned, but see also the
#' manual pages of the individual algorithms.
#'
#' `communities()` is also the name of a function, that returns a list of
#' communities, each identified by their vertices. The vertices will have
#' symbolic names if the `add.vertex.names` igraph option is set, and the
#' graph itself was named. Otherwise numeric vertex ids are used.
#'
#' `modularity()` gives the modularity score of the partitioning. (See
#' [modularity.igraph()] for details. For algorithms that do not
#' result a single partitioning, the highest modularity value is returned.
#'
#' `algorithm()` gives the name of the algorithm that was used to calculate
#' the community structure.
#'
#' `crossing()` returns a logical vector, with one value for each edge,
#' ordered according to the edge ids. The value is `TRUE` iff the edge
#' connects two different communities, according to the (best) membership
#' vector, as returned by `membership()`.
#'
#' `is_hierarchical()` checks whether a hierarchical algorithm was used to
#' find the community structure. Some functions only make sense for
#' hierarchical methods (e.g. `merges()`, `cut_at()` and
#' [as.dendrogram()]).
#'
#' `merges()` returns the merge matrix for hierarchical methods. An error
#' message is given, if a non-hierarchical method was used to find the
#' community structure. You can check this by calling `is_hierarchical()` on
#' the `communities` object.
#'
#' `cut_at()` cuts the merge tree of a hierarchical community finding method,
#' at the desired place and returns a membership vector. The desired place can
#' be expressed as the desired number of communities or as the number of merge
#' steps to make. The function gives an error message, if called with a
#' non-hierarchical method.
#'
#' [as.dendrogram()] converts a hierarchical community structure to a
#' `dendrogram` object. It only works for hierarchical methods, and gives
#' an error message to others. See [stats::dendrogram()] for details.
#'
#' [stats::as.hclust()] is similar to [as.dendrogram()], but converts a
#' hierarchical community structure to a `hclust` object.
#'
#' [ape::as.phylo()] converts a hierarchical community structure to a `phylo`
#' object, you will need the `ape` package for this.
#'
#' `show_trace()` works (currently) only for communities found by the leading
#' eigenvector method ([cluster_leading_eigen()]), and
#' returns a character vector that gives the steps performed by the algorithm
#' while finding the communities.
#'
#' `code_len()` is defined for the InfoMAP method
#' ([cluster_infomap()] and returns the code length of the
#' partition.
#'
#' It is possibly to call the [plot()] function on `communities`
#' objects. This will plot the graph (and uses [plot.igraph()]
#' internally), with the communities shown. By default it colores the vertices
#' according to their communities, and also marks the vertex groups
#' corresponding to the communities. It passes additional arguments to
#' [plot.igraph()], please see that and also
#' [igraph.plotting] on how to change the plot.
#'
#' @rdname communities
#' @family community
#' @param communities,x,object A `communities` object, the result of an
#' igraph community detection function.
#' @param graph An igraph graph object, corresponding to `communities`.
#' @param y An igraph graph object, corresponding to the communities in
#' `x`.
#' @param no Integer scalar, the desired number of communities. If too low or
#' two high, then an error message is given. Exactly one of `no` and
#' `steps` must be supplied.
#' @param steps The number of merge operations to perform to produce the
#' communities. Exactly one of `no` and `steps` must be supplied.
#' @param col A vector of colors, in any format that is accepted by the regular
#' R plotting methods. This vector gives the colors of the vertices explicitly.
#' @param mark.groups A list of numeric vectors. The communities can be
#' highlighted using colored polygons. The groups for which the polygons are
#' drawn are given here. The default is to use the groups given by the
#' communities. Supply `NULL` here if you do not want to highlight any
#' groups.
#' @param edge.color The colors of the edges. By default the edges within
#' communities are colored green and other edges are red.
#' @param hang Numeric scalar indicating how the height of leaves should be
#' computed from the heights of their parents; see [plot.hclust()].
#' @param use.modularity Logical scalar, whether to use the modularity values
#' to define the height of the branches.
#' @param \dots Additional arguments. `plot.communities` passes these to
#' [plot.igraph()]. The other functions silently ignore
#' them.
#' @param membership Numeric vector, one value for each vertex, the membership
#' vector of the community structure. Might also be `NULL` if the
#' community structure is given in another way, e.g. by a merge matrix.
#' @param algorithm If not `NULL` (meaning an unknown algorithm), then a
#' character scalar, the name of the algorithm that produced the community
#' structure.
#' @param merges If not `NULL`, then the merge matrix of the hierarchical
#' community structure. See `merges()` below for more information on its
#' format.
#' @param modularity Numeric scalar or vector, the modularity value of the
#' community structure. It can also be `NULL`, if the modularity of the
#' (best) split is not available.
#' @return [print()] returns the `communities` object itself,
#' invisibly.
#'
#' `length` returns an integer scalar.
#'
#' `sizes()` returns a numeric vector.
#'
#' `membership()` returns a numeric vector, one number for each vertex in
#' the graph that was the input of the community detection.
#'
#' `modularity()` returns a numeric scalar.
#'
#' `algorithm()` returns a character scalar.
#'
#' `crossing()` returns a logical vector.
#'
#' `is_hierarchical()` returns a logical scalar.
#'
#' `merges()` returns a two-column numeric matrix.
#'
#' `cut_at()` returns a numeric vector, the membership vector of the
#' vertices.
#'
#' [as.dendrogram()] returns a [dendrogram] object.
#'
#' `show_trace()` returns a character vector.
#'
#' `code_len()` returns a numeric scalar for communities found with the
#' InfoMAP method and `NULL` for other methods.
#'
#' [plot()] for `communities` objects returns `NULL`, invisibly.
#'
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso See [plot_dendrogram()] for plotting community structure
#' dendrograms.
#'
#' See [compare()] for comparing two community structures
#' on the same graph.
#' @keywords graphs
#' @export
#' @examples
#'
#' karate <- make_graph("Zachary")
#' wc <- cluster_walktrap(karate)
#' modularity(wc)
#' membership(wc)
#' plot(wc, karate)
#'
membership <- function(communities) {
if (!is.null(communities$membership)) {
res <- communities$membership
} else if (!is.null(communities$merges) &&
!is.null(communities$modularity)) {
res <- community.to.membership2(
communities$merges, communities$vcount,
which.max(communities$modularity)
)
} else {
stop("Cannot calculate community membership")
}
if (igraph_opt("add.vertex.names") && !is.null(communities$names)) {
names(res) <- communities$names
}
class(res) <- "membership"
res
}
#' @method print membership
#' @family community
#' @export
print.membership <- function(x, ...) print(unclass(x), ...)
#' Declare a numeric vector as a membership vector
#'
#' This is useful if you want to use functions defined on
#' membership vectors, but your membership vector does not
#' come from an igraph clustering method.
#'
#' @param x The input vector.
#' @return The input vector, with the `membership` class added.
#' @family community
#' @export
#' @examples
#' ## Compare to the correct clustering
#' g <- (make_full_graph(10) + make_full_graph(10)) %>%
#' rewire(each_edge(p = 0.2))
#' correct <- rep(1:2, each = 10) %>% as_membership()
#' fc <- cluster_fast_greedy(g)
#' compare(correct, fc)
#' compare(correct, membership(fc))
as_membership <- function(x) add_class(x, "membership")
#' @rdname communities
#' @method print communities
#' @export
print.communities <- function(x, ...) {
noc <- if (!is.null(x$membership)) max(membership(x), 0) else NA
mod <- if (!is.null(x$modularity)) {
modularity(x) %>% format(digits = 2)
} else {
NA_real_
}
alg <- x$algorithm %||% "unknown"
cat("IGRAPH clustering ", alg, ", groups: ", noc, ", mod: ", mod, "\n", sep = "")
if (!is.null(x$membership)) {
grp <- groups(x)
cat("+ groups:\n")
hp <- function(o) {
head_print(o,
max_lines = igraph_opt("auto.print.lines"),
omitted_footer = "+ ... omitted several groups/vertices\n",
)
}
indent_print(grp, .printer = hp, .indent = " ")
} else {
cat(" + groups not available\n")
}
invisible(x)
}
#' Creates a communities object.
#'
#' This is useful to integrate the results of community finding algorithms
#' that are not included in igraph.
#'
#' @param graph The graph of the community structure.
#' @param membership The membership vector of the community structure, a
#' numeric vector denoting the id of the community for each vertex. It
#' might be `NULL` for hierarchical community structures.
#' @param algorithm Character string, the algorithm that generated
#' the community structure, it can be arbitrary.
#' @param merges A merge matrix, for hierarchical community structures (or
#' `NULL` otherwise.
#' @param modularity Modularity value of the community structure. If this
#' is `TRUE` and the membership vector is available, then it the
#' modularity values is calculated automatically.
#' @return A `communities` object.
#'
#'
#' @family community
#' @export
make_clusters <- function(graph, membership = NULL, algorithm = NULL,
merges = NULL, modularity = TRUE) {
stopifnot(is.null(membership) || is.numeric(membership))
stopifnot(is.null(algorithm) ||
(is.character(algorithm) && length(algorithm) == 1))
stopifnot(is.null(merges) ||
(is.matrix(merges) && is.numeric(merges) && ncol(merges) == 2))
stopifnot(is.null(modularity) ||
(is.logical(modularity) && length(modularity) == 1) ||
(is.numeric(modularity) &&
length(modularity) %in% c(1, length(membership))))
if (is.logical(modularity)) {
if (modularity && !is.null(membership)) {
modularity <- modularity(graph, membership)
} else {
modularity <- NULL
}
}
res <- list(
membership = membership,
algorithm = if (is.null(algorithm)) "unknown" else algorithm,
modularity = modularity
)
if (!is.null(merges)) {
res$merges <- merges
}
if (!is.null(membership)) {
res$vcount <- length(membership)
} else if (!is.null(merges)) {
res$vcount <- nrow(merges) + 1
}
class(res) <- "communities"
res
}
#' @family community
#' @export
modularity <- function(x, ...) {
UseMethod("modularity")
}
#' Modularity of a community structure of a graph
#'
#' This function calculates how modular is a given division of a graph into
#' subgraphs.
#'
#' `modularity()` calculates the modularity of a graph with respect to the
#' given `membership` vector.
#'
#' The modularity of a graph with respect to some division (or vertex types)
#' measures how good the division is, or how separated are the different vertex
#' types from each other. It defined as \deqn{Q=\frac{1}{2m} \sum_{i,j}
#' (A_{ij}-\gamma\frac{k_i k_j}{2m})\delta(c_i,c_j),}{Q=1/(2m) * sum( (Aij-gamma*ki*kj/(2m)
#' ) delta(ci,cj),i,j),} here \eqn{m} is the number of edges, \eqn{A_{ij}}{Aij}
#' is the element of the \eqn{A} adjacency matrix in row \eqn{i} and column
#' \eqn{j}, \eqn{k_i}{ki} is the degree of \eqn{i}, \eqn{k_j}{kj} is the degree
#' of \eqn{j}, \eqn{c_i}{ci} is the type (or component) of \eqn{i},
#' \eqn{c_j}{cj} that of \eqn{j}, the sum goes over all \eqn{i} and \eqn{j}
#' pairs of vertices, and \eqn{\delta(x,y)}{delta(x,y)} is 1 if \eqn{x=y} and 0
#' otherwise. For directed graphs, it is defined as
#' \deqn{Q = \frac{1}{m} \sum_{i,j} (A_{ij}-\gamma
#' \frac{k_i^{out} k_j^{in}}{m})\delta(c_i,c_j).}{Q=1/(m) * sum(
#' (Aij-gamma*ki^out*kj^in/(m) ) delta(ci,cj),i,j).}
#'
#' The resolution parameter \eqn{\gamma}{gamma} allows weighting the random
#' null model, which might be useful when finding partitions with a high
#' modularity. Maximizing modularity with higher values of the resolution
#' parameter typically results in more, smaller clusters when finding
#' partitions with a high modularity. Lower values typically results in fewer,
#' larger clusters. The original definition of modularity is retrieved when
#' setting \eqn{\gamma}{gamma} to 1.
#'
#' If edge weights are given, then these are considered as the element of the
#' \eqn{A} adjacency matrix, and \eqn{k_i}{ki} is the sum of weights of
#' adjacent edges for vertex \eqn{i}.
#'
#' `modularity_matrix()` calculates the modularity matrix. This is a dense matrix,
#' and it is defined as the difference of the adjacency matrix and the
#' configuration model null model matrix. In other words element
#' \eqn{M_{ij}}{M[i,j]} is given as \eqn{A_{ij}-d_i
#' d_j/(2m)}{A[i,j]-d[i]d[j]/(2m)}, where \eqn{A_{ij}}{A[i,j]} is the (possibly
#' weighted) adjacency matrix, \eqn{d_i}{d[i]} is the degree of vertex \eqn{i},
#' and \eqn{m} is the number of edges (or the total weights in the graph, if it
#' is weighed).
#'
#' @aliases modularity
#' @param x,graph The input graph.
#' @param membership Numeric vector, one value for each vertex, the membership
#' vector of the community structure.
#' @param weights If not `NULL` then a numeric vector giving edge weights.
#' @param resolution The resolution parameter. Must be greater than or equal to
#' 0. Set it to 1 to use the classical definition of modularity.
#' @param directed Whether to use the directed or undirected version of
#' modularity. Ignored for undirected graphs.
#' @param \dots Additional arguments, none currently.
#' @return For `modularity()` a numeric scalar, the modularity score of the
#' given configuration.
#'
#' For `modularity_matrix()` a numeric square matrix, its order is the number of
#' vertices in the graph.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [cluster_walktrap()],
#' [cluster_edge_betweenness()],
#' [cluster_fast_greedy()], [cluster_spinglass()],
#' [cluster_louvain()] and [cluster_leiden()] for
#' various community detection methods.
#' @references Clauset, A.; Newman, M. E. J. & Moore, C. Finding community
#' structure in very large networks, *Physical Review E* 2004, 70, 066111
#' @method modularity igraph
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
#' g <- add_edges(g, c(1, 6, 1, 11, 6, 11))
#' wtc <- cluster_walktrap(g)
#' modularity(wtc)
#' modularity(g, membership(wtc))
#'
modularity.igraph <- function(x, membership, weights = NULL, resolution = 1, directed = TRUE, ...) {
# Argument checks
ensure_igraph(x)
if (is.null(membership) || (!is.numeric(membership) && !is.factor(membership))) {
stop("Membership is not a numerical vector")
}
membership <- as.numeric(membership)
if (!is.null(weights)) weights <- as.numeric(weights)
resolution <- as.numeric(resolution)
directed <- as.logical(directed)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_modularity, x, membership - 1, weights, resolution, directed)
res
}
#' @rdname communities
#' @method modularity communities
#' @export
modularity.communities <- function(x, ...) {
if (!is.null(x$modularity)) {
max(x$modularity)
} else {
stop("Modularity was not calculated")
}
}
#' @rdname modularity.igraph
#' @export
modularity_matrix <- function(graph, membership = lifecycle::deprecated(), weights = NULL, resolution = 1, directed = TRUE) {
# Argument checks
ensure_igraph(graph)
if (!missing(membership)) {
lifecycle::deprecate_warn("2.1.0", "modularity_matrix(membership = 'is no longer used')")
}
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
resolution <- as.numeric(resolution)
directed <- as.logical(directed)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_modularity_matrix, graph, weights, resolution, directed)
res
}
#' @rdname communities
#' @method length communities
#' @export
length.communities <- function(x) {
m <- membership(x)
max(m, 0)
}
#' @rdname communities
#' @export
sizes <- function(communities) {
m <- membership(communities)
table(`Community sizes` = m)
}
#' @rdname communities
#' @export
algorithm <- function(communities) {
communities$algorithm
}
#' @rdname communities
#' @export
merges <- function(communities) {
if (!is.null(communities$merges)) {
communities$merges
} else {
stop("Not a hierarchical community structure")
}
}
#' @rdname communities
#' @export
crossing <- function(communities, graph) {
m <- membership(communities)
el <- as_edgelist(graph, names = FALSE)
m1 <- m[el[, 1]]
m2 <- m[el[, 2]]
res <- m1 != m2
if (!is.null(names(m1))) {
names(res) <- paste(names(m1), names(m2), sep = "|")
}
res
}
#' @rdname communities
#' @export
code_len <- function(communities) {
communities$codelength
}
#' @rdname communities
#' @export
is_hierarchical <- function(communities) {
!is.null(communities$merges)
}
complete.dend <- function(comm, use.modularity) {
merges <- comm$merges
if (nrow(merges) < comm$vcount - 1) {
if (use.modularity) {
stop(paste(
"`use.modularity' requires a full dendrogram,",
"i.e. a connected graph"
))
}
miss <- seq_len(comm$vcount + nrow(merges))[-as.vector(merges)]
miss <- c(miss, seq_len(length(miss) - 2) + comm$vcount + nrow(merges))
miss <- matrix(miss, byrow = TRUE, ncol = 2)
merges <- rbind(merges, miss)
}
storage.mode(merges) <- "integer"
merges
}
# The following functions were adapted from the stats R package
#' @rdname communities
#' @importFrom stats as.dendrogram
#' @method as.dendrogram communities
#' @export
as.dendrogram.communities <- function(object, hang = -1, use.modularity = FALSE,
...) {
if (!is_hierarchical(object)) {
stop("Not a hierarchical community structure")
}
.memberDend <- function(x) {
r <- attr(x, "x.member")
if (is.null(r)) {
r <- attr(x, "members")
if (is.null(r)) r <- 1:1
}
r
}
## If multiple components, then we merge them in arbitrary order
merges <- complete.dend(object, use.modularity)
storage.mode(merges) <- "integer"
if (is.null(object$names)) {
object$names <- 1:(nrow(merges) + 1)
}
z <- list()
if (!use.modularity || is.null(object$modularity)) {
object$height <- 1:nrow(merges)
} else {
object$height <- object$modularity[-1]
object$height <- cumsum(object$height - min(object$height))
}
nMerge <- length(oHgt <- object$height)
if (nMerge != nrow(merges)) {
stop("'merge' and 'height' do not fit!")
}
hMax <- oHgt[nMerge]
one <- 1L
two <- 2L
leafs <- nrow(merges) + 1
for (k in 1:nMerge) {
x <- merges[k, ] # no sort() anymore!
if (any(neg <- x < leafs + 1)) {
h0 <- if (hang < 0) 0 else max(0, oHgt[k] - hang * hMax)
}
if (all(neg)) { # two leaves
zk <- as.list(x)
attr(zk, "members") <- two
attr(zk, "midpoint") <- 0.5 # mean( c(0,1) )
objlabels <- object$names[x]
attr(zk[[1]], "label") <- objlabels[1]
attr(zk[[2]], "label") <- objlabels[2]
attr(zk[[1]], "members") <- attr(zk[[2]], "members") <- one
attr(zk[[1]], "height") <- attr(zk[[2]], "height") <- h0
attr(zk[[1]], "leaf") <- attr(zk[[2]], "leaf") <- TRUE
} else if (any(neg)) { # one leaf, one node
# as.character(x) is not okay as it starts converting values >= 100000
# to scientific notation
X <- format(x, scientific = FALSE, trim = TRUE)
## Originally had "x <- sort(..) above => leaf always left, x[1];
## don't want to assume this
isL <- x[1] < leafs + 1 ## is leaf left?
zk <-
if (isL) {
list(x[1], z[[X[2]]])
} else {
list(z[[X[1]]], x[2])
}
attr(zk, "members") <- attr(z[[X[1 + isL]]], "members") + one
attr(zk, "midpoint") <-
(.memberDend(zk[[1]]) + attr(z[[X[1 + isL]]], "midpoint")) / 2
attr(zk[[2 - isL]], "members") <- one
attr(zk[[2 - isL]], "height") <- h0
attr(zk[[2 - isL]], "label") <- object$names[x[2 - isL]]
attr(zk[[2 - isL]], "leaf") <- TRUE
} else { # two nodes
# as.character(x) is not okay as it starts converting values >= 100000
# to scientific notation
x <- format(x, scientific = FALSE, trim = TRUE)
zk <- list(z[[x[1]]], z[[x[2]]])
attr(zk, "members") <- attr(z[[x[1]]], "members") +
attr(z[[x[2]]], "members")
attr(zk, "midpoint") <- (attr(z[[x[1]]], "members") +
attr(z[[x[1]]], "midpoint") +
attr(z[[x[2]]], "midpoint")) / 2
}
attr(zk, "height") <- oHgt[k]
z[[k <- format(k + leafs, scientific = FALSE)]] <- zk
}
z <- z[[k]]
class(z) <- "dendrogram"
z
}
#' @rdname communities
#' @importFrom stats as.hclust
#' @method as.hclust communities
#' @export
as.hclust.communities <- function(x, hang = -1, use.modularity = FALSE,
...) {
as.hclust(as.dendrogram(x, hang = hang, use.modularity = use.modularity))
}
as.phylo.communities <- function(x, use.modularity = FALSE, ...) {
if (!is_hierarchical(x)) {
stop("Not a hierarchical community structure")
}
## If multiple components, then we merge them in arbitrary order
merges <- complete.dend(x, use.modularity)
if (!use.modularity || is.null(x$modularity)) {
height <- 1:nrow(merges)
} else {
height <- x$modularity[-1]
height <- cumsum(height - min(height))
}
if (is.null(x$names)) {
labels <- 1:(nrow(merges) + 1)
} else {
labels <- x$names
}
N <- nrow(merges)
edge <- matrix(0L, 2 * N, 2)
edge.length <- numeric(2 * N)
node <- integer(N)
node[N] <- N + 2L
cur.nod <- N + 3L
j <- 1L
for (i in N:1) {
edge[j:(j + 1), 1] <- node[i]
for (l in 1:2) {
k <- j + l - 1L
y <- merges[i, l]
if (y > N + 1) {
edge[k, 2] <- node[y - N - 1] <- cur.nod
cur.nod <- cur.nod + 1L
edge.length[k] <- height[i] - height[y - N - 1]
} else {
edge[k, 2] <- y
edge.length[k] <- height[i]
}
}
j <- j + 2L
}
obj <- list(
edge = edge, edge.length = edge.length / 2, tip.label = labels,
Nnode = N
)
class(obj) <- "phylo"
ape::reorder.phylo(obj)
}
rlang::on_load(s3_register("ape::as.phylo", "communities"))
#' @rdname communities
#' @export
cut_at <- function(communities, no, steps) {
if (!inherits(communities, "communities")) {
stop("Not a community structure")
}
if (!is_hierarchical(communities)) {
stop("Not a hierarchical communitity structure")
}
if ((!missing(no) && !missing(steps)) ||
(missing(no) && missing(steps))) {
stop("Please give either `no' or `steps' (but not both)")
}
if (!missing(steps)) {
mm <- merges(communities)
if (steps > nrow(mm)) {
cli::cli_warn("Cannot make that many steps.")
steps <- nrow(mm)
}
community.to.membership2(mm, communities$vcount, steps)
} else {
mm <- merges(communities)
noc <- communities$vcount - nrow(mm) # final number of communities
if (no < noc) {
cli::cli_warn("Cannot have that few communities.")
no <- noc
}
steps <- communities$vcount - no
community.to.membership2(mm, communities$vcount, steps)
}
}
#' @rdname communities
#' @export
show_trace <- function(communities) {
if (!inherits(communities, "communities")) {
stop("Not a community structure")
}
if (is.null(communities$history)) {
stop("History was not recorded")
}
res <- character()
i <- 1
while (i <= length(communities$history)) {
if (communities$history[i] == 2) { # IGRAPH_LEVC_HIST_SPLIT
resnew <- paste(
"Splitting community", communities$history[i + 1],
"into two."
)
i <- i + 2
} else if (communities$history[i] == 3) { # IGRAPH_LEVC_HIST_FAILED
resnew <- paste(
"Failed splitting community",
communities$history[i + 1], "into two."
)
i <- i + 2
} else if (communities$history[i] == 4) { # IGRAPH_LEVC_START_FULL
resnew <- "Starting with the whole graph as a community."
i <- i + 1
} else if (communities$history[i] == 5) { # IGRAPH_LEVC_START_GIVEN
resnew <- paste(
"Starting from the", communities$history[i + 1],
"given communities."
)
i <- i + 2
}
res <- c(res, resnew)
}
res
}
#####################################################################
community.to.membership2 <- function(merges, vcount, steps) {
mode(merges) <- "numeric"
mode(vcount) <- "numeric"
mode(steps) <- "numeric"
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_community_to_membership2, merges - 1, vcount, steps)
res + 1
}
#####################################################################
#' Finding communities in graphs based on statistical meachanics
#'
#' This function tries to find communities in graphs via a spin-glass model and
#' simulated annealing.
#'
#' This function tries to find communities in a graph. A community is a set of
#' nodes with many edges inside the community and few edges between outside it
#' (i.e. between the community itself and the rest of the graph.)
#'
#' This idea is reversed for edges having a negative weight, i.e. few negative
#' edges inside a community and many negative edges between communities. Note
#' that only the \sQuote{neg} implementation supports negative edge weights.
#'
#' The `spinglass.cummunity` function can solve two problems related to
#' community detection. If the `vertex` argument is not given (or it is
#' `NULL`), then the regular community detection problem is solved
#' (approximately), i.e. partitioning the vertices into communities, by
#' optimizing the an energy function.
#'
#' If the `vertex` argument is given and it is not `NULL`, then it
#' must be a vertex id, and the same energy function is used to find the
#' community of the the given vertex. See also the examples below.
#'
#' @param graph The input graph. Edge directions are ignored in directed graphs.
#' @param weights The weights of the edges. It must be a positive numeric vector,
#' `NULL` or `NA`. If it is `NULL` and the input graph has a
#' \sQuote{weight} edge attribute, then that attribute will be used. If
#' `NULL` and no such attribute is present, then the edges will have equal
#' weights. Set this to `NA` if the graph was a \sQuote{weight} edge
#' attribute, but you don't want to use it for community detection. A larger
#' edge weight means a stronger connection for this function.
#' @param vertex This parameter can be used to calculate the community of a
#' given vertex without calculating all communities. Note that if this argument
#' is present then some other arguments are ignored.
#' @param spins Integer constant, the number of spins to use. This is the upper
#' limit for the number of communities. It is not a problem to supply a
#' (reasonably) big number here, in which case some spin states will be
#' unpopulated.
#' @param parupdate Logical constant, whether to update the spins of the
#' vertices in parallel (synchronously) or not. This argument is ignored if the
#' second form of the function is used (i.e. the \sQuote{`vertex`} argument
#' is present). It is also not implemented in the \dQuote{neg} implementation.
#' @param start.temp Real constant, the start temperature. This argument is
#' ignored if the second form of the function is used (i.e. the
#' \sQuote{`vertex`} argument is present).
#' @param stop.temp Real constant, the stop temperature. The simulation
#' terminates if the temperature lowers below this level. This argument is
#' ignored if the second form of the function is used (i.e. the
#' \sQuote{`vertex`} argument is present).
#' @param cool.fact Cooling factor for the simulated annealing. This argument
#' is ignored if the second form of the function is used (i.e. the
#' \sQuote{`vertex`} argument is present).
#' @param update.rule Character constant giving the \sQuote{null-model} of the
#' simulation. Possible values: \dQuote{simple} and \dQuote{config}.
#' \dQuote{simple} uses a random graph with the same number of edges as the
#' baseline probability and \dQuote{config} uses a random graph with the same
#' vertex degrees as the input graph.
#' @param gamma Real constant, the gamma argument of the algorithm. This
#' specifies the balance between the importance of present and non-present
#' edges in a community. Roughly, a comunity is a set of vertices having many
#' edges inside the community and few edges outside the community. The default
#' 1.0 value makes existing and non-existing links equally important. Smaller
#' values make the existing links, greater values the missing links more
#' important.
#' @param implementation Character scalar. Currently igraph contains two
#' implementations for the Spin-glass community finding algorithm. The faster
#' original implementation is the default. The other implementation, that takes
#' into account negative weights, can be chosen by supplying \sQuote{neg} here.
#' @param gamma.minus Real constant, the gamma.minus parameter of the
#' algorithm. This specifies the balance between the importance of present and
#' non-present negative weighted edges in a community. Smaller values of
#' gamma.minus, leads to communities with lesser negative intra-connectivity.
#' If this argument is set to zero, the algorithm reduces to a graph coloring
#' algorithm, using the number of spins as the number of colors. This argument
#' is ignored if the \sQuote{orig} implementation is chosen.
#' @return If the `vertex` argument is not given, i.e. the first form is
#' used then a [cluster_spinglass()] returns a
#' [communities()] object.
#'
#' If the `vertex` argument is present, i.e. the second form is used then a
#' named list is returned with the following components:
#' \item{community}{Numeric vector giving the ids of the vertices in the same
#' community as `vertex`.} \item{cohesion}{The cohesion score of the
#' result, see references.} \item{adhesion}{The adhesion score of the result,
#' see references.} \item{inner.links}{The number of edges within the community
#' of `vertex`.} \item{outer.links}{The number of edges between the
#' community of `vertex` and the rest of the graph. }
#' @author Jorg Reichardt for the original code and Gabor Csardi
#' \email{csardi.gabor@@gmail.com} for the igraph glue code.
#'
#' Changes to the original function for including the possibility of negative
#' ties were implemented by Vincent Traag (<https://www.traag.net/>).
#' @seealso [communities()], [components()]
#' @references J. Reichardt and S. Bornholdt: Statistical Mechanics of
#' Community Detection, *Phys. Rev. E*, 74, 016110 (2006),
#' <https://arxiv.org/abs/cond-mat/0603718>
#'
#' M. E. J. Newman and M. Girvan: Finding and evaluating community structure in
#' networks, *Phys. Rev. E* 69, 026113 (2004)
#'
#' V.A. Traag and Jeroen Bruggeman: Community detection in networks with
#' positive and negative links, <https://arxiv.org/abs/0811.2329> (2008).
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- sample_gnp(10, 5 / 10) %du% sample_gnp(9, 5 / 9)
#' g <- add_edges(g, c(1, 12))
#' g <- induced_subgraph(g, subcomponent(g, 1))
#' cluster_spinglass(g, spins = 2)
#' cluster_spinglass(g, vertex = 1)
#'
cluster_spinglass <- function(graph, weights = NULL, vertex = NULL, spins = 25,
parupdate = FALSE, start.temp = 1,
stop.temp = 0.01, cool.fact = 0.99,
update.rule = c("config", "random", "simple"),
gamma = 1.0, implementation = c("orig", "neg"),
gamma.minus = 1.0) {
ensure_igraph(graph)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
update.rule <- igraph.match.arg(update.rule)
update.rule <- switch(update.rule,
"simple" = 0,
"random" = 0,
"config" = 1
)
implementation <- switch(igraph.match.arg(implementation),
"orig" = 0,
"neg" = 1
)
on.exit(.Call(R_igraph_finalizer))
if (is.null(vertex) || length(vertex) == 0) {
res <- .Call(
R_igraph_spinglass_community, graph, weights,
as.numeric(spins), as.logical(parupdate),
as.numeric(start.temp),
as.numeric(stop.temp), as.numeric(cool.fact),
as.numeric(update.rule), as.numeric(gamma),
as.numeric(implementation), as.numeric(gamma.minus)
)
res$algorithm <- "spinglass"
res$vcount <- vcount(graph)
res$membership <- res$membership + 1
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- vertex_attr(graph, "name")
}
class(res) <- "communities"
} else {
res <- .Call(
R_igraph_spinglass_my_community, graph, weights,
as_igraph_vs(graph, vertex) - 1, as.numeric(spins),
as.numeric(update.rule), as.numeric(gamma)
)
res$community <- res$community + 1
}
res
}
#' Finding community structure of a graph using the Leiden algorithm of Traag,
#' van Eck & Waltman.
#'
#' The Leiden algorithm is similar to the Louvain algorithm,
#' [cluster_louvain()], but it is faster and yields higher quality
#' solutions. It can optimize both modularity and the Constant Potts Model,
#' which does not suffer from the resolution-limit (see preprint
#' http://arxiv.org/abs/1104.3083).
#'
#' The Leiden algorithm consists of three phases: (1) local moving of nodes,
#' (2) refinement of the partition and (3) aggregation of the network based on
#' the refined partition, using the non-refined partition to create an initial
#' partition for the aggregate network. In the local move procedure in the
#' Leiden algorithm, only nodes whose neighborhood has changed are visited. The
#' refinement is done by restarting from a singleton partition within each
#' cluster and gradually merging the subclusters. When aggregating, a single
#' cluster may then be represented by several nodes (which are the subclusters
#' identified in the refinement).
#'
#' The Leiden algorithm provides several guarantees. The Leiden algorithm is
#' typically iterated: the output of one iteration is used as the input for the
#' next iteration. At each iteration all clusters are guaranteed to be
#' connected and well-separated. After an iteration in which nothing has
#' changed, all nodes and some parts are guaranteed to be locally optimally
#' assigned. Finally, asymptotically, all subsets of all clusters are
#' guaranteed to be locally optimally assigned. For more details, please see
#' Traag, Waltman & van Eck (2019).
#'
#' The objective function being optimized is
#'
#' \deqn{\frac{1}{2m} \sum_{ij} (A_{ij} - \gamma n_i n_j)\delta(\sigma_i, \sigma_j)}{1 / 2m sum_ij (A_ij - gamma n_i n_j)d(s_i, s_j)}
#'
#' where \eqn{m}{m} is the total edge weight, \eqn{A_{ij}}{A_ij} is the weight
#' of edge \eqn{(i, j)}, \eqn{\gamma}{gamma} is the so-called resolution
#' parameter, \eqn{n_i} is the node weight of node \eqn{i}, \eqn{\sigma_i}{s_i}
#' is the cluster of node \eqn{i} and \eqn{\delta(x, y) = 1}{d(x, y) = 1} if and
#' only if \eqn{x = y} and \eqn{0} otherwise. By setting \eqn{n_i = k_i}, the
#' degree of node \eqn{i}, and dividing \eqn{\gamma}{gamma} by \eqn{2m}, you
#' effectively obtain an expression for modularity.
#'
#' Hence, the standard modularity will be optimized when you supply the degrees
#' as `vertex_weights` and by supplying as a resolution parameter
#' \eqn{\frac{1}{2m}}{1/(2m)}, with \eqn{m} the number of edges. If you do not
#' specify any `vertex_weights`, the correct vertex weights and scaling of
#' \eqn{\gamma}{gamma} is determined automatically by the
#' `objective_function` argument.
#'
#' @param graph The input graph. It must be undirected.
#' @param objective_function Whether to use the Constant Potts Model (CPM) or
#' modularity. Must be either `"CPM"` or `"modularity"`.
#' @param weights The weights of the edges. It must be a positive numeric vector,
#' `NULL` or `NA`. If it is `NULL` and the input graph has a
#' \sQuote{weight} edge attribute, then that attribute will be used. If
#' `NULL` and no such attribute is present, then the edges will have equal
#' weights. Set this to `NA` if the graph was a \sQuote{weight} edge
#' attribute, but you don't want to use it for community detection. A larger
#' edge weight means a stronger connection for this function.
#' @param resolution The resolution parameter to use. Higher
#' resolutions lead to more smaller communities, while lower resolutions lead
#' to fewer larger communities.
#' @param resolution_parameter `r lifecycle::badge("superseded")` Use `resolution` instead.
#' @param beta Parameter affecting the randomness in the Leiden algorithm.
#' This affects only the refinement step of the algorithm.
#' @param initial_membership If provided, the Leiden algorithm
#' will try to improve this provided membership. If no argument is
#' provided, the aglorithm simply starts from the singleton partition.
#' @param n_iterations the number of iterations to iterate the Leiden
#' algorithm. Each iteration may improve the partition further.
#' @param vertex_weights the vertex weights used in the Leiden algorithm.
#' If this is not provided, it will be automatically determined on the basis
#' of the `objective_function`. Please see the details of this function
#' how to interpret the vertex weights.
#' @inheritParams rlang::args_dots_empty
#' @return `cluster_leiden()` returns a [communities()]
#' object, please see the [communities()] manual page for details.
#' @author Vincent Traag
#' @seealso See [communities()] for extracting the membership,
#' modularity scores, etc. from the results.
#'
#' Other community detection algorithms: [cluster_walktrap()],
#' [cluster_spinglass()],
#' [cluster_leading_eigen()],
#' [cluster_edge_betweenness()],
#' [cluster_fast_greedy()],
#' [cluster_label_prop()]
#' [cluster_louvain()]
#' [cluster_fluid_communities()]
#' [cluster_infomap()]
#' [cluster_optimal()]
#' [cluster_walktrap()]
#' @references Traag, V. A., Waltman, L., & van Eck, N. J. (2019). From Louvain
#' to Leiden: guaranteeing well-connected communities. Scientific
#' reports, 9(1), 5233. doi: 10.1038/s41598-019-41695-z, arXiv:1810.08473v3 \[cs.SI\]
#' @family community
#' @export
#' @keywords graphs
#' @examples
#' g <- make_graph("Zachary")
#' # By default CPM is used
#' r <- quantile(strength(g))[2] / (gorder(g) - 1)
#' # Set seed for sake of reproducibility
#' set.seed(1)
#' ldc <- cluster_leiden(g, resolution = r)
#' print(ldc)
#' plot(ldc, g)
cluster_leiden <- function(graph, objective_function = c("CPM", "modularity"),
...,
weights = NULL, resolution = 1,
resolution_parameter = deprecated(), beta = 0.01,
initial_membership = NULL,
n_iterations = 2, vertex_weights = NULL) {
check_dots_empty()
if (lifecycle::is_present(resolution_parameter)) {
lifecycle::deprecate_soft("2.1.0",
"cluster_leiden(resolution_parameter)",
"cluster_leiden(resolution)")
resolution <- resolution_parameter
}
ensure_igraph(graph)
# Parse objective function argument
objective_function <- igraph.match.arg(objective_function)
objective_function <- switch(objective_function,
"cpm" = 0,
"modularity" = 1
)
# Parse edge weights argument
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && !any(is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
# Parse initial_membership argument
if (!is.null(initial_membership) && !any(is.na(initial_membership))) {
initial_membership <- as.numeric(initial_membership)
} else {
initial_membership <- NULL
}
# Parse node weights argument
if (!is.null(vertex_weights) && !any(is.na(vertex_weights))) {
vertex_weights <- as.numeric(vertex_weights)
if (objective_function == 1) { # Using modularity
cli::cli_warn("Providing node weights contradicts using modularity.")
}
} else {
if (objective_function == 1) { # Using modularity
# Set correct node weights
vertex_weights <- strength(graph, weights = weights)
# Also correct resolution parameter
resolution <- resolution / sum(vertex_weights)
}
}
on.exit(.Call(R_igraph_finalizer))
membership <- initial_membership
if (n_iterations > 0) {
res <- .Call(
R_igraph_community_leiden, graph, weights,
vertex_weights, as.numeric(resolution),
as.numeric(beta), !is.null(membership), as.numeric(n_iterations),
membership
)
membership <- res$membership
} else {
prev_quality <- -Inf
quality <- 0.0
while (prev_quality < quality) {
prev_quality <- quality
res <- .Call(
R_igraph_community_leiden, graph, weights,
vertex_weights, as.numeric(resolution),
as.numeric(beta), !is.null(membership), 1,
membership
)
membership <- res$membership
quality <- res$quality
}
}
res$algorithm <- "leiden"
res$vcount <- vcount(graph)
res$membership <- res$membership + 1
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- vertex_attr(graph, "name")
}
class(res) <- "communities"
res
}
#' Community detection algorithm based on interacting fluids
#'
#' The algorithm detects communities based on the simple idea of
#' several fluids interacting in a non-homogeneous environment
#' (the graph topology), expanding and contracting based on their
#' interaction and density.
#'
#' @param graph The input graph. The graph must be simple and connected.
#' Empty graphs are not supported as well as single vertex graphs.
#' Edge directions are ignored. Weights are not considered.
#' @param no.of.communities The number of communities to be found. Must be
#' greater than 0 and fewer than number of vertices in the graph.
#' @return `cluster_fluid_communities()` returns a [communities()]
#' object, please see the [communities()] manual page for details.
#' @author Ferran Parés
#' @seealso See [communities()] for extracting the membership,
#' modularity scores, etc. from the results.
#'
#' Other community detection algorithms: [cluster_walktrap()],
#' [cluster_spinglass()],
#' [cluster_leading_eigen()],
#' [cluster_edge_betweenness()],
#' [cluster_fast_greedy()],
#' [cluster_label_prop()]
#' [cluster_louvain()],
#' [cluster_leiden()]
#' @references Parés F, Gasulla DG, et. al. (2018) Fluid Communities: A Competitive,
#' Scalable and Diverse Community Detection Algorithm. In: Complex Networks
#' & Their Applications VI: Proceedings of Complex Networks 2017 (The Sixth
#' International Conference on Complex Networks and Their Applications),
#' Springer, vol 689, p 229, doi: 10.1007/978-3-319-72150-7_19
#' @family community
#' @export
#' @keywords graphs
#' @examples
#' g <- make_graph("Zachary")
#' comms <- cluster_fluid_communities(g, 2)
cluster_fluid_communities <- function(graph, no.of.communities) {
# Argument checks
ensure_igraph(graph)
no.of.communities <- as.numeric(no.of.communities)
on.exit(.Call(R_igraph_finalizer))
# Function call
membership <- .Call(R_igraph_community_fluid_communities, graph, no.of.communities)
res <- list()
res$membership <- membership + 1
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- V(graph)$name
}
res$vcount <- vcount(graph)
res$algorithm <- "fluid communities"
class(res) <- "communities"
res
}
#' Community structure via short random walks
#'
#' This function tries to find densely connected subgraphs, also called
#' communities in a graph via random walks. The idea is that short random walks
#' tend to stay in the same community.
#'
#' This function is the implementation of the Walktrap community finding
#' algorithm, see Pascal Pons, Matthieu Latapy: Computing communities in large
#' networks using random walks, https://arxiv.org/abs/physics/0512106
#'
#' @param graph The input graph. Edge directions are ignored in directed
#' graphs.
#' @param weights The weights of the edges. It must be a positive numeric vector,
#' `NULL` or `NA`. If it is `NULL` and the input graph has a
#' \sQuote{weight} edge attribute, then that attribute will be used. If
#' `NULL` and no such attribute is present, then the edges will have equal
#' weights. Set this to `NA` if the graph was a \sQuote{weight} edge
#' attribute, but you don't want to use it for community detection. Larger edge
#' weights increase the probability that an edge is selected by the random
#' walker. In other words, larger edge weights correspond to stronger connections.
#' @param steps The length of the random walks to perform.
#' @param merges Logical scalar, whether to include the merge matrix in the
#' result.
#' @param modularity Logical scalar, whether to include the vector of the
#' modularity scores in the result. If the `membership` argument is true,
#' then it will always be calculated.
#' @param membership Logical scalar, whether to calculate the membership vector
#' for the split corresponding to the highest modularity value.
#' @return `cluster_walktrap()` returns a [communities()]
#' object, please see the [communities()] manual page for details.
#' @author Pascal Pons (<http://psl.pons.free.fr/>) and Gabor Csardi
#' \email{csardi.gabor@@gmail.com} for the R and igraph interface
#' @seealso See [communities()] on getting the actual membership
#' vector, merge matrix, modularity score, etc.
#'
#' [modularity()] and [cluster_fast_greedy()],
#' [cluster_spinglass()],
#' [cluster_leading_eigen()],
#' [cluster_edge_betweenness()], [cluster_louvain()],
#' and [cluster_leiden()] for other community detection
#' methods.
#' @references Pascal Pons, Matthieu Latapy: Computing communities in large
#' networks using random walks, https://arxiv.org/abs/physics/0512106
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
#' g <- add_edges(g, c(1, 6, 1, 11, 6, 11))
#' cluster_walktrap(g)
#'
cluster_walktrap <- function(graph, weights = NULL, steps = 4,
merges = TRUE, modularity = TRUE,
membership = TRUE) {
ensure_igraph(graph)
if (membership && !modularity) {
modularity <- TRUE
}
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && !any(is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
on.exit(.Call(R_igraph_finalizer))
res <- .Call(
R_igraph_walktrap_community, graph, weights, as.numeric(steps),
as.logical(merges), as.logical(modularity), as.logical(membership)
)
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- V(graph)$name
}
res$vcount <- vcount(graph)
res$algorithm <- "walktrap"
if (!is.null(res$membership)) {
res$membership <- res$membership + 1
}
if (!is.null(res$merges)) {
res$merges <- res$merges + 1
}
class(res) <- "communities"
res
}
#' Community structure detection based on edge betweenness
#'
#' Community structure detection based on the betweenness of the edges
#' in the network. This method is also known as the Girvan-Newman
#' algorithm.
#'
#' The idea behind this method is that the betweenness of the edges connecting
#' two communities is typically high, as many of the shortest paths between
#' vertices in separate communities pass through them. The algorithm
#' successively removes edges with the highest betweenness, recalculating
#' betweenness values after each removal. This way eventually the network splits
#' into two components, then one of these components splits again, and so on,
#' until all edges are removed. The resulting hierarhical partitioning of the
#' vertices can be encoded as a dendrogram.
#'
#' `cluster_edge_betweenness()` returns various information collected
#' through the run of the algorithm. Specifically, `removed.edges` contains
#' the edge IDs in order of the edges' removal; `edge.betweenness` contains
#' the betweenness of each of these at the time of their removal; and
#' `bridges` contains the IDs of edges whose removal caused a split.
#'
#' @param graph The graph to analyze.
#' @param weights The weights of the edges. It must be a positive numeric vector,
#' `NULL` or `NA`. If it is `NULL` and the input graph has a
#' \sQuote{weight} edge attribute, then that attribute will be used. If
#' `NULL` and no such attribute is present, then the edges will have equal
#' weights. Set this to `NA` if the graph was a \sQuote{weight} edge
#' attribute, but you don't want to use it for community detection. Edge weights
#' are used to calculate weighted edge betweenness. This means that edges are
#' interpreted as distances, not as connection strengths.
#' @param directed Logical constant, whether to calculate directed edge
#' betweenness for directed graphs. It is ignored for undirected graphs.
#' @param edge.betweenness Logical constant, whether to return the edge
#' betweenness of the edges at the time of their removal.
#' @param merges Logical constant, whether to return the merge matrix
#' representing the hierarchical community structure of the network. This
#' argument is called `merges`, even if the community structure algorithm
#' itself is divisive and not agglomerative: it builds the tree from top to
#' bottom. There is one line for each merge (i.e. split) in matrix, the first
#' line is the first merge (last split). The communities are identified by
#' integer number starting from one. Community ids smaller than or equal to
#' \eqn{N}, the number of vertices in the graph, belong to singleton
#' communities, i.e. individual vertices. Before the first merge we have \eqn{N}
#' communities numbered from one to \eqn{N}. The first merge, the first line of
#' the matrix creates community \eqn{N+1}, the second merge creates community
#' \eqn{N+2}, etc.
#' @param bridges Logical constant, whether to return a list the edge removals
#' which actually splitted a component of the graph.
#' @param modularity Logical constant, whether to calculate the maximum
#' modularity score, considering all possibly community structures along the
#' edge-betweenness based edge removals.
#' @param membership Logical constant, whether to calculate the membership
#' vector corresponding to the highest possible modularity score.
#' @return `cluster_edge_betweenness()` returns a
#' [communities()] object, please see the [communities()]
#' manual page for details.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [edge_betweenness()] for the definition and calculation
#' of the edge betweenness, [cluster_walktrap()],
#' [cluster_fast_greedy()],
#' [cluster_leading_eigen()] for other community detection
#' methods.
#'
#' See [communities()] for extracting the results of the community
#' detection.
#' @references M Newman and M Girvan: Finding and evaluating community
#' structure in networks, *Physical Review E* 69, 026113 (2004)
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- sample_pa(100, m = 2, directed = FALSE)
#' eb <- cluster_edge_betweenness(g)
#'
#' g <- make_full_graph(10) %du% make_full_graph(10)
#' g <- add_edges(g, c(1, 11))
#' eb <- cluster_edge_betweenness(g)
#' eb
#'
cluster_edge_betweenness <- function(graph, weights = NULL,
directed = TRUE,
edge.betweenness = TRUE,
merges = TRUE, bridges = TRUE,
modularity = TRUE,
membership = TRUE) {
ensure_igraph(graph)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
on.exit(.Call(R_igraph_finalizer))
res <- .Call(
R_igraph_community_edge_betweenness, graph, weights,
as.logical(directed),
as.logical(edge.betweenness),
as.logical(merges), as.logical(bridges),
as.logical(modularity), as.logical(membership)
)
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- V(graph)$name
}
res$vcount <- vcount(graph)
res$algorithm <- "edge betweenness"
res$membership <- res$membership + 1
res$merges <- res$merges + 1
res$removed.edges <- res$removed.edges + 1
res$bridges <- res$bridges + 1
class(res) <- "communities"
res
}
#' Community structure via greedy optimization of modularity
#'
#' This function tries to find dense subgraph, also called communities in
#' graphs via directly optimizing a modularity score.
#'
#' This function implements the fast greedy modularity optimization algorithm
#' for finding community structure, see A Clauset, MEJ Newman, C Moore: Finding
#' community structure in very large networks,
#' http://www.arxiv.org/abs/cond-mat/0408187 for the details.
#'
#' @param graph The input graph. It must be undirected and must not have
#' multi-edges.
#' @param merges Logical scalar, whether to return the merge matrix.
#' @param modularity Logical scalar, whether to return a vector containing the
#' modularity after each merge.
#' @param membership Logical scalar, whether to calculate the membership vector
#' corresponding to the maximum modularity score, considering all possible
#' community structures along the merges.
#' @param weights The weights of the edges. It must be a positive numeric vector,
#' `NULL` or `NA`. If it is `NULL` and the input graph has a
#' \sQuote{weight} edge attribute, then that attribute will be used. If
#' `NULL` and no such attribute is present, then the edges will have equal
#' weights. Set this to `NA` if the graph was a \sQuote{weight} edge
#' attribute, but you don't want to use it for community detection. A larger
#' edge weight means a stronger connection for this function.
#' @return `cluster_fast_greedy()` returns a [communities()]
#' object, please see the [communities()] manual page for details.
#' @author Tamas Nepusz \email{ntamas@@gmail.com} and Gabor Csardi
#' \email{csardi.gabor@@gmail.com} for the R interface.
#' @seealso [communities()] for extracting the results.
#'
#' See also [cluster_walktrap()],
#' [cluster_spinglass()],
#' [cluster_leading_eigen()] and
#' [cluster_edge_betweenness()], [cluster_louvain()]
#' [cluster_leiden()] for other methods.
#' @references A Clauset, MEJ Newman, C Moore: Finding community structure in
#' very large networks, http://www.arxiv.org/abs/cond-mat/0408187
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
#' g <- add_edges(g, c(1, 6, 1, 11, 6, 11))
#' fc <- cluster_fast_greedy(g)
#' membership(fc)
#' sizes(fc)
#'
cluster_fast_greedy <- function(graph, merges = TRUE, modularity = TRUE,
membership = TRUE, weights = NULL) {
ensure_igraph(graph)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
on.exit(.Call(R_igraph_finalizer))
res <- .Call(
R_igraph_community_fastgreedy, graph, as.logical(merges),
as.logical(modularity), as.logical(membership), weights
)
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- V(graph)$name
}
res$algorithm <- "fast greedy"
res$vcount <- vcount(graph)
res$membership <- res$membership + 1
res$merges <- res$merges + 1
class(res) <- "communities"
res
}
igraph.i.levc.arp <- function(externalP, externalE) {
f <- function(v) {
v <- as.numeric(v)
.Call(R_igraph_i_levc_arp, externalP, externalE, v)
}
f
}
#' Community structure detecting based on the leading eigenvector of the
#' community matrix
#'
#' This function tries to find densely connected subgraphs in a graph by
#' calculating the leading non-negative eigenvector of the modularity matrix of
#' the graph.
#'
#' The function documented in these section implements the \sQuote{leading
#' eigenvector} method developed by Mark Newman, see the reference below.
#'
#' The heart of the method is the definition of the modularity matrix,
#' `B`, which is `B=A-P`, `A` being the adjacency matrix of the
#' (undirected) network, and `P` contains the probability that certain
#' edges are present according to the \sQuote{configuration model}. In other
#' words, a `P[i,j]` element of `P` is the probability that there is
#' an edge between vertices `i` and `j` in a random network in which
#' the degrees of all vertices are the same as in the input graph.
#'
#' The leading eigenvector method works by calculating the eigenvector of the
#' modularity matrix for the largest positive eigenvalue and then separating
#' vertices into two community based on the sign of the corresponding element
#' in the eigenvector. If all elements in the eigenvector are of the same sign
#' that means that the network has no underlying comuunity structure. Check
#' Newman's paper to understand why this is a good method for detecting
#' community structure.
#'
#' @param graph The input graph. Should be undirected as the method needs a
#' symmetric matrix.
#' @param steps The number of steps to take, this is actually the number of
#' tries to make a step. It is not a particularly useful parameter.
#' @param weights The weights of the edges. It must be a positive numeric vector,
#' `NULL` or `NA`. If it is `NULL` and the input graph has a
#' \sQuote{weight} edge attribute, then that attribute will be used. If
#' `NULL` and no such attribute is present, then the edges will have equal
#' weights. Set this to `NA` if the graph was a \sQuote{weight} edge
#' attribute, but you don't want to use it for community detection. A larger
#' edge weight means a stronger connection for this function.
#' @param start `NULL`, or a numeric membership vector, giving the start
#' configuration of the algorithm.
#' @param options A named list to override some ARPACK options.
#' @param callback If not `NULL`, then it must be callback function. This
#' is called after each iteration, after calculating the leading eigenvector of
#' the modularity matrix. See details below.
#' @param extra Additional argument to supply to the callback function.
#' @param env The environment in which the callback function is evaluated.
#' @return `cluster_leading_eigen()` returns a named list with the
#' following members: \item{membership}{The membership vector at the end of the
#' algorithm, when no more splits are possible.} \item{merges}{The merges
#' matrix starting from the state described by the `membership` member.
#' This is a two-column matrix and each line describes a merge of two
#' communities, the first line is the first merge and it creates community
#' \sQuote{`N`}, `N` is the number of initial communities in the
#' graph, the second line creates community `N+1`, etc. }
#' \item{options}{Information about the underlying ARPACK computation, see
#' [arpack()] for details. }
#' @section Callback functions: The `callback` argument can be used to
#' supply a function that is called after each eigenvector calculation. The
#' following arguments are supplied to this function: \describe{
#' \item{membership}{The actual membership vector, with zero-based indexing.}
#' \item{community}{The community that the algorithm just tried to split,
#' community numbering starts with zero here.}
#' \item{value}{The eigenvalue belonging to the leading eigenvector the
#' algorithm just found.}
#' \item{vector}{The leading eigenvector the algorithm just found.}
#' \item{multiplier}{An R function that can be used to multiple the actual
#' modularity matrix with an arbitrary vector. Supply the vector as an
#' argument to perform this multiplication. This function can be used
#' with ARPACK.}
#' \item{extra}{The `extra` argument that was passed to
#' `cluster_leading_eigen()`. }
#' The callback function should return a scalar number. If this number
#' is non-zero, then the clustering is terminated.
#' }
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [modularity()], [cluster_walktrap()],
#' [cluster_edge_betweenness()],
#' [cluster_fast_greedy()], [as.dendrogram()]
#' @references MEJ Newman: Finding community structure using the eigenvectors
#' of matrices, Physical Review E 74 036104, 2006.
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
#' g <- add_edges(g, c(1, 6, 1, 11, 6, 11))
#' lec <- cluster_leading_eigen(g)
#' lec
#'
#' cluster_leading_eigen(g, start = membership(lec))
#'
cluster_leading_eigen <- function(graph, steps = -1, weights = NULL,
start = NULL,
options = arpack_defaults(),
callback = NULL, extra = NULL,
env = parent.frame()) {
if (is.function(options)) {
lifecycle::deprecate_soft(
"1.6.0",
"cluster_leading_eigen(options = 'must be a list')",
details = c("`arpack_defaults()` is now a function, use `options = arpack_defaults()` instead of `options = arpack_defaults`.")
)
options <- options()
}
# Argument checks
ensure_igraph(graph)
steps <- as.numeric(steps)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
if (!is.null(start)) {
start <- as.numeric(start) - 1
}
options <- modify_list(arpack_defaults(), options)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(
R_igraph_community_leading_eigenvector, graph, steps,
weights, options, start, callback, extra, env,
environment(igraph.i.levc.arp)
)
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- V(graph)$name
}
res$algorithm <- "leading eigenvector"
res$vcount <- vcount(graph)
res$membership <- res$membership + 1
res$merges <- res$merges + 1
res$history <- res$history + 1
class(res) <- "communities"
res
}
#' Finding communities based on propagating labels
#'
#' This is a fast, nearly linear time algorithm for detecting community
#' structure in networks. In works by labeling the vertices with unique labels
#' and then updating the labels by majority voting in the neighborhood of the
#' vertex.
#'
#' This function implements the community detection method described in:
#' Raghavan, U.N. and Albert, R. and Kumara, S.: Near linear time algorithm to
#' detect community structures in large-scale networks. Phys Rev E 76, 036106.
#' (2007). This version extends the original method by the ability to take edge
#' weights into consideration and also by allowing some labels to be fixed.
#'
#' From the abstract of the paper: \dQuote{In our algorithm every node is
#' initialized with a unique label and at every step each node adopts the label
#' that most of its neighbors currently have. In this iterative process densely
#' connected groups of nodes form a consensus on a unique label to form
#' communities.}
#'
#' @param graph The input graph. Note that the algorithm was originally
#' defined for undirected graphs. You are advised to set \sQuote{mode} to
#' `all` if you pass a directed graph here to treat it as
#' undirected.
#' @param weights The weights of the edges. It must be a positive numeric vector,
#' `NULL` or `NA`. If it is `NULL` and the input graph has a
#' \sQuote{weight} edge attribute, then that attribute will be used. If
#' `NULL` and no such attribute is present, then the edges will have equal
#' weights. Set this to `NA` if the graph was a \sQuote{weight} edge
#' attribute, but you don't want to use it for community detection. A larger
#' edge weight means a stronger connection for this function.
#' @inheritParams rlang::args_dots_empty
#' @param mode Logical, whether to consider edge directions for the label propagation,
#' and if so, in which direction the labels should propagate. Ignored for undirected graphs.
#' "all" means to ignore edge directions (even in directed graphs).
#' "out" means to propagate labels along the natural direction of the edges.
#' "in" means to propagate labels backwards (i.e. from head to tail).
#' @param initial The initial state. If `NULL`, every vertex will have a
#' different label at the beginning. Otherwise it must be a vector with an
#' entry for each vertex. Non-negative values denote different labels, negative
#' entries denote vertices without labels.
#' @param fixed Logical vector denoting which labels are fixed. Of course this
#' makes sense only if you provided an initial state, otherwise this element
#' will be ignored. Also note that vertices without labels cannot be fixed.
#' @return `cluster_label_prop()` returns a
#' [communities()] object, please see the [communities()]
#' manual page for details.
#' @author Tamas Nepusz \email{ntamas@@gmail.com} for the C implementation,
#' Gabor Csardi \email{csardi.gabor@@gmail.com} for this manual page.
#' @seealso [communities()] for extracting the actual results.
#'
#' [cluster_fast_greedy()], [cluster_walktrap()],
#' [cluster_spinglass()], [cluster_louvain()] and
#' [cluster_leiden()] for other community detection methods.
#' @references Raghavan, U.N. and Albert, R. and Kumara, S.: Near linear time
#' algorithm to detect community structures in large-scale networks. *Phys
#' Rev E* 76, 036106. (2007)
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- sample_gnp(10, 5 / 10) %du% sample_gnp(9, 5 / 9)
#' g <- add_edges(g, c(1, 12))
#' cluster_label_prop(g)
#'
cluster_label_prop <- function(
graph,
weights = NULL,
...,
mode = c("out", "in", "all"),
initial = NULL,
fixed = NULL) {
if (...length() > 0) {
lifecycle::deprecate_soft(
"1.6.0",
"cluster_label_prop(... = )",
details = "Arguments `initial` and `fixed` must be named."
)
dots <- list(...)
dots[["graph"]] <- graph
dots[["weights"]] <- weights
if (!is.null(initial)) {
dots[["initial"]] <- initial
}
if (!is.null(fixed)) {
dots[["fixed"]] <- fixed
}
return(inject(cluster_label_prop0(!!!dots)))
}
cluster_label_prop0(graph, weights, mode, initial, fixed)
}
cluster_label_prop0 <- function(
graph,
weights = NULL,
mode = c("out", "in", "all"),
initial = NULL,
fixed = NULL) {
# Argument checks
ensure_igraph(graph)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
if (!is.null(initial)) initial <- as.numeric(initial)
if (!is.null(fixed)) fixed <- as.logical(fixed)
directed <- switch(igraph.match.arg(mode), "out" = TRUE, "in" = TRUE, "all" = FALSE)
mode <- switch(igraph.match.arg(mode), "out" = 1L, "in" = 2L, "all" = 3L)
on.exit(.Call(R_igraph_finalizer))
# Function call
membership <- .Call(R_igraph_community_label_propagation, graph, mode, weights, initial, fixed)
res <- list()
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- V(graph)$name
}
res$vcount <- vcount(graph)
res$algorithm <- "label propagation"
res$membership <- membership + 1
res$modularity <- modularity(graph, res$membership, weights, directed)
class(res) <- "communities"
res
}
#' Finding community structure by multi-level optimization of modularity
#'
#' This function implements the multi-level modularity optimization algorithm
#' for finding community structure, see references below. It is based on the
#' modularity measure and a hierarchical approach.
#'
#' This function implements the multi-level modularity optimization algorithm
#' for finding community structure, see VD Blondel, J-L Guillaume, R Lambiotte
#' and E Lefebvre: Fast unfolding of community hierarchies in large networks,
#' <https://arxiv.org/abs/0803.0476> for the details.
#'
#' It is based on the modularity measure and a hierarchical approach.
#' Initially, each vertex is assigned to a community on its own. In every step,
#' vertices are re-assigned to communities in a local, greedy way: each vertex
#' is moved to the community with which it achieves the highest contribution to
#' modularity. When no vertices can be reassigned, each community is considered
#' a vertex on its own, and the process starts again with the merged
#' communities. The process stops when there is only a single vertex left or
#' when the modularity cannot be increased any more in a step. Since igraph 1.3,
#' vertices are processed in a random order.
#'
#' This function was contributed by Tom Gregorovic.
#'
#' @param graph The input graph. It must be undirected.
#' @param weights The weights of the edges. It must be a positive numeric vector,
#' `NULL` or `NA`. If it is `NULL` and the input graph has a
#' \sQuote{weight} edge attribute, then that attribute will be used. If
#' `NULL` and no such attribute is present, then the edges will have equal
#' weights. Set this to `NA` if the graph was a \sQuote{weight} edge
#' attribute, but you don't want to use it for community detection. A larger
#' edge weight means a stronger connection for this function.
#' @param resolution Optional resolution parameter that allows the user to
#' adjust the resolution parameter of the modularity function that the algorithm
#' uses internally. Lower values typically yield fewer, larger clusters. The
#' original definition of modularity is recovered when the resolution parameter
#' is set to 1.
#' @return `cluster_louvain()` returns a [communities()]
#' object, please see the [communities()] manual page for details.
#' @author Tom Gregorovic, Tamas Nepusz \email{ntamas@@gmail.com}
#' @seealso See [communities()] for extracting the membership,
#' modularity scores, etc. from the results.
#'
#' Other community detection algorithms: [cluster_walktrap()],
#' [cluster_spinglass()],
#' [cluster_leading_eigen()],
#' [cluster_edge_betweenness()],
#' [cluster_fast_greedy()],
#' [cluster_label_prop()]
#' [cluster_leiden()]
#' @references Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte,
#' Etienne Lefebvre: Fast unfolding of communities in large networks. J. Stat.
#' Mech. (2008) P10008
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' # This is so simple that we will have only one level
#' g <- make_full_graph(5) %du% make_full_graph(5) %du% make_full_graph(5)
#' g <- add_edges(g, c(1, 6, 1, 11, 6, 11))
#' cluster_louvain(g)
#'
cluster_louvain <- function(graph, weights = NULL, resolution = 1) {
# Argument checks
ensure_igraph(graph)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
resolution <- as.numeric(resolution)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_community_multilevel, graph, weights, resolution)
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- V(graph)$name
}
res$vcount <- vcount(graph)
res$algorithm <- "multi level"
res$membership <- res$membership + 1
res$memberships <- res$memberships + 1
class(res) <- "communities"
res
}
#' Optimal community structure
#'
#' This function calculates the optimal community structure of a graph, by
#' maximizing the modularity measure over all possible partitions.
#'
#' This function calculates the optimal community structure for a graph, in
#' terms of maximal modularity score.
#'
#' The calculation is done by transforming the modularity maximization into an
#' integer programming problem, and then calling the GLPK library to solve
#' that. Please the reference below for details.
#'
#' Note that modularity optimization is an NP-complete problem, and all known
#' algorithms for it have exponential time complexity. This means that you
#' probably don't want to run this function on larger graphs. Graphs with up to
#' fifty vertices should be fine, graphs with a couple of hundred vertices
#' might be possible.
#'
#' @section Examples:
#' \preformatted{
#'
#' ## Zachary's karate club
#' g <- make_graph("Zachary")
#'
#' ## We put everything into a big 'try' block, in case
#' ## igraph was compiled without GLPK support
#'
#' ## The calculation only takes a couple of seconds
#' oc <- cluster_optimal(g)
#'
#' ## Double check the result
#' print(modularity(oc))
#' print(modularity(g, membership(oc)))
#'
#' ## Compare to the greedy optimizer
#' fc <- cluster_fast_greedy(g)
#' print(modularity(fc))
#' }
#'
#' @param graph The input graph. It may be undirected or directed.
#' @param weights The weights of the edges. It must be a positive numeric
#' vector, `NULL` or `NA`. If it is `NULL` and the input graph has a
#' \sQuote{weight} edge attribute, then that attribute will be used. If
#' `NULL` and no such attribute is present, then the edges will have equal
#' weights. Set this to `NA` if the graph was a \sQuote{weight} edge
#' attribute, but you don't want to use it for community detection. A larger
#' edge weight means a stronger connection for this function.
#' @return `cluster_optimal()` returns a [communities()] object,
#' please see the [communities()] manual page for details.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [communities()] for the documentation of the result,
#' [modularity()]. See also [cluster_fast_greedy()] for a
#' fast greedy optimizer.
#' @references Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke,
#' Martin Hoefer, Zoran Nikoloski, Dorothea Wagner: On Modularity Clustering,
#' *IEEE Transactions on Knowledge and Data Engineering* 20(2):172-188,
#' 2008.
#' @family community
#' @export
#' @keywords graphs
cluster_optimal <- function(graph, weights = NULL) {
# Argument checks
ensure_igraph(graph)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_community_optimal_modularity, graph, weights)
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- V(graph)$name
}
res$vcount <- vcount(graph)
res$algorithm <- "optimal"
res$membership <- res$membership + 1
class(res) <- "communities"
res
}
#' Infomap community finding
#'
#' Find community structure that minimizes the expected description length of a
#' random walker trajectory. If the graph is directed, edge directions will
#' be taken into account.
#'
#' Please see the details of this method in the references given below.
#'
#' @param graph The input graph. Edge directions will be taken into account.
#' @param e.weights If not `NULL`, then a numeric vector of edge weights.
#' The length must match the number of edges in the graph. By default the
#' \sQuote{`weight`} edge attribute is used as weights. If it is not
#' present, then all edges are considered to have the same weight.
#' Larger edge weights correspond to stronger connections.
#' @param v.weights If not `NULL`, then a numeric vector of vertex
#' weights. The length must match the number of vertices in the graph. By
#' default the \sQuote{`weight`} vertex attribute is used as weights. If
#' it is not present, then all vertices are considered to have the same weight.
#' A larger vertex weight means a larger probability that the random surfer
#' jumps to that vertex.
#' @param nb.trials The number of attempts to partition the network (can be any
#' integer value equal or larger than 1).
#' @param modularity Logical scalar, whether to calculate the modularity score
#' of the detected community structure.
#' @return `cluster_infomap()` returns a [communities()] object,
#' please see the [communities()] manual page for details.
#' @author Martin Rosvall wrote the original C++ code. This was ported to
#' be more igraph-like by Emmanuel Navarro. The R interface and
#' some cosmetics was done by Gabor Csardi \email{csardi.gabor@@gmail.com}.
#' @seealso Other community finding methods and [communities()].
#' @references The original paper: M. Rosvall and C. T. Bergstrom, Maps of
#' information flow reveal community structure in complex networks, *PNAS*
#' 105, 1118 (2008) \doi{10.1073/pnas.0706851105}, <https://arxiv.org/abs/0707.0609>
#'
#' A more detailed paper: M. Rosvall, D. Axelsson, and C. T. Bergstrom, The map
#' equation, *Eur. Phys. J. Special Topics* 178, 13 (2009).
#' \doi{10.1140/epjst/e2010-01179-1}, <https://arxiv.org/abs/0906.1405>.
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' ## Zachary's karate club
#' g <- make_graph("Zachary")
#'
#' imc <- cluster_infomap(g)
#' membership(imc)
#' communities(imc)
#'
cluster_infomap <- function(graph, e.weights = NULL, v.weights = NULL,
nb.trials = 10, modularity = TRUE) {
# Argument checks
ensure_igraph(graph)
if (is.null(e.weights) && "weight" %in% edge_attr_names(graph)) {
e.weights <- E(graph)$weight
}
if (!is.null(e.weights) && any(!is.na(e.weights))) {
e.weights <- as.numeric(e.weights)
} else {
e.weights <- NULL
}
if (is.null(v.weights) && "weight" %in% vertex_attr_names(graph)) {
v.weights <- V(graph)$weight
}
if (!is.null(v.weights) && any(!is.na(v.weights))) {
v.weights <- as.numeric(v.weights)
} else {
v.weights <- NULL
}
nb.trials <- as.numeric(nb.trials)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(
R_igraph_community_infomap, graph, e.weights,
v.weights, nb.trials
)
if (igraph_opt("add.vertex.names") && is_named(graph)) {
res$names <- V(graph)$name
}
res$vcount <- vcount(graph)
res$algorithm <- "infomap"
res$membership <- res$membership + 1
if (modularity) {
res$modularity <- modularity(graph, res$membership, weights = e.weights)
}
class(res) <- "communities"
res
}
#' @rdname communities
#' @method plot communities
#' @export
#' @importFrom graphics plot
plot.communities <- function(x, y,
col = membership(x),
mark.groups = communities(x),
edge.color = c("black", "red")[crossing(x, y) + 1],
...) {
plot(y,
vertex.color = col, mark.groups = mark.groups,
edge.color = edge.color,
...
)
}
#' @rdname plot_dendrogram.communities
#' @export
plot_dendrogram <- function(x, mode = igraph_opt("dend.plot.type"), ...) {
UseMethod("plot_dendrogram")
}
#' Community structure dendrogram plots
#'
#' Plot a hierarchical community structure as a dendrogram.
#'
#' `plot_dendrogram()` supports three different plotting functions, selected via
#' the `mode` argument. By default the plotting function is taken from the
#' `dend.plot.type` igraph option, and it has for possible values:
#' \itemize{ \item `auto` Choose automatically between the plotting
#' functions. As `plot.phylo` is the most sophisticated, that is choosen,
#' whenever the `ape` package is available. Otherwise `plot.hclust`
#' is used. \item `phylo` Use `plot.phylo` from the `ape`
#' package. \item `hclust` Use `plot.hclust` from the `stats`
#' package. \item `dendrogram` Use `plot.dendrogram` from the
#' `stats` package. }
#'
#' The different plotting functions take different sets of arguments. When
#' using `plot.phylo` (`mode="phylo"`), we have the following syntax:
#' \preformatted{
#' plot_dendrogram(x, mode="phylo", colbar = palette(),
#' edge.color = NULL, use.edge.length = FALSE, \dots)
#' } The extra arguments not documented above: \itemize{
#' \item `colbar` Color bar for the edges.
#' \item `edge.color` Edge colors. If `NULL`, then the
#' `colbar` argument is used.
#' \item `use.edge.length` Passed to `plot.phylo`.
#' \item `dots` Attitional arguments to pass to `plot.phylo`.
#' }
#'
#' The syntax for `plot.hclust` (`mode="hclust"`): \preformatted{
#' plot_dendrogram(x, mode="hclust", rect = 0, colbar = palette(),
#' hang = 0.01, ann = FALSE, main = "", sub = "", xlab = "",
#' ylab = "", \dots)
#' } The extra arguments not documented above: \itemize{
#' \item `rect` A numeric scalar, the number of groups to mark on
#' the dendrogram. The dendrogram is cut into exactly `rect`
#' groups and they are marked via the `rect.hclust` command. Set
#' this to zero if you don't want to mark any groups.
#' \item `colbar` The colors of the rectangles that mark the
#' vertex groups via the `rect` argument.
#' \item `hang` Where to put the leaf nodes, this corresponds to the
#' `hang` argument of `plot.hclust`.
#' \item `ann` Whether to annotate the plot, the `ann`
#' argument of `plot.hclust`.
#' \item `main` The main title of the plot, the `main` argument
#' of `plot.hclust`.
#' \item `sub` The sub-title of the plot, the `sub` argument of
#' `plot.hclust`.
#' \item `xlab` The label on the horizontal axis, passed to
#' `plot.hclust`.
#' \item `ylab` The label on the vertical axis, passed to
#' `plot.hclust`.
#' \item `dots` Attitional arguments to pass to `plot.hclust`.
#' }
#'
#' The syntax for `plot.dendrogram` (`mode="dendrogram"`):
#' \preformatted{
#' plot_dendrogram(x, \dots)
#' } The extra arguments are simply passed to [as.dendrogram()].
#'
#' @param x An object containing the community structure of a graph. See
#' [communities()] for details.
#' @param mode Which dendrogram plotting function to use. See details below.
#' @param \dots Additional arguments to supply to the dendrogram plotting
#' function.
#' @param use.modularity Logical scalar, whether to use the modularity values
#' to define the height of the branches.
#' @param palette The color palette to use for colored plots.
#' @return Returns whatever the return value was from the plotting function,
#' `plot.phylo`, `plot.dendrogram` or `plot.hclust`.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @method plot_dendrogram communities
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' karate <- make_graph("Zachary")
#' fc <- cluster_fast_greedy(karate)
#' plot_dendrogram(fc)
#'
plot_dendrogram.communities <- function(x,
mode = igraph_opt("dend.plot.type"), ...,
use.modularity = FALSE,
palette = categorical_pal(8)) {
mode <- igraph.match.arg(mode, c("auto", "phylo", "hclust", "dendrogram"))
old_palette <- palette(palette)
on.exit(palette(old_palette), add = TRUE)
if (mode == "auto") {
have_ape <- requireNamespace("ape", quietly = TRUE)
mode <- if (have_ape) "phylo" else "hclust"
}
if (mode == "hclust") {
dendPlotHclust(x, use.modularity = use.modularity, ...)
} else if (mode == "dendrogram") {
dendPlotDendrogram(x, use.modularity = use.modularity, ...)
} else if (mode == "phylo") {
dendPlotPhylo(x, use.modularity = use.modularity, ...)
}
}
#' @importFrom grDevices palette
#' @importFrom graphics plot
#' @importFrom stats rect.hclust
dendPlotHclust <- function(communities, rect = length(communities),
colbar = palette(), hang = -1, ann = FALSE,
main = "", sub = "", xlab = "", ylab = "", ...,
use.modularity = FALSE) {
hc <- as.hclust(communities, hang = hang, use.modularity = use.modularity)
ret <- plot(hc,
hang = hang, ann = ann, main = main, sub = sub, xlab = xlab,
ylab = ylab, ...
)
if (rect > 0) {
rect.hclust(hc, k = rect, border = colbar)
}
invisible(ret)
}
#' @importFrom graphics plot
dendPlotDendrogram <- function(communities, hang = -1, ...,
use.modularity = FALSE) {
plot(
as.dendrogram(communities, hang = hang, use.modularity = use.modularity),
...
)
}
#' @importFrom grDevices palette
#' @importFrom graphics plot
dendPlotPhylo <- function(communities, colbar = palette(),
col = colbar[membership(communities)],
mark.groups = communities(communities),
use.modularity = FALSE,
edge.color = "#AAAAAAFF",
edge.lty = c(1, 2), ...) {
phy <- ape::as.phylo(communities, use.modularity = use.modularity)
getedges <- function(tip) {
repeat {
ee <- which(!phy$edge[, 1] %in% tip & phy$edge[, 2] %in% tip)
if (length(ee) <= 1) {
break
}
tip <- c(tip, unique(phy$edge[ee, 1]))
}
ed <- which(phy$edge[, 1] %in% tip & phy$edge[, 2] %in% tip)
eds <- phy$edge[ed, 1]
good <- which(phy$edge[ed, 1] %in% which(tabulate(eds) != 1))
ed[good]
}
gredges <- lapply(mark.groups, getedges)
if (length(mark.groups) > 0) {
ecol <- rep(edge.color, nrow(phy$edge))
for (gr in seq_along(gredges)) {
ecol[gredges[[gr]]] <- colbar[gr]
}
} else {
ecol <- edge.color
}
elty <- rep(edge.lty[2], nrow(phy$edge))
elty[unlist(gredges)] <- edge.lty[1]
plot(phy, edge.color = ecol, edge.lty = elty, tip.color = col, ...)
}
#' Compares community structures using various metrics
#'
#' This function assesses the distance between two community structures.
#'
#'
#' @aliases compare.communities compare.membership
#' @param comm1 A [communities()] object containing a community
#' structure; or a numeric vector, the membership vector of the first community
#' structure. The membership vector should contain the community id of each
#' vertex, the numbering of the communities starts with one.
#' @param comm2 A [communities()] object containing a community
#' structure; or a numeric vector, the membership vector of the second
#' community structure, in the same format as for the previous argument.
#' @param method Character scalar, the comparison method to use. Possible
#' values: \sQuote{vi} is the variation of information (VI) metric of Meila
#' (2003), \sQuote{nmi} is the normalized mutual information measure proposed
#' by Danon et al. (2005), \sQuote{split.join} is the split-join distance of
#' can Dongen (2000), \sQuote{rand} is the Rand index of Rand (1971),
#' \sQuote{adjusted.rand} is the adjusted Rand index by Hubert and Arabie
#' (1985).
#' @return A real number.
#' @author Tamas Nepusz \email{ntamas@@gmail.com}
#' @references Meila M: Comparing clusterings by the variation of information.
#' In: Scholkopf B, Warmuth MK (eds.). *Learning Theory and Kernel
#' Machines: 16th Annual Conference on Computational Learning Theory and 7th
#' Kernel Workshop*, COLT/Kernel 2003, Washington, DC, USA. Lecture Notes in
#' Computer Science, vol. 2777, Springer, 2003. ISBN: 978-3-540-40720-1.
#'
#' Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community structure
#' identification. *J Stat Mech* P09008, 2005.
#'
#' van Dongen S: Performance criteria for graph clustering and Markov cluster
#' experiments. Technical Report INS-R0012, National Research Institute for
#' Mathematics and Computer Science in the Netherlands, Amsterdam, May 2000.
#'
#' Rand WM: Objective criteria for the evaluation of clustering methods.
#' *J Am Stat Assoc* 66(336):846-850, 1971.
#'
#' Hubert L and Arabie P: Comparing partitions. *Journal of
#' Classification* 2:193-218, 1985.
#' @family community
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- make_graph("Zachary")
#' sg <- cluster_spinglass(g)
#' le <- cluster_leading_eigen(g)
#' compare(sg, le, method = "rand")
#' compare(membership(sg), membership(le))
#'
compare <- function(comm1, comm2, method = c(
"vi", "nmi",
"split.join", "rand",
"adjusted.rand"
)) {
UseMethod("compare")
}
#' @method compare communities
#' @family community
#' @export
compare.communities <- function(comm1, comm2,
method = c(
"vi", "nmi", "split.join", "rand",
"adjusted.rand"
)) {
i_compare(comm1, comm2, method)
}
#' @method compare membership
#' @family community
#' @export
compare.membership <- function(comm1, comm2,
method = c(
"vi", "nmi", "split.join", "rand",
"adjusted.rand"
)) {
i_compare(comm1, comm2, method)
}
#' @method compare default
#' @family community
#' @export
compare.default <- compare.membership
i_compare <- function(comm1, comm2, method = c(
"vi", "nmi", "split.join",
"rand", "adjusted.rand"
)) {
comm1 <- if (inherits(comm1, "communities")) {
as.numeric(membership(comm1))
} else {
as.numeric(as.factor(comm1))
}
comm2 <- if (inherits(comm2, "communities")) {
as.numeric(membership(comm2))
} else {
as.numeric(as.factor(comm2))
}
method <- switch(igraph.match.arg(method),
vi = 0L,
nmi = 1L,
split.join = 2L,
rand = 3L,
adjusted.rand = 4L
)
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_compare_communities, comm1, comm2, method)
res
}
#' Split-join distance of two community structures
#'
#' The split-join distance between partitions A and B is the sum of the
#' projection distance of A from B and the projection distance of B from
#' A. The projection distance is an asymmetric measure and it is defined as
#' follows:
#'
#' First, each set in partition A is evaluated against all sets in
#' partition B. For each set in partition A, the best matching set in
#' partition B is found and the overlap size is calculated. (Matching is
#' quantified by the size of the overlap between the two sets). Then, the
#' maximal overlap sizes for each set in A are summed together and
#' subtracted from the number of elements in A.
#'
#' The split-join distance will be returned as two numbers, the first is
#' the projection distance of the first partition from the
#' second, while the second number is the projection distance of the second
#' partition from the first. This makes it easier to detect whether a
#' partition is a subpartition of the other, since in this case, the
#' corresponding distance will be zero.
#'
#' @param comm1 The first community structure.
#' @param comm2 The second community structure.
#' @return Two integer numbers, see details below.
#'
#' @references
#' van Dongen S: Performance criteria for graph clustering and Markov
#' cluster experiments. Technical Report INS-R0012, National Research
#' Institute for Mathematics and Computer Science in the Netherlands,
#' Amsterdam, May 2000.
#'
#' @family community
#' @export
split_join_distance <- function(comm1, comm2) {
comm1 <- if (inherits(comm1, "communities")) {
as.numeric(membership(comm1))
} else {
as.numeric(comm1)
}
comm2 <- if (inherits(comm2, "communities")) {
as.numeric(membership(comm2))
} else {
as.numeric(comm2)
}
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_split_join_distance, comm1, comm2)
unlist(res)
}
#' Groups of a vertex partitioning
#'
#' Create a list of vertex groups from some graph clustering or community
#' structure.
#'
#' Currently two methods are defined for this function. The default method
#' works on the output of [components()]. (In fact it works on any
#' object that is a list with an entry called `membership`.)
#'
#' The second method works on [communities()] objects.
#'
#' @aliases groups.default groups.communities
#' @param x Some object that represents a grouping of the vertices. See details
#' below.
#' @return A named list of numeric or character vectors. The names are just
#' numbers that refer to the groups. The vectors themselves are numeric or
#' symbolic vertex ids.
#' @seealso [components()] and the various community finding
#' functions.
#' @examples
#' g <- make_graph("Zachary")
#' fgc <- cluster_fast_greedy(g)
#' groups(fgc)
#'
#' g2 <- make_ring(10) + make_full_graph(5)
#' groups(components(g2))
#' @family community
#' @export
groups <- function(x) {
UseMethod("groups")
}
#' @method groups default
#' @family community
#' @export
groups.default <- function(x) {
vids <- names(x$membership)
if (is.null(vids)) vids <- seq_along(x$membership)
tapply(vids, x$membership, simplify = FALSE, function(x) x)
}
#' @method groups communities
#' @family community
#' @export
groups.communities <- function(x) {
m <- membership(x)
groups.default(list(membership = m))
}
#' @rdname communities
#' @export
communities <- groups.communities
#' @method "[" communities
#' @family community
#' @export
`[.communities` <- function(x, i) {
groups(x)[i]
}
#' @method "[[" communities
#' @family community
#' @export
`[[.communities` <- function(x, i) {
groups(x)[[i]]
}
#' Contract several vertices into a single one
#'
#' This function creates a new graph, by merging several vertices into one. The
#' vertices in the new graph correspond to sets of vertices in the input graph.
#'
#' The attributes of the graph are kept. Graph and edge attributes are
#' unchanged, vertex attributes are combined, according to the
#' `vertex.attr.comb` parameter.
#'
#' @param graph The input graph, it can be directed or undirected.
#' @param mapping A numeric vector that specifies the mapping. Its elements
#' correspond to the vertices, and for each element the id in the new graph is
#' given.
#' @param vertex.attr.comb Specifies how to combine the vertex attributes in
#' the new graph. Please see [attribute.combination()] for details.
#' @return A new graph object.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @keywords graphs
#' @examples
#'
#' g <- make_ring(10)
#' g$name <- "Ring"
#' V(g)$name <- letters[1:vcount(g)]
#' E(g)$weight <- runif(ecount(g))
#'
#' g2 <- contract(g, rep(1:5, each = 2),
#' vertex.attr.comb = toString
#' )
#'
#' ## graph and edge attributes are kept, vertex attributes are
#' ## combined using the 'toString' function.
#' print(g2, g = TRUE, v = TRUE, e = TRUE)
#'
#' @export
#' @family functions for manipulating graph structure
#' @cdocs igraph_contract_vertices
contract <- contract_vertices_impl
#' Voronoi partitioning of a graph
#'
#' @description
#' `r lifecycle::badge("experimental")`
#'
#' This function partitions the vertices of a graph based on a set of generator
#' vertices. Each vertex is assigned to the generator vertex from (or to) which
#' it is closest.
#'
#' [groups()] may be used on the output of this function.
#'
#' @param graph The graph to partition into Voronoi cells.
#' @param generators The generator vertices of the Voronoi cells.
#' @param mode Character string. In directed graphs, whether to compute
#' distances from generator vertices to other vertices (`"out"`), to
#' generator vertices from other vertices (`"in"`), or ignore edge
#' directions entirely (`"all"`). Ignored in undirected graphs.
#' @param tiebreaker Character string that specifies what to do when a vertex
#' is at the same distance from multiple generators. `"random"` assigns
#' a minimal-distance generator randomly, `"first"` takes the first one,
#' and `"last"` takes the last one.
#' @inheritParams distances
#' @inheritParams rlang::args_dots_empty
#' @return A named list with two components:
#' \item{membership}{numeric vector giving the cluster id to which each vertex
#' belongs.}
#' \item{distances}{numeric vector giving the distance of each vertex from its
#' generator}
#' @seealso [distances()]
#' @examples
#'
#' g <- make_lattice(c(10,10))
#' clu <- voronoi_cells(g, c(25, 43, 67))
#' groups(clu)
#' plot(g, vertex.color=clu$membership)
#'
#' @export
#' @family community
#' @cdocs igraph_voronoi
voronoi_cells <- voronoi_impl
|