1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
#' Fitting a power-law distribution function to discrete data
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `power.law.fit()` was renamed to `fit_power_law()` to create a more
#' consistent API.
#' @inheritParams fit_power_law
#' @keywords internal
#' @export
power.law.fit <- function(x, xmin = NULL, start = 2, force.continuous = FALSE, implementation = c("plfit", "R.mle"), ...) { # nocov start
lifecycle::deprecate_soft("2.0.0", "power.law.fit()", "fit_power_law()")
fit_power_law(x = x, xmin = xmin, start = start, force.continuous = force.continuous, implementation = implementation, ...)
} # nocov end
# IGraph R package
# Copyright (C) 2005-2012 Gabor Csardi <csardi.gabor@gmail.com>
# 334 Harvard street, Cambridge, MA 02139 USA
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301 USA
#
###################################################################
###################################################################
# Pit a power-law (khmm a Yule really) distribution,
# this is a common degree distribution in networks
###################################################################
#' Fitting a power-law distribution function to discrete data
#'
#' `fit_power_law()` fits a power-law distribution to a data set.
#'
#' This function fits a power-law distribution to a vector containing samples
#' from a distribution (that is assumed to follow a power-law of course). In a
#' power-law distribution, it is generally assumed that \eqn{P(X=x)} is
#' proportional to \eqn{x^{-\alpha}}{x^-alpha}, where \eqn{x} is a positive
#' number and \eqn{\alpha}{alpha} is greater than 1. In many real-world cases,
#' the power-law behaviour kicks in only above a threshold value
#' \eqn{x_\text{min}}{xmin}. The goal of this function is to determine
#' \eqn{\alpha}{alpha} if \eqn{x_\text{min}}{xmin} is given, or to determine
#' \eqn{x_\text{min}}{xmin} and the corresponding value of \eqn{\alpha}{alpha}.
#'
#' `fit_power_law()` provides two maximum likelihood implementations. If
#' the `implementation` argument is \sQuote{`R.mle`}, then the BFGS
#' optimization (see [stats4::mle()]) algorithm is applied. The additional
#' arguments are passed to the mle function, so it is possible to change the
#' optimization method and/or its parameters. This implementation can
#' *not* to fit the \eqn{x_\text{min}}{xmin} argument, so use the
#' \sQuote{`plfit`} implementation if you want to do that.
#'
#' The \sQuote{`plfit`} implementation also uses the maximum likelihood
#' principle to determine \eqn{\alpha}{alpha} for a given \eqn{x_\text{min}}{xmin};
#' When \eqn{x_\text{min}}{xmin} is not given in advance, the algorithm will attempt
#' to find its optimal value for which the \eqn{p}-value of a Kolmogorov-Smirnov
#' test between the fitted distribution and the original sample is the largest.
#' The function uses the method of Clauset, Shalizi and Newman to calculate the
#' parameters of the fitted distribution. See references below for the details.
#'
#' `r lifecycle::badge("experimental")`
#'
#' Pass `p.value = TRUE` to include the p-value in the output.
#' This is not returned by default because the computation may be slow.
#'
#' @param x The data to fit, a numeric vector. For implementation
#' \sQuote{`R.mle`} the data must be integer values. For the
#' \sQuote{`plfit`} implementation non-integer values might be present and
#' then a continuous power-law distribution is fitted.
#' @param xmin Numeric scalar, or `NULL`. The lower bound for fitting the
#' power-law. If `NULL`, the smallest value in `x` will be used for
#' the \sQuote{`R.mle`} implementation, and its value will be
#' automatically determined for the \sQuote{`plfit`} implementation. This
#' argument makes it possible to fit only the tail of the distribution.
#' @param start Numeric scalar. The initial value of the exponent for the
#' minimizing function, for the \sQuote{`R.mle`} implementation. Usually
#' it is safe to leave this untouched.
#' @param force.continuous Logical scalar. Whether to force a continuous
#' distribution for the \sQuote{`plfit`} implementation, even if the
#' sample vector contains integer values only (by chance). If this argument is
#' false, igraph will assume a continuous distribution if at least one sample
#' is non-integer and assume a discrete distribution otherwise.
#' @param p.value `r lifecycle::badge("experimental")`
#'
#' Set to `TRUE` to compute the p-value with `implementation = "plfit"`.
#' @param p.precision `r lifecycle::badge("experimental")`
#'
#' The desired precision of the p-value calculation. The
#' precision ultimately depends on the number of resampling attempts. The
#' number of resampling trials is determined by 0.25 divided by the square
#' of the required precision. For instance, a required precision of 0.01
#' means that 2500 samples will be drawn.
#' @param implementation Character scalar. Which implementation to use. See
#' details below.
#' @param \dots Additional arguments, passed to the maximum likelihood
#' optimizing function, [stats4::mle()], if the \sQuote{`R.mle`}
#' implementation is chosen. It is ignored by the \sQuote{`plfit`}
#' implementation.
#' @return Depends on the `implementation` argument. If it is
#' \sQuote{`R.mle`}, then an object with class \sQuote{`mle`}. It can
#' be used to calculate confidence intervals and log-likelihood. See
#' [stats4::mle-class()] for details.
#'
#' If `implementation` is \sQuote{`plfit`}, then the result is a
#' named list with entries:
#' \item{continuous}{Logical scalar, whether the
#' fitted power-law distribution was continuous or discrete.}
#' \item{alpha}{Numeric scalar, the exponent of the fitted power-law distribution.}
#' \item{xmin}{Numeric scalar, the minimum value from which the
#' power-law distribution was fitted. In other words, only the values larger
#' than `xmin` were used from the input vector.}
#' \item{logLik}{Numeric scalar, the log-likelihood of the fitted parameters.}
#' \item{KS.stat}{Numeric scalar, the test statistic of a Kolmogorov-Smirnov test
#' that compares the fitted distribution with the input vector.
#' Smaller scores denote better fit.}
#' \item{KS.p}{Only for `p.value = TRUE`. Numeric scalar, the p-value of the Kolmogorov-Smirnov
#' test. Small p-values (less than 0.05) indicate that the test rejected the
#' hypothesis that the original data could have been drawn from the fitted
#' power-law distribution.}
#' @author Tamas Nepusz \email{ntamas@@gmail.com} and Gabor Csardi
#' \email{csardi.gabor@@gmail.com}
#' @seealso [stats4::mle()]
#' @references Power laws, Pareto distributions and Zipf's law, M. E. J.
#' Newman, *Contemporary Physics*, 46, 323-351, 2005.
#'
#' Aaron Clauset, Cosma R .Shalizi and Mark E.J. Newman: Power-law
#' distributions in empirical data. SIAM Review 51(4):661-703, 2009.
#' @family fit
#' @export
#' @keywords graphs
#' @examples
#'
#' # This should approximately yield the correct exponent 3
#' g <- sample_pa(1000) # increase this number to have a better estimate
#' d <- degree(g, mode = "in")
#' fit1 <- fit_power_law(d + 1, 10)
#' fit2 <- fit_power_law(d + 1, 10, implementation = "R.mle")
#'
#' fit1$alpha
#' stats4::coef(fit2)
#' fit1$logLik
#' stats4::logLik(fit2)
#'
fit_power_law <- function(
x,
xmin = NULL,
start = 2,
force.continuous = FALSE,
implementation = c("plfit", "R.mle"),
p.value = FALSE,
p.precision = NULL,
...
) {
implementation <- igraph.match.arg(implementation)
if (implementation == "r.mle") {
if (isTRUE(p.value)) {
cli::cli_abort("{.arg p.value} is not supported for {.arg implementation} = {.str R.mle}")
}
power.law.fit.old(x, xmin, start, ...)
} else if (implementation == "plfit.p") {
lifecycle::deprecate_stop(
"2.1.0",
'fit_power_law(implementation = "cannot be \\"plfit.p\\"")',
I('`fit_power_law(implementation = "plfit", p.value = TRUE)`')
)
} else if (implementation == "plfit") {
xmin <- xmin %||% -1
p.precision <- p.precision %||% 0.01
power.law.fit.new(
x,
xmin = xmin,
force.continuous = force.continuous,
p.value = p.value,
p.precision = p.precision
)
}
}
power.law.fit.old <- function(x, xmin = NULL, start = 2, ...) {
if (length(x) == 0) {
stop("zero length vector")
}
if (length(x) == 1) {
stop("vector should be at least of length two")
}
xmin <- xmin %||% min(x)
n <- length(x)
x <- x[x >= xmin]
if (length(x) != n) {
n <- length(x)
}
# mlogl <- function(alpha) {
# if (xmin > 1) {
# C <- 1/(1/(alpha-1)-sum(beta(1:(xmin-1), alpha)))
# } else {
# C <- alpha-1
# }
# -n*log(C)-sum(lbeta(x, alpha))
# }
mlogl <- function(alpha) {
C <- 1 / sum((xmin:10000)^-alpha)
-n * log(C) + alpha * sum(log(x))
}
alpha <- stats4::mle(mlogl, start = list(alpha = start), ...)
alpha
}
power.law.fit.new <- function(data, xmin = -1, force.continuous = FALSE, p.value = FALSE, p.precision = 0.01) {
# Argument checks
data <- as.numeric(data)
xmin <- as.numeric(xmin)
force.continuous <- as.logical(force.continuous)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_power_law_fit_new, data, xmin, force.continuous, p.value, p.precision)
res
}
|