1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
# IGraph R package
# Copyright (C) 2014 Gabor Csardi <csardi.gabor@gmail.com>
# 334 Harvard street, Cambridge, MA 02139 USA
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301 USA
#
###################################################################
#' @rdname sir
#' @export
time_bins <- function(x, middle = TRUE) {
UseMethod("time_bins")
}
#' @method time_bins sir
#' @rdname sir
#' @export
#' @importFrom stats IQR
time_bins.sir <- function(x, middle = TRUE) {
sir <- x
if (!inherits(sir, "sir")) {
stop("This is not an SIR model output")
}
big.time <- unlist(sapply(sir, "[[", "times"))
medlen <- median(sapply(lapply(sir, "[[", "times"), length))
## Adhoc use of Freedman-Diaconis binwidth; rescale time accordingly.
w <- 2 * IQR(big.time) / (medlen^(1 / 3))
minbt <- min(big.time)
maxbt <- max(big.time)
res <- seq(minbt, maxbt, length.out = ceiling((maxbt - minbt) / w))
if (middle) {
res <- (res[-1] + res[-length(res)]) / 2
}
res
}
#' @importFrom stats median
#' @method median sir
#' @rdname sir
#' @export
median.sir <- function(x, na.rm = FALSE, ...) {
sir <- x
if (!inherits(sir, "sir")) {
stop("This is not an SIR model output")
}
times <- unlist(sapply(sir, "[[", "times"))
big.N.NS <- unlist(sapply(sir, "[[", "NS"))
big.N.NI <- unlist(sapply(sir, "[[", "NI"))
big.N.NR <- unlist(sapply(sir, "[[", "NR"))
time.bin <- cut(times, time_bins(sir, middle = FALSE), include.lowest = TRUE)
NS <- tapply(big.N.NS, time.bin, median, na.rm = na.rm)
NI <- tapply(big.N.NI, time.bin, median, na.rm = na.rm)
NR <- tapply(big.N.NR, time.bin, median, na.rm = na.rm)
list(NS = NS, NI = NI, NR = NR)
}
#' @importFrom stats quantile
#' @method quantile sir
#' @rdname sir
#' @export
quantile.sir <- function(x, comp = c("NI", "NS", "NR"), prob, ...) {
sir <- x
if (!inherits(sir, "sir")) {
stop("This is not an SIR model output")
}
comp <- toupper(igraph.match.arg(comp))
times <- unlist(sapply(sir, "[[", "times"))
big.N <- unlist(sapply(sir, function(x) {
x[[comp]]
}))
time.bin <- cut(times, time_bins(sir, middle = FALSE), include.lowest = TRUE)
res <- lapply(prob, function(pp) {
tapply(big.N, time.bin, function(x) {
quantile(x, prob = pp)
})
})
if (length(res) == 1) {
res <- res[[1]]
}
res
}
# R function to plot compartment total curves from simul.net.epi .
# Inputs: sim.res := list of simulated network SIR processes
# comp := compartment (i.e., "NS", "NI", or "NR")
# q := vector of lower and upper quantiles, resp
# cols := char vector of colors for lines, median, and quantiles, resp.
# Outputs: None. Just produces the plot of all compartment curves,
# with median and quantiles.
#' Plotting the results on multiple SIR model runs
#'
#' This function can conveniently plot the results of multiple SIR model
#' simulations.
#'
#' The number of susceptible/infected/recovered individuals is plotted over
#' time, for multiple simulations.
#'
#' @param x The output of the SIR simulation, coming from the [sir()]
#' function.
#' @param comp Character scalar, which component to plot. Either \sQuote{NI}
#' (infected, default), \sQuote{NS} (susceptible) or \sQuote{NR} (recovered).
#' @param median Logical scalar, whether to plot the (binned) median.
#' @param quantiles A vector of (binned) quantiles to plot.
#' @param color Color of the individual simulation curves.
#' @param median_color Color of the median curve.
#' @param quantile_color Color(s) of the quantile curves. (It is recycled if
#' needed and non-needed entries are ignored if too long.)
#' @param lwd.median Line width of the median.
#' @param lwd.quantile Line width of the quantile curves.
#' @param lty.quantile Line type of the quantile curves.
#' @param xlim The x limits, a two-element numeric vector. If `NULL`, then
#' it is calculated from the data.
#' @param ylim The y limits, a two-element numeric vector. If `NULL`, then
#' it is calculated from the data.
#' @param xlab The x label.
#' @param ylab The y label. If `NULL` then it is automatically added based
#' on the `comp` argument.
#' @param \dots Additional arguments are passed to [plot()], that is run
#' before any of the curves are added, to create the figure.
#' @return Nothing.
#' @author Eric Kolaczyk (<http://math.bu.edu/people/kolaczyk/>) and Gabor
#' Csardi \email{csardi.gabor@@gmail.com}.
#' @seealso [sir()] for running the actual simulation.
#' @references Bailey, Norman T. J. (1975). The mathematical theory of
#' infectious diseases and its applications (2nd ed.). London: Griffin.
#' @method plot sir
#' @family processes
#' @export
#' @importFrom graphics plot lines
#' @keywords graphs
#' @examples
#'
#' g <- sample_gnm(100, 100)
#' sm <- sir(g, beta = 5, gamma = 1)
#' plot(sm)
#'
plot.sir <- function(x, comp = c("NI", "NS", "NR"),
median = TRUE, quantiles = c(0.1, 0.9), color = NULL,
median_color = NULL, quantile_color = NULL,
lwd.median = 2, lwd.quantile = 2, lty.quantile = 3,
xlim = NULL, ylim = NULL, xlab = "Time", ylab = NULL, ...) {
sir <- x
if (!inherits(sir, "sir")) {
stop("This is not an SIR model output")
}
comp <- toupper(igraph.match.arg(comp))
if (!all(quantiles >= 0 & quantiles <= 1)) {
stop("Quantiles should be in [0,1]")
}
if (is.null(color)) {
color <- c(NI = "skyblue", NS = "pink", NR = "palegoldenrod")[comp]
}
if (is.null(median_color)) {
median_color <- c(NI = "blue", NS = "red", NR = "gold")[comp]
}
if (is.null(quantile_color)) {
quantile_color <- c(NI = "blue", NS = "red", NR = "gold")[comp]
}
quantile_color <- rep(quantile_color, length.out = length(quantiles))
ns <- length(sir)
xlim <- xlim %||% c(0, max(sapply(sir, function(x) max(x$times))))
ylim <- ylim %||% c(0, max(sapply(sir, function(x) max(x[[comp]]))))
## Generate the plot, first with individual curves, and then
## adding median and quantile curves.
if (is.null(ylab)) {
if (comp == "NI") {
ylab <- expression(N[I](t))
}
if (comp == "NR") {
ylab <- expression(N[R](t))
}
if (comp == "NS") {
ylab <- expression(N[S](t))
}
}
# Plot the stochastic curves individually.
plot(0, 0, type = "n", xlim = xlim, ylim = ylim, xlab = xlab, ylab = ylab, ...)
lapply(seq_along(sir), function(i) {
lines(sir[[i]]$times, sir[[i]][[comp]], col = color[1])
})
# Plot the median and quantiles.
if (median || length(quantiles) > 0) {
time.bin <- time_bins(sir, middle = TRUE)
}
if (median) {
lines(time.bin, median(sir)[[comp]],
type = "l",
lwd = lwd.median, col = median_color
)
}
for (i in seq_along(quantiles)) {
my.ql <- quantile(sir, comp, quantiles[i])
lines(time.bin, my.ql,
type = "l", lty = lty.quantile,
lwd = lwd.quantile, col = quantile_color[i]
)
}
invisible()
}
|