1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
#' Connected components of a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `no.clusters()` was renamed to `count_components()` to create a more
#' consistent API.
#' @inheritParams count_components
#' @keywords internal
#' @export
no.clusters <- function(graph, mode = c("weak", "strong")) { # nocov start
lifecycle::deprecate_soft("2.0.0", "no.clusters()", "count_components()")
count_components(graph = graph, mode = mode)
} # nocov end
#' Decompose a graph into components
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `decompose.graph()` was renamed to `decompose()` to create a more
#' consistent API.
#' @inheritParams decompose
#' @keywords internal
#' @export
decompose.graph <- function(graph, mode = c("weak", "strong"), max.comps = NA, min.vertices = 0) { # nocov start
lifecycle::deprecate_soft("2.0.0", "decompose.graph()", "decompose()")
decompose(graph = graph, mode = mode, max.comps = max.comps, min.vertices = min.vertices)
} # nocov end
#' Connected components of a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `cluster.distribution()` was renamed to `component_distribution()` to create a more
#' consistent API.
#' @inheritParams component_distribution
#' @keywords internal
#' @export
cluster.distribution <- function(graph, cumulative = FALSE, mul.size = FALSE, ...) { # nocov start
lifecycle::deprecate_soft("2.0.0", "cluster.distribution()", "component_distribution()")
component_distribution(graph = graph, cumulative = cumulative, mul.size = mul.size, ...)
} # nocov end
#' Biconnected components
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `biconnected.components()` was renamed to `biconnected_components()` to create a more
#' consistent API.
#' @inheritParams biconnected_components
#' @keywords internal
#' @export
biconnected.components <- function(graph) { # nocov start
lifecycle::deprecate_soft("2.0.0", "biconnected.components()", "biconnected_components()")
biconnected_components(graph = graph)
} # nocov end
#' Articulation points and bridges of a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `articulation.points()` was renamed to `articulation_points()` to create a more
#' consistent API.
#' @inheritParams articulation_points
#' @keywords internal
#' @export
articulation.points <- function(graph) { # nocov start
lifecycle::deprecate_soft("2.0.0", "articulation.points()", "articulation_points()")
articulation_points(graph = graph)
} # nocov end
# IGraph R package
# Copyright (C) 2005-2012 Gabor Csardi <csardi.gabor@gmail.com>
# 334 Harvard street, Cambridge, MA 02139 USA
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301 USA
#
###################################################################
###################################################################
# Connected components, subgraphs, kinda
###################################################################
#' @rdname components
#' @param cumulative Logical, if TRUE the cumulative distirubution (relative
#' frequency) is calculated.
#' @param mul.size Logical. If TRUE the relative frequencies will be multiplied
#' by the cluster sizes.
#' @family components
#' @export
#' @importFrom graphics hist
component_distribution <- function(graph, cumulative = FALSE, mul.size = FALSE,
...) {
ensure_igraph(graph)
cs <- components(graph, ...)$csize
hi <- hist(cs, -1:max(cs), plot = FALSE)$density
if (mul.size) {
hi <- hi * 1:max(cs)
hi <- hi / sum(hi)
}
if (!cumulative) {
res <- hi
} else {
res <- rev(cumsum(rev(hi)))
}
res
}
#' Decompose a graph into components
#'
#' Creates a separate graph for each connected component of a graph.
#'
#' @param graph The original graph.
#' @param mode Character constant giving the type of the components, wither
#' `weak` for weakly connected components or `strong` for strongly
#' connected components.
#' @param max.comps The maximum number of components to return. The first
#' `max.comps` components will be returned (which hold at least
#' `min.vertices` vertices, see the next parameter), the others will be
#' ignored. Supply `NA` here if you don't want to limit the number of
#' components.
#' @param min.vertices The minimum number of vertices a component should
#' contain in order to place it in the result list. E.g. supply 2 here to ignore
#' isolate vertices.
#' @return A list of graph objects.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [is_connected()] to decide whether a graph is connected,
#' [components()] to calculate the connected components of a graph.
#' @family components
#' @export
#' @keywords graphs
#' @examples
#'
#' # the diameter of each component in a random graph
#' g <- sample_gnp(1000, 1 / 1000)
#' components <- decompose(g, min.vertices = 2)
#' sapply(components, diameter)
#'
decompose <- function(graph, mode = c("weak", "strong"), max.comps = NA,
min.vertices = 0) {
ensure_igraph(graph)
mode <- igraph.match.arg(mode)
mode <- switch(mode,
"weak" = 1L,
"strong" = 2L
)
if (is.na(max.comps)) {
max.comps <- -1
}
on.exit(.Call(R_igraph_finalizer))
.Call(
R_igraph_decompose, graph, as.numeric(mode),
as.numeric(max.comps), as.numeric(min.vertices)
)
}
#' Articulation points and bridges of a graph
#'
#' `articulation_points()` finds the articulation points (or cut vertices)
# " of a graph, while \code{bridges()} finds the bridges (or cut-edges) of a graph.
#'
#' Articulation points or cut vertices are vertices whose removal increases the
#' number of connected components in a graph. Similarly, bridges or cut-edges
#' are edges whose removal increases the number of connected components in a
#' graph. If the original graph was connected, then the removal of a single
#' articulation point or a single bridge makes it disconnected. If a graph
#' contains no articulation points, then its vertex connectivity is at least
# " two. If a graph contains no bridges, then its edge connectivity is at least
#' two.
#'
#' @param graph The input graph. It is treated as an undirected graph, even if
#' it is directed.
#' @return For `articulation_points()`, a numeric vector giving the vertex
#' IDs of the articulation points of the input graph. For `bridges()`, a
#' numeric vector giving the edge IDs of the bridges of the input graph.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [biconnected_components()], [components()],
#' [is_connected()], [vertex_connectivity()],
#' [edge_connectivity()]
#' @keywords graphs
#' @examples
#'
#' g <- disjoint_union(make_full_graph(5), make_full_graph(5))
#' clu <- components(g)$membership
#' g <- add_edges(g, c(match(1, clu), match(2, clu)))
#' articulation_points(g)
#'
#' g <- make_graph("krackhardt_kite")
#' bridges(g)
#'
#' @family components
#' @export
#' @cdocs igraph_articulation_points
articulation_points <- articulation_points_impl
#' @rdname articulation_points
#' @export
#' @cdocs igraph_bridges
bridges <- bridges_impl
#' Biconnected components
#'
#' Finding the biconnected components of a graph
#'
#' A graph is biconnected if the removal of any single vertex (and its adjacent
#' edges) does not disconnect it.
#'
#' A biconnected component of a graph is a maximal biconnected subgraph of it.
#' The biconnected components of a graph can be given by the partition of its
#' edges: every edge is a member of exactly one biconnected component. Note
#' that this is not true for vertices: the same vertex can be part of many
#' biconnected components.
#'
#' @param graph The input graph. It is treated as an undirected graph, even if
#' it is directed.
#' @return A named list with three components: \item{no}{Numeric scalar, an
#' integer giving the number of biconnected components in the graph.}
#' \item{tree_edges}{The components themselves, a list of numeric vectors. Each
#' vector is a set of edge ids giving the edges in a biconnected component.
#' These edges define a spanning tree of the component.}
#' \item{component_edges}{A list of numeric vectors. It gives all edges in the
#' components.} \item{components}{A list of numeric vectors, the vertices of
#' the components.} \item{articulation_points}{The articulation points of the
#' graph. See [articulation_points()].}
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [articulation_points()], [components()],
#' [is_connected()], [vertex_connectivity()]
#' @keywords graphs
#' @examples
#'
#' g <- disjoint_union(make_full_graph(5), make_full_graph(5))
#' clu <- components(g)$membership
#' g <- add_edges(g, c(which(clu == 1), which(clu == 2)))
#' bc <- biconnected_components(g)
#' @family components
#' @export
#' @cdocs igraph_biconnected_components
biconnected_components <- function(graph) {
# Function call
res <- biconnected_components_impl(graph)
# TODO: Clean up after fixing "." / "_" problem.
# See https://github.com/igraph/rigraph/issues/1203
if (igraph_opt("return.vs.es")) {
res$tree_edges <- lapply(res$tree_edges, unsafe_create_es, graph = graph, es = E(graph))
res$tree.edges <- NULL
}
if (igraph_opt("return.vs.es")) {
res$component_edges <- lapply(res$component_edges, unsafe_create_es, graph = graph, es = E(graph))
res$component.edges <- NULL
}
if (igraph_opt("return.vs.es")) {
res$components <- lapply(res$components, unsafe_create_vs, graph = graph, verts = V(graph))
}
if (igraph_opt("return.vs.es")) {
res$articulation_points <- create_vs(graph, res$articulation_points)
res$articulation.points <- NULL
}
res
}
#' Check biconnectedness
#'
#' @description
#' `r lifecycle::badge("experimental")`
#'
#' Tests whether a graph is biconnected.
#'
#' @details
#' A graph is biconnected if the removal of any single vertex (and its adjacent
#' edges) does not disconnect it.
#'
#' igraph does not consider single-vertex graphs biconnected.
#'
#' Note that some authors do not consider the graph consisting of
#' two connected vertices as biconnected, however, igraph does.
#'
#' @param graph The input graph. Edge directions are ignored.
#' @return Logical, `TRUE` if the graph is biconnected.
#' @seealso [articulation_points()], [biconnected_components()],
#' [is_connected()], [vertex_connectivity()]
#' @keywords graphs
#' @examples
#' is_biconnected(make_graph("bull"))
#' is_biconnected(make_graph("dodecahedron"))
#' is_biconnected(make_full_graph(1))
#' is_biconnected(make_full_graph(2))
#' @family components
#' @export
#' @cdocs igraph_is_biconnected
is_biconnected <- is_biconnected_impl
#' @rdname components
#' @export
largest_component <- function(graph, mode = c("weak", "strong")) {
if (!is_igraph(graph)) {
stop("Not a graph object")
}
comps <- components(graph, mode = mode)
lcc_id <- which.max(comps$csize)
vids <- V(graph)[comps$membership == lcc_id]
induced_subgraph(graph, vids)
}
|