File: conversion.R

package info (click to toggle)
r-cran-igraph 2.1.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 27,044 kB
  • sloc: ansic: 204,981; cpp: 21,711; fortran: 4,090; yacc: 1,229; lex: 519; sh: 52; makefile: 8
file content (1261 lines) | stat: -rw-r--r-- 42,206 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261

#' Convert igraph graphs to graphNEL objects from the graph package
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `igraph.to.graphNEL()` was renamed to `as_graphnel()` to create a more
#' consistent API.
#' @inheritParams as_graphnel
#' @keywords internal
#' @export
igraph.to.graphNEL <- function(graph) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "igraph.to.graphNEL()", "as_graphnel()")
  as_graphnel(graph = graph)
} # nocov end

#' Convert graphNEL objects from the graph package to igraph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `igraph.from.graphNEL()` was renamed to `graph_from_graphnel()` to create a more
#' consistent API.
#' @inheritParams graph_from_graphnel
#' @keywords internal
#' @export
igraph.from.graphNEL <- function(graphNEL, name = TRUE, weight = TRUE, unlist.attrs = TRUE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "igraph.from.graphNEL()", "graph_from_graphnel()")
  graph_from_graphnel(graphNEL = graphNEL, name = name, weight = weight, unlist.attrs = unlist.attrs)
} # nocov end

#' Create graphs from adjacency lists
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.adjlist()` was renamed to `graph_from_adj_list()` to create a more
#' consistent API.
#' @inheritParams graph_from_adj_list
#' @keywords internal
#' @export
graph.adjlist <- function(adjlist, mode = c("out", "in", "all", "total"), duplicate = TRUE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "graph.adjlist()", "graph_from_adj_list()")
  graph_from_adj_list(adjlist = adjlist, mode = mode, duplicate = duplicate)
} # nocov end

#' Bipartite adjacency matrix of a bipartite graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `get.incidence()` was renamed to `as_biadjacency_matrix()` to create a more
#' consistent API.
#' @inheritParams as_biadjacency_matrix
#' @keywords internal
#' @export
get.incidence <- function(graph, types = NULL, attr = NULL, names = TRUE, sparse = FALSE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "get.incidence()", "as_biadjacency_matrix()")
  as_biadjacency_matrix(graph = graph, types = types, attr = attr, names = names, sparse = sparse)
} # nocov end

#' Convert a graph to an edge list
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `get.edgelist()` was renamed to `as_edgelist()` to create a more
#' consistent API.
#' @inheritParams as_edgelist
#' @keywords internal
#' @export
get.edgelist <- function(graph, names = TRUE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "get.edgelist()", "as_edgelist()")
  as_edgelist(graph = graph, names = names)
} # nocov end

#' Creating igraph graphs from data frames or vice-versa
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `get.data.frame()` was renamed to `as_data_frame()` to create a more
#' consistent API.
#' @inheritParams as_data_frame
#' @keywords internal
#' @export
get.data.frame <- function(x, what = c("edges", "vertices", "both")) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "get.data.frame()", "as_data_frame()")
  as_data_frame(x = x, what = what)
} # nocov end

#' Convert a graph to an adjacency matrix
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `get.adjacency()` was renamed to `as_adjacency_matrix()` to create a more
#' consistent API.
#' @inheritParams as_adjacency_matrix
#' @keywords internal
#' @export
get.adjacency <- function(graph, type = c("both", "upper", "lower"), attr = NULL, edges = FALSE, names = TRUE, sparse = igraph_opt("sparsematrices")) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "get.adjacency()", "as_adjacency_matrix()")
  as_adjacency_matrix(graph = graph, type = type, attr = attr, edges = edges, names = names, sparse = sparse)
} # nocov end

#' Adjacency lists
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `get.adjlist()` was renamed to `as_adj_list()` to create a more
#' consistent API.
#' @inheritParams as_adj_list
#' @keywords internal
#' @export
get.adjlist <- function(graph, mode = c("all", "out", "in", "total"), loops = c("twice", "once", "ignore"), multiple = TRUE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "get.adjlist()", "as_adj_list()")
  as_adj_list(graph = graph, mode = mode, loops = loops, multiple = multiple)
} # nocov end

#' Adjacency lists
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `get.adjedgelist()` was renamed to `as_adj_edge_list()` to create a more
#' consistent API.
#' @inheritParams as_adj_edge_list
#' @keywords internal
#' @export
get.adjedgelist <- function(graph, mode = c("all", "out", "in", "total"), loops = c("twice", "once", "ignore")) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "get.adjedgelist()", "as_adj_edge_list()")
  as_adj_edge_list(graph = graph, mode = mode, loops = loops)
} # nocov end
#   IGraph R package
#   Copyright (C) 2005-2012  Gabor Csardi <csardi.gabor@gmail.com>
#   334 Harvard street, Cambridge, MA 02139 USA
#
#   This program is free software; you can redistribute it and/or modify
#   it under the terms of the GNU General Public License as published by
#   the Free Software Foundation; either version 2 of the License, or
#   (at your option) any later version.
#
#   This program is distributed in the hope that it will be useful,
#   but WITHOUT ANY WARRANTY; without even the implied warranty of
#   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#   GNU General Public License for more details.
#
#   You should have received a copy of the GNU General Public License
#   along with this program; if not, write to the Free Software
#   Foundation, Inc.,  51 Franklin Street, Fifth Floor, Boston, MA
#   02110-1301 USA
#
###################################################################

get.adjacency.dense <- function(graph, type = c("both", "upper", "lower"),
                                attr = NULL, weights = NULL, loops = c("once", "twice", "ignore"), names = TRUE) {
  ensure_igraph(graph)

  type <- igraph.match.arg(type)
  type <- switch(type,
    "upper" = 0,
    "lower" = 1,
    "both" = 2
  )

  if (is.logical(loops)) {
    loops <- ifelse(loops, "once", "ignore")
    lifecycle::deprecate_soft(
      "2.1.0", "get.adjacency.dense(loops = 'must be a character')",
      details = sprintf("Converting to get.adjacency.dense (loops = '%s')", loops)
    )
  }
  loops <- igraph.match.arg(loops)
  loops <- switch(loops,
    "ignore" = 0L,
    "twice" = 1L,
    "once" = 2L
  )

  if (!is.null(weights)) weights <- as.numeric(weights)

  if (is.null(attr)) {
    on.exit(.Call(R_igraph_finalizer))
    res <- .Call(
      R_igraph_get_adjacency, graph, as.numeric(type), weights,
      loops
    )
  } else {
    attr <- as.character(attr)
    if (!attr %in% edge_attr_names(graph)) {
      stop("no such edge attribute")
    }
    exattr <- edge_attr(graph, attr)
    if (is.logical(exattr)) {
      res <- matrix(FALSE, nrow = vcount(graph), ncol = vcount(graph))
    } else if (is.numeric(exattr)) {
      res <- matrix(0, nrow = vcount(graph), ncol = vcount(graph))
    } else {
      stop(
        "Matrices must be either numeric or logical, ",
        "and the edge attribute is not"
      )
    }
    if (is_directed(graph)) {
      for (i in seq(length.out = ecount(graph))) {
        e <- ends(graph, i, names = FALSE)
        res[e[1], e[2]] <- exattr[i]
      }
    } else {
      if (type == 0) {
        ## upper
        for (i in seq(length.out = ecount(graph))) {
          e <- ends(graph, i, names = FALSE)
          res[min(e), max(e)] <- exattr[i]
        }
      } else if (type == 1) {
        ## lower
        for (i in seq(length.out = ecount(graph))) {
          e <- ends(graph, i, names = FALSE)
          res[max(e), min(e)] <- exattr[i]
        }
      } else if (type == 2) {
        ## both
        for (i in seq(length.out = ecount(graph))) {
          e <- ends(graph, i, names = FALSE)
          res[e[1], e[2]] <- exattr[i]
          if (e[1] != e[2]) {
            res[e[2], e[1]] <- exattr[i]
          }
        }
      }
    }
  }

  if (names && "name" %in% vertex_attr_names(graph)) {
    colnames(res) <- rownames(res) <- V(graph)$name
  }

  res
}

get.adjacency.sparse <- function(graph, type = c("both", "upper", "lower"),
                                 attr = NULL, names = TRUE) {
  ensure_igraph(graph)

  type <- igraph.match.arg(type)

  vc <- vcount(graph)

  el <- as_edgelist(graph, names = FALSE)
  use.last.ij <- FALSE

  if (!is.null(attr)) {
    attr <- as.character(attr)
    if (!attr %in% edge_attr_names(graph)) {
      stop("no such edge attribute")
    }
    value <- edge_attr(graph, name = attr)
    if (!is.numeric(value) && !is.logical(value)) {
      stop(
        "Matrices must be either numeric or logical, ",
        "and the edge attribute is not"
      )
    }
  } else {
    value <- rep(1, nrow(el))
  }

  if (is_directed(graph)) {
    res <- Matrix::sparseMatrix(dims = c(vc, vc), i = el[, 1], j = el[, 2], x = value, use.last.ij = use.last.ij)
  } else {
    if (type == "upper") {
      ## upper
      res <- Matrix::sparseMatrix(
        dims = c(vc, vc), i = pmin(el[, 1], el[, 2]),
        j = pmax(el[, 1], el[, 2]), x = value, use.last.ij = use.last.ij
      )
    } else if (type == "lower") {
      ## lower
      res <- Matrix::sparseMatrix(
        dims = c(vc, vc), i = pmax(el[, 1], el[, 2]),
        j = pmin(el[, 1], el[, 2]), x = value, use.last.ij = use.last.ij
      )
    } else if (type == "both") {
      ## both
      res <- Matrix::sparseMatrix(
        dims = c(vc, vc), i = pmin(el[, 1], el[, 2]),
        j = pmax(el[, 1], el[, 2]), x = value, symmetric = TRUE, use.last.ij = use.last.ij
      )
      res <- as(res, "generalMatrix")
    }
  }

  if (names && "name" %in% vertex_attr_names(graph)) {
    colnames(res) <- rownames(res) <- V(graph)$name
  }

  res
}

#' Convert a graph to an adjacency matrix
#'
#' Sometimes it is useful to work with a standard representation of a
#' graph, like an adjacency matrix.
#'
#' `as_adjacency_matrix()` returns the adjacency matrix of a graph, a
#' regular matrix if `sparse` is `FALSE`, or a sparse matrix, as
#' defined in the \sQuote{`Matrix`} package, if `sparse` if
#' `TRUE`.
#'
#' @param graph The graph to convert.
#' @param type Gives how to create the adjacency matrix for undirected graphs.
#'   It is ignored for directed graphs. Possible values: `upper`: the upper
#'   right triangle of the matrix is used, `lower`: the lower left triangle
#'   of the matrix is used. `both`: the whole matrix is used, a symmetric
#'   matrix is returned.
#' @param attr Either `NULL` or a character string giving an edge
#'   attribute name. If `NULL` a traditional adjacency matrix is returned.
#'   If not `NULL` then the values of the given edge attribute are included
#'   in the adjacency matrix. If the graph has multiple edges, the edge attribute
#'   of an arbitrarily chosen edge (for the multiple edges) is included. This
#'   argument is ignored if `edges` is `TRUE`.
#'
#'   Note that this works only for certain attribute types. If the `sparse`
#'   argumen is `TRUE`, then the attribute must be either logical or
#'   numeric. If the `sparse` argument is `FALSE`, then character is
#'   also allowed. The reason for the difference is that the `Matrix`
#'   package does not support character sparse matrices yet.
#' @param edges `r lifecycle::badge("deprecated")` Logical scalar, whether to return the edge ids in the matrix.
#'   For non-existant edges zero is returned.
#' @param names Logical constant, whether to assign row and column names
#'   to the matrix. These are only assigned if the `name` vertex attribute
#'   is present in the graph.
#' @param sparse Logical scalar, whether to create a sparse matrix. The
#'   \sQuote{`Matrix`} package must be installed for creating sparse
#'   matrices.
#' @return A `vcount(graph)` by `vcount(graph)` (usually) numeric
#'   matrix.
#'
#' @seealso [graph_from_adjacency_matrix()], [read_graph()]
#' @examples
#'
#' g <- sample_gnp(10, 2 / 10)
#' as_adjacency_matrix(g)
#' V(g)$name <- letters[1:vcount(g)]
#' as_adjacency_matrix(g)
#' E(g)$weight <- runif(ecount(g))
#' as_adjacency_matrix(g, attr = "weight")
#' @family conversion
#' @export
as_adjacency_matrix <- function(graph, type = c("both", "upper", "lower"),
                                attr = NULL, edges = deprecated(), names = TRUE,
                                sparse = igraph_opt("sparsematrices")) {
  ensure_igraph(graph)

  if (lifecycle::is_present(edges) && isTRUE(edges)) {
    lifecycle::deprecate_stop("2.0.0", "as_adjacency_matrix(edges = )")
  }

  if (sparse) {
    get.adjacency.sparse(graph, type = type, attr = attr, names = names)
  } else {
    get.adjacency.dense(graph, type = type, attr = attr, weights = NULL, names = names, loops = "once")
  }
}

#' Convert a graph to an adjacency matrix
#'
#' `r lifecycle::badge("deprecated")`
#' We plan to remove `as_adj()` in favor of the more explicitly named
#' `as_adjacency_matrix()` so please use `as_adjacency_matrix()` instead.
#'
#' @export
#' @inheritParams as_adjacency_matrix
#' @keywords internal
as_adj <- function(graph, type = c("both", "upper", "lower"),
                   attr = NULL, edges = deprecated(), names = TRUE,
                   sparse = igraph_opt("sparsematrices")) {

  lifecycle::deprecate_soft("2.1.0", "as_adj()", "as_adjacency_matrix()")

  as_adjacency_matrix(
    graph = graph,
    type = type,
    attr = attr,
    edges = edges,
    names = names,
    sparse = sparse
  )
}
#' Convert a graph to an edge list
#'
#' Sometimes it is useful to work with a standard representation of a
#' graph, like an edge list.
#'
#' `as_edgelist()` returns the list of edges in a graph.
#'
#' @param graph The graph to convert.
#' @param names Whether to return a character matrix containing vertex
#'   names (i.e. the `name` vertex attribute) if they exist or numeric
#'   vertex ids.
#' @return A `ecount(graph)` by 2 numeric matrix.
#' @seealso [graph_from_adjacency_matrix()], [read_graph()]
#' @keywords graphs
#' @examples
#'
#' g <- sample_gnp(10, 2 / 10)
#' as_edgelist(g)
#'
#' V(g)$name <- LETTERS[seq_len(gorder(g))]
#' as_edgelist(g)
#'
#' @family conversion
#' @export
as_edgelist <- function(graph, names = TRUE) {
  ensure_igraph(graph)
  on.exit(.Call(R_igraph_finalizer))
  res <- matrix(.Call(R_igraph_get_edgelist, graph, TRUE),
    ncol = 2
  )
  res <- res + 1
  if (names && "name" %in% vertex_attr_names(graph)) {
    res <- matrix(V(graph)$name[res], ncol = 2)
  }

  res
}



#' Convert between directed and undirected graphs
#'
#' `as_directed()` converts an undirected graph to directed,
#' `as_undirected()` does the opposite, it converts a directed graph to
#' undirected.
#'
#' Conversion algorithms for `as_directed()`: \describe{
#' \item{"arbitrary"}{The number of edges in the graph stays the same, an
#' arbitrarily directed edge is created for each undirected edge, but the
#' direction of the edge is deterministic (i.e. it always points the same
#' way if you call the function multiple times).}
#' \item{"mutual"}{Two directed edges are created for each undirected
#' edge, one in each direction.}
#' \item{"random"}{The number of edges in the graph stays the same, and
#' a randomly directed edge is created for each undirected edge. You
#' will get different results if you call the function multiple times
#' with the same graph.}
#' \item{"acyclic"}{The number of edges in the graph stays the same, and
#' a directed edge is created for each undirected edge such that the
#' resulting graph is guaranteed to be acyclic. This is achieved by ensuring
#' that edges always point from a lower index vertex to a higher index.
#' Note that the graph may include cycles of length 1 if the original
#' graph contained loop edges.}
#' }
#'
#' Conversion algorithms for `as_undirected()`: \describe{
#' \item{"each"}{The number of edges remains constant, an undirected edge
#' is created for each directed one, this version might create graphs with
#' multiple edges.} \item{"collapse"}{One undirected edge will be created
#' for each pair of vertices which are connected with at least one directed
#' edge, no multiple edges will be created.} \item{"mutual"}{One
#' undirected edge will be created for each pair of mutual edges. Non-mutual
#' edges are ignored. This mode might create multiple edges if there are more
#' than one mutual edge pairs between the same pair of vertices.  } }
#'
#' @aliases as_directed as_undirected
#' @param graph The graph to convert.
#' @param mode Character constant, defines the conversion algorithm. For
#'   `as_directed()` it can be `mutual` or `arbitrary`. For
#'   `as_undirected()` it can be `each`, `collapse` or
#'   `mutual`. See details below.
#' @return A new graph object.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [simplify()] for removing multiple and/or loop edges from
#' a graph.
#' @family conversion
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- make_ring(10)
#' as_directed(g, "mutual")
#' g2 <- make_star(10)
#' as_undirected(g)
#'
#' # Combining edge attributes
#' g3 <- make_ring(10, directed = TRUE, mutual = TRUE)
#' E(g3)$weight <- seq_len(ecount(g3))
#' ug3 <- as_undirected(g3)
#' print(ug3, e = TRUE)

#' @examplesIf rlang::is_interactive()
#' x11(width = 10, height = 5)
#' layout(rbind(1:2))
#' plot(g3, layout = layout_in_circle, edge.label = E(g3)$weight)
#' plot(ug3, layout = layout_in_circle, edge.label = E(ug3)$weight)

#' @examples
#'
#' g4 <- make_graph(c(
#'   1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 4,
#'   6, 7, 7, 6, 7, 8, 7, 8, 8, 7, 8, 9, 8, 9,
#'   9, 8, 9, 8, 9, 9, 10, 10, 10, 10
#' ))
#' E(g4)$weight <- seq_len(ecount(g4))
#' ug4 <- as_undirected(g4,
#'   mode = "mutual",
#'   edge.attr.comb = list(weight = length)
#' )
#' print(ug4, e = TRUE)
#'
#' @cdocs igraph_to_directed
as_directed <- to_directed_impl

#' @rdname as_directed
#' @param edge.attr.comb Specifies what to do with edge attributes, if
#'   `mode="collapse"` or `mode="mutual"`.  In these cases many edges
#'   might be mapped to a single one in the new graph, and their attributes are
#'   combined. Please see [attribute.combination()] for details on
#'   this.
#' @export
as_undirected <- function(graph, mode = c("collapse", "each", "mutual"), edge.attr.comb = igraph_opt("edge.attr.comb")) {
  # Argument checks
  ensure_igraph(graph)
  mode <- switch(igraph.match.arg(mode),
    "collapse" = 1L,
    "each" = 0L,
    "mutual" = 2L
  )
  edge.attr.comb <- igraph.i.attribute.combination(edge.attr.comb)

  on.exit(.Call(R_igraph_finalizer))
  # Function call
  res <- .Call(R_igraph_to_undirected, graph, mode, edge.attr.comb)

  res
}


#' Adjacency lists
#'
#' Create adjacency lists from a graph, either for adjacent edges or for
#' neighboring vertices
#'
#' `as_adj_list()` returns a list of numeric vectors, which include the ids
#' of neighbor vertices (according to the `mode` argument) of all
#' vertices.
#'
#' `as_adj_edge_list()` returns a list of numeric vectors, which include the
#' ids of adjacent edges (according to the `mode` argument) of all
#' vertices.
#'
#' @param graph The input graph.
#' @param mode Character scalar, it gives what kind of adjacent edges/vertices
#'   to include in the lists. \sQuote{`out`} is for outgoing edges/vertices,
#'   \sQuote{`in`} is for incoming edges/vertices, \sQuote{`all`} is
#'   for both. This argument is ignored for undirected graphs.
#' @param loops Character scalar, one of `"ignore"` (to omit loops), `"twice"`
#'   (to include loop edges twice) and `"once"` (to include them once). `"twice"`
#'   is not allowed for directed graphs and will be replaced with `"once"`.
#' @param multiple Logical scalar, set to `FALSE` to use only one representative
#'   of each set of parallel edges.
#' @return A list of `igraph.vs` or a list of numeric vectors depending on
#'   the value of `igraph_opt("return.vs.es")`, see details for performance
#'   characteristics.
#' @details If `igraph_opt("return.vs.es")` is true (default), the numeric
#' vectors of the adjacency lists are coerced to `igraph.vs`, this can be
#' a very expensive operation on large graphs.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [as_edgelist()], [as_adjacency_matrix()]
#' @family conversion
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- make_ring(10)
#' as_adj_list(g)
#' as_adj_edge_list(g)
#'
as_adj_list <- function(graph,
                        mode = c("all", "out", "in", "total"),
                        loops = c("twice", "once", "ignore"),
                        multiple = TRUE) {
  ensure_igraph(graph)

  mode <- igraph.match.arg(mode)
  mode <- as.numeric(switch(mode,
    "out" = 1,
    "in" = 2,
    "all" = 3,
    "total" = 3
  ))
  loops <- igraph.match.arg(loops)
  loops <- as.numeric(switch(loops,
    "ignore" = 0,
    "twice" = 1,
    "once" = 2
  ))

  if (is_directed(graph) && loops == 1) {
    loops <- 2
  }

  multiple <- if (multiple) 1 else 0
  on.exit(.Call(R_igraph_finalizer))
  res <- .Call(R_igraph_get_adjlist, graph, mode, loops, multiple)
  res <- lapply(res, `+`, 1)
  if (igraph_opt("return.vs.es")) {
    res <- lapply(res, unsafe_create_vs, graph = graph, verts = V(graph))
  }
  if (is_named(graph)) names(res) <- V(graph)$name
  res
}

#' @rdname as_adj_list
#' @export
as_adj_edge_list <- function(graph,
                             mode = c("all", "out", "in", "total"),
                             loops = c("twice", "once", "ignore")) {
  ensure_igraph(graph)

  mode <- igraph.match.arg(mode)
  mode <- as.numeric(switch(mode,
    "out" = 1,
    "in" = 2,
    "all" = 3,
    "total" = 3
  ))
  loops <- igraph.match.arg(loops)
  loops <- as.numeric(switch(loops,
    "ignore" = 0,
    "twice" = 1,
    "once" = 2
  ))

  if (is_directed(graph) && loops == 1) {
    loops <- 2
  }

  on.exit(.Call(R_igraph_finalizer))
  res <- .Call(R_igraph_get_adjedgelist, graph, mode, loops)
  res <- lapply(res, function(.x) E(graph)[.x + 1])
  if (is_named(graph)) names(res) <- V(graph)$name
  res
}

#' Convert graphNEL objects from the graph package to igraph
#'
#' The graphNEL class is defined in the `graph` package, it is another
#' way to represent graphs. `graph_from_graphnel()` takes a graphNEL
#' graph and converts it to an igraph graph. It handles all
#' graph/vertex/edge attributes. If the graphNEL graph has a vertex
#' attribute called \sQuote{`name`} it will be used as igraph vertex
#' attribute \sQuote{`name`} and the graphNEL vertex names will be
#' ignored.
#'
#' Because graphNEL graphs poorly support multiple edges, the edge
#' attributes of the multiple edges are lost: they are all replaced by the
#' attributes of the first of the multiple edges.
#'
#' @param graphNEL The graphNEL graph.
#' @param name Logical scalar, whether to add graphNEL vertex names as an
#'   igraph vertex attribute called \sQuote{`name`}.
#' @param weight Logical scalar, whether to add graphNEL edge weights as an
#'   igraph edge attribute called \sQuote{`weight`}. (graphNEL graphs are
#'   always weighted.)
#' @param unlist.attrs Logical scalar. graphNEL attribute query functions
#'   return the values of the attributes in R lists, if this argument is
#'   `TRUE` (the default) these will be converted to atomic vectors,
#'   whenever possible, before adding them to the igraph graph.
#' @return `graph_from_graphnel()` returns an igraph graph object.
#' @seealso [as_graphnel()] for the other direction,
#' [as_adjacency_matrix()], [graph_from_adjacency_matrix()],
#' [as_adj_list()] and [graph_from_adj_list()] for other
#' graph representations.
#' @examplesIf rlang::is_installed("graph")
#' ## Undirected
#' g <- make_ring(10)
#' V(g)$name <- letters[1:10]
#' GNEL <- as_graphnel(g)
#' g2 <- graph_from_graphnel(GNEL)
#' g2
#'
#' ## Directed
#' g3 <- make_star(10, mode = "in")
#' V(g3)$name <- letters[1:10]
#' GNEL2 <- as_graphnel(g3)
#' g4 <- graph_from_graphnel(GNEL2)
#' g4
#' @family conversion
#' @export
graph_from_graphnel <- function(graphNEL, name = TRUE, weight = TRUE,
                                unlist.attrs = TRUE) {
  if (!inherits(graphNEL, "graphNEL")) {
    stop("Not a graphNEL graph")
  }

  al <- lapply(graph::edgeL(graphNEL), "[[", "edges")
  if (graph::edgemode(graphNEL) == "undirected") {
    al <- mapply(SIMPLIFY = FALSE, seq_along(al), al, FUN = function(n, l) {
      c(l, rep(n, sum(l == n)))
    })
  }
  mode <- if (graph::edgemode(graphNEL) == "directed") "out" else "all"
  g <- graph_from_adj_list(al, mode = mode, duplicate = TRUE)
  if (name) {
    V(g)$name <- graph::nodes(graphNEL)
  }

  ## Graph attributes
  g.n <- names(graphNEL@graphData)
  g.n <- g.n[g.n != "edgemode"]
  for (n in g.n) {
    g <- set_graph_attr(g, n, graphNEL@graphData[[n]])
  }

  ## Vertex attributes
  v.n <- names(graph::nodeDataDefaults(graphNEL))
  for (n in v.n) {
    val <- unname(graph::nodeData(graphNEL, attr = n))
    if (unlist.attrs && all(sapply(val, length) == 1)) {
      val <- unlist(val)
    }
    g <- set_vertex_attr(g, n, value = val)
  }

  ## Edge attributes
  e.n <- names(graph::edgeDataDefaults(graphNEL))
  if (!weight) {
    e.n <- e.n[e.n != "weight"]
  }
  if (length(e.n) > 0) {
    el <- as_edgelist(g)
    el <- paste(sep = "|", el[, 1], el[, 2])
    for (n in e.n) {
      val <- unname(graph::edgeData(graphNEL, attr = n)[el])
      if (unlist.attrs && all(sapply(val, length) == 1)) {
        val <- unlist(val)
      }
      g <- set_edge_attr(g, n, value = val)
    }
  }

  g
}

#' Convert igraph graphs to graphNEL objects from the graph package
#'
#' The graphNEL class is defined in the `graph` package, it is another
#' way to represent graphs. These functions are provided to convert between
#' the igraph and the graphNEL objects.
#'
#' `as_graphnel()` converts an igraph graph to a graphNEL graph. It
#' converts all graph/vertex/edge attributes. If the igraph graph has a
#' vertex attribute \sQuote{`name`}, then it will be used to assign
#' vertex names in the graphNEL graph. Otherwise numeric igraph vertex ids
#' will be used for this purpose.
#'
#' @param graph An igraph graph object.
#' @return `as_graphnel()` returns a graphNEL graph object.
#' @seealso [graph_from_graphnel()] for the other direction,
#' [as_adjacency_matrix()], [graph_from_adjacency_matrix()],
#' [as_adj_list()] and [graph_from_adj_list()] for
#' other graph representations.
#'
#' @examplesIf rlang::is_installed("graph")
#' ## Undirected
#' g <- make_ring(10)
#' V(g)$name <- letters[1:10]
#' GNEL <- as_graphnel(g)
#' g2 <- graph_from_graphnel(GNEL)
#' g2
#'
#' ## Directed
#' g3 <- make_star(10, mode = "in")
#' V(g3)$name <- letters[1:10]
#' GNEL2 <- as_graphnel(g3)
#' g4 <- graph_from_graphnel(GNEL2)
#' g4
#' @family conversion
#' @export
as_graphnel <- function(graph) {
  ensure_igraph(graph)

  if (any_multiple(graph)) {
    stop("multiple edges are not supported in graphNEL graphs")
  }

  if ("name" %in% vertex_attr_names(graph) &&
    is.character(V(graph)$name)) {
    name <- V(graph)$name
  } else {
    name <- as.character(seq(vcount(graph)))
  }

  edgemode <- if (is_directed(graph)) "directed" else "undirected"

  if ("weight" %in% edge_attr_names(graph) &&
    is.numeric(E(graph)$weight)) {
    al <- lapply(as_adj_edge_list(graph, "out", loops = "once"), as.vector)
    for (i in seq(along.with = al)) {
      edges <- ends(graph, al[[i]], names = FALSE)
      edges <- ifelse(edges[, 2] == i, edges[, 1], edges[, 2])
      weights <- E(graph)$weight[al[[i]]]
      al[[i]] <- list(edges = edges, weights = weights)
    }
  } else {
    al <- as_adj_list(graph, "out", loops = "once")
    al <- lapply(al, function(x) list(edges = as.vector(x)))
  }

  names(al) <- name
  res <- graph::graphNEL(nodes = name, edgeL = al, edgemode = edgemode)

  ## Add graph attributes (other than 'directed')
  ## Are this "officially" supported at all?

  g.n <- graph_attr_names(graph)
  if ("directed" %in% g.n) {
    cli::cli_warn("Cannot add graph attribute {.str directed}.")
    g.n <- g.n[g.n != "directed"]
  }
  for (n in g.n) {
    res@graphData[[n]] <- graph_attr(graph, n)
  }

  ## Add vertex attributes (other than 'name', that is already
  ## added as vertex names)

  v.n <- vertex_attr_names(graph)
  v.n <- v.n[v.n != "name"]
  for (n in v.n) {
    graph::nodeDataDefaults(res, attr = n) <- NA
    graph::nodeData(res, attr = n) <- vertex_attr(graph, n)
  }

  ## Add edge attributes (other than 'weight')

  e.n <- edge_attr_names(graph)
  e.n <- e.n[e.n != "weight"]
  if (length(e.n) > 0) {
    el <- as_edgelist(graph)
    el <- paste(sep = "|", el[, 1], el[, 2])
    for (n in e.n) {
      graph::edgeDataDefaults(res, attr = n) <- NA
      res@edgeData@data[el] <- mapply(
        function(x, y) {
          xx <- c(x, y)
          names(xx)[length(xx)] <- n
          xx
        },
        res@edgeData@data[el],
        edge_attr(graph, n),
        SIMPLIFY = FALSE
      )
    }
  }

  res
}

get.incidence.dense <- function(graph, types, names, attr) {
  if (is.null(attr)) {
    on.exit(.Call(R_igraph_finalizer))
    ## Function call
    res <- .Call(R_igraph_get_biadjacency, graph, types)

    if (names && "name" %in% vertex_attr_names(graph)) {
      rownames(res$res) <- V(graph)$name[res$row_ids]
      colnames(res$res) <- V(graph)$name[res$col_ids]
    } else {
      rownames(res$res) <- res$row_ids
      colnames(res$res) <- res$col_ids
    }
    res$res
  } else {
    attr <- as.character(attr)
    if (!attr %in% edge_attr_names(graph)) {
      stop("no such edge attribute")
    }

    vc <- vcount(graph)
    n1 <- sum(!types)
    n2 <- vc - n1
    res <- matrix(0, n1, n2)

    recode <- numeric(vc)
    recode[!types] <- seq_len(n1)
    recode[types] <- seq_len(n2)

    for (i in seq(length.out = ecount(graph))) {
      eo <- ends(graph, i, names = FALSE)
      e <- recode[eo]
      if (!types[eo[1]]) {
        res[e[1], e[2]] <- edge_attr(graph, attr, i)
      } else {
        res[e[2], e[1]] <- edge_attr(graph, attr, i)
      }
    }

    if (names && "name" %in% vertex_attr_names(graph)) {
      rownames(res) <- V(graph)$name[which(!types)]
      colnames(res) <- V(graph)$name[which(types)]
    } else {
      rownames(res) <- which(!types)
      colnames(res) <- which(types)
    }

    res
  }
}

get.incidence.sparse <- function(graph, types, names, attr) {
  vc <- vcount(graph)
  if (length(types) != vc) {
    stop("Invalid types vector")
  }

  el <- as_edgelist(graph, names = FALSE)
  if (any(types[el[, 1]] == types[el[, 2]])) {
    stop("Invalid types vector, not a bipartite graph")
  }

  n1 <- sum(!types)
  n2 <- vc - n1

  recode <- numeric(vc)
  recode[!types] <- seq_len(n1)
  recode[types] <- seq_len(n2) + n1

  el[, 1] <- recode[el[, 1]]
  el[, 2] <- recode[el[, 2]]

  change <- el[, 1] > n1
  el[change, ] <- el[change, 2:1]
  el[, 2] <- el[, 2] - n1

  if (!is.null(attr)) {
    attr <- as.character(attr)
    if (!attr %in% edge_attr_names(graph)) {
      stop("no such edge attribute")
    }
    value <- edge_attr(graph, name = attr)
  } else {
    value <- rep(1, nrow(el))
  }

  res <- Matrix::spMatrix(n1, n2, i = el[, 1], j = el[, 2], x = value)

  if (names && "name" %in% vertex_attr_names(graph)) {
    rownames(res) <- V(graph)$name[which(!types)]
    colnames(res) <- V(graph)$name[which(types)]
  } else {
    rownames(res) <- which(!types)
    colnames(res) <- which(types)
  }
  res
}



#' Bipartite adjacency matrix of a bipartite graph
#'
#' This function can return a sparse or dense bipartite adjacency matrix of a bipartite
#' network. The bipartite adjacency matrix is an \eqn{n} times \eqn{m} matrix, \eqn{n}
#' and \eqn{m} are the number of vertices of the two kinds.
#'
#' Bipartite graphs have a `type` vertex attribute in igraph, this is
#' boolean and `FALSE` for the vertices of the first kind and `TRUE`
#' for vertices of the second kind.
#'
#' @param graph The input graph. The direction of the edges is ignored in
#'   directed graphs.
#' @param types An optional vertex type vector to use instead of the
#'   `type` vertex attribute. You must supply this argument if the graph has
#'   no `type` vertex attribute.
#' @param attr Either `NULL` or a character string giving an edge
#'   attribute name. If `NULL`, then a traditional bipartite adjacency matrix is
#'   returned. If not `NULL` then the values of the given edge attribute are
#'   included in the bipartite adjacency matrix. If the graph has multiple edges, the edge
#'   attribute of an arbitrarily chosen edge (for the multiple edges) is
#'   included.
#' @param names Logical scalar, if `TRUE` and the vertices in the graph
#'   are named (i.e. the graph has a vertex attribute called `name`), then
#'   vertex names will be added to the result as row and column names. Otherwise
#'   the ids of the vertices are used as row and column names.
#' @param sparse Logical scalar, if it is `TRUE` then a sparse matrix is
#'   created, you will need the `Matrix` package for this.
#' @return A sparse or dense matrix.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [graph_from_biadjacency_matrix()] for the opposite operation.
#' @family conversion
#' @export
#' @keywords graphs
#' @details
#' Some authors refer to the bipartite adjacency matrix as the
#' "bipartite incidence matrix". igraph 1.6.0 and later does not use
#' this naming to avoid confusion with the edge-vertex incidence matrix.
#' @examples
#'
#' g <- make_bipartite_graph(c(0, 1, 0, 1, 0, 0), c(1, 2, 2, 3, 3, 4))
#' as_biadjacency_matrix(g)
#'
as_biadjacency_matrix <- function(graph, types = NULL, attr = NULL,
                                names = TRUE, sparse = FALSE) {
  # Argument checks
  ensure_igraph(graph)
  types <- handle_vertex_type_arg(types, graph)

  names <- as.logical(names)
  sparse <- as.logical(sparse)

  if (sparse) {
    get.incidence.sparse(graph, types = types, names = names, attr = attr)
  } else {
    get.incidence.dense(graph, types = types, names = names, attr = attr)
  }
}
#' As incidence matrix
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `as_incidence_matrix()` was renamed to `as_biadjacency_matrix()` to create a more
#' consistent API.
#' @inheritParams as_biadjacency_matrix
#' @keywords internal
#' @details
#' Some authors refer to the bipartite adjacency matrix as the
#' "bipartite incidence matrix". igraph 1.6.0 and later does not use
#' this naming to avoid confusion with the edge-vertex incidence matrix.
#' @export
as_incidence_matrix <- function(...) { # nocov start
   lifecycle::deprecate_soft("1.6.0", "as_incidence_matrix()", "as_biadjacency_matrix()")
   as_biadjacency_matrix(...)
} # nocov end
#' @rdname graph_from_data_frame
#' @param x An igraph object.
#' @param what Character constant, whether to return info about vertices,
#'   edges, or both. The default is \sQuote{edges}.
#' @family conversion
#' @family biadjacency
#' @export
as_data_frame <- function(x, what = c("edges", "vertices", "both")) {
  ensure_igraph(x)
  what <- igraph.match.arg(what)

  if (what %in% c("vertices", "both")) {
    ver <- .Call(R_igraph_mybracket2, x, igraph_t_idx_attr, igraph_attr_idx_vertex)
    class(ver) <- "data.frame"
    rn <- if (is_named(x)) {
      V(x)$name
    } else {
      seq_len(vcount(x))
    }
    rownames(ver) <- rn
  }

  if (what %in% c("edges", "both")) {
    el <- as_edgelist(x)
    edg <- c(
      list(from = el[, 1], to = el[, 2]),
      .Call(R_igraph_mybracket2, x, igraph_t_idx_attr, igraph_attr_idx_edge)
    )
    class(edg) <- "data.frame"
    rownames(edg) <- seq_len(ecount(x))
  }

  if (what == "both") {
    list(vertices = ver, edges = edg)
  } else if (what == "vertices") {
    ver
  } else {
    edg
  }
}


#' Create graphs from adjacency lists
#'
#' An adjacency list is a list of numeric vectors, containing the neighbor
#' vertices for each vertex. This function creates an igraph graph object from
#' such a list.
#'
#' Adjacency lists are handy if you intend to do many (small) modifications to
#' a graph. In this case adjacency lists are more efficient than igraph graphs.
#'
#' The idea is that you convert your graph to an adjacency list by
#' [as_adj_list()], do your modifications to the graphs and finally
#' create again an igraph graph by calling `graph_from_adj_list()`.
#'
#' @param adjlist The adjacency list. It should be consistent, i.e. the maximum
#'   throughout all vectors in the list must be less than the number of vectors
#'   (=the number of vertices in the graph).
#' @param mode Character scalar, it specifies whether the graph to create is
#'   undirected (\sQuote{all} or \sQuote{total}) or directed; and in the latter
#'   case, whether it contains the outgoing (\sQuote{out}) or the incoming
#'   (\sQuote{in}) neighbors of the vertices.
#' @param duplicate Logical scalar. For undirected graphs it gives whether
#'   edges are included in the list twice. E.g. if it is `TRUE` then for an
#'   undirected \code{{A,B}} edge `graph_from_adj_list()` expects `A`
#'   included in the neighbors of `B` and `B` to be included in the
#'   neighbors of `A`.
#'
#'   This argument is ignored if `mode` is `out` or `in`.
#' @return An igraph graph object.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [as_edgelist()]
#' @keywords graphs
#' @examples
#'
#' ## Directed
#' g <- make_ring(10, directed = TRUE)
#' al <- as_adj_list(g, mode = "out")
#' g2 <- graph_from_adj_list(al)
#' isomorphic(g, g2)
#'
#' ## Undirected
#' g <- make_ring(10)
#' al <- as_adj_list(g)
#' g2 <- graph_from_adj_list(al, mode = "all")
#' isomorphic(g, g2)
#' ecount(g2)
#' g3 <- graph_from_adj_list(al, mode = "all", duplicate = FALSE)
#' ecount(g3)
#' which_multiple(g3)
#' @family conversion
#' @export
#' @cdocs igraph_adjlist
graph_from_adj_list <- adjlist_impl


#' Convert a graph to a long data frame
#'
#' A long data frame contains all metadata about both the vertices
#' and edges of the graph. It contains one row for each edge, and
#' all metadata about that edge and its incident vertices are included
#' in that row. The names of the columns that contain the metadata
#' of the incident vertices are prefixed with `from_` and `to_`.
#' The first two columns are always named `from` and `to` and
#' they contain the numeric ids of the incident vertices. The rows are
#' listed in the order of numeric vertex ids.
#'
#' @param graph Input graph
#' @return A long data frame.
#'
#' @family conversion
#' @export
#' @examples
#' g <- make_(
#'   ring(10),
#'   with_vertex_(name = letters[1:10], color = "red"),
#'   with_edge_(weight = 1:10, color = "green")
#' )
#' as_long_data_frame(g)
as_long_data_frame <- function(graph) {
  ensure_igraph(graph)

  ver <- .Call(R_igraph_mybracket2, graph, igraph_t_idx_attr, igraph_attr_idx_vertex)
  class(ver) <- "data.frame"
  rn <- if (is_named(graph)) {
    V(graph)$name
  } else {
    seq_len(vcount(graph))
  }
  rownames(ver) <- rn

  el <- as_edgelist(graph, names = FALSE)
  edg <- c(
    list(from = el[, 1]), list(to = el[, 2]),
    .Call(R_igraph_mybracket2, graph, igraph_t_idx_attr, igraph_attr_idx_edge)
  )
  class(edg) <- "data.frame"
  rownames(edg) <- seq_len(ecount(graph))

  ver2 <- ver
  if (length(ver) > 0) {
    names(ver) <- paste0("from_", names(ver))
    names(ver2) <- paste0("to_", names(ver2))
    edg <- cbind(edg, ver[el[, 1], , drop = FALSE], ver2[el[, 2], , drop = FALSE])
  }

  edg
}

#' Convert igraph objects to adjacency or edge list matrices
#'
#' Get adjacency or edgelist representation of the network stored as an
#' `igraph` object.
#'
#' If `matrix.type` is `"edgelist"`, then a two-column numeric edge list
#' matrix is returned.  The value of `attrname` is ignored.
#'
#' If `matrix.type` is `"adjacency"`, then a square adjacency matrix is
#' returned. For adjacency matrices, you can use the `attr` keyword argument
#' to use the values of an edge attribute in the matrix cells. See the
#' documentation of [as_adjacency_matrix] for more details.
#'
#' Other arguments passed through `...` are passed to either
#' [as_adjacency_matrix()] or [as_edgelist()]
#' depending on the value of `matrix.type`.
#'
#' @param x object of class igraph, the network
#' @param matrix.type character, type of matrix to return, currently "adjacency"
#'   or "edgelist" are supported
#' @param \dots other arguments to/from other methods
#' @return Depending on the value of `matrix.type` either a square
#'   adjacency matrix or a two-column numeric matrix representing the edgelist.
#' @author Michal Bojanowski, originally from the `intergraph` package
#' @family conversion
#' @export
#' @examples
#'
#' g <- make_graph("zachary")
#' as.matrix(g, "adjacency")
#' as.matrix(g, "edgelist")
#' # use edge attribute "weight"
#' E(g)$weight <- rep(1:10, length.out = ecount(g))
#' as.matrix(g, "adjacency", sparse = FALSE, attr = "weight")
#'
as.matrix.igraph <- function(x, matrix.type = c("adjacency", "edgelist"), ...) {
  mt <- match.arg(matrix.type)
  switch(mt,
    adjacency = as_adjacency_matrix(graph = x, ...),
    edgelist = as_edgelist(graph = x, ...)
  )
}

#' Convert between directed and undirected graphs
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `as.directed()` was renamed to `as_directed()` to create a more
#' consistent API.
#' @inheritParams as_directed
#' @keywords internal
#' @export
as.directed <- function(graph, mode = c("mutual", "arbitrary", "random", "acyclic")) {
  lifecycle::deprecate_soft("2.1.0", "as.directed()", "as_directed()")
  as_directed(graph, mode = mode)
}

#' Convert between undirected and unundirected graphs
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `as.undirected()` was renamed to `as_undirected()` to create a more
#' consistent API.
#' @inheritParams as_undirected
#' @keywords internal
#' @export
as.undirected <- function(graph,
                          mode = c("collapse", "each", "mutual"),
                          edge.attr.comb = igraph_opt("edge.attr.comb")) {
  lifecycle::deprecate_soft("2.1.0", "as.undirected()", "as_undirected()")
  as_undirected(graph = graph, mode = mode, edge.attr.comb = edge.attr.comb)
}