1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
|
#' Vertex connectivity
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `vertex.disjoint.paths()` was renamed to `vertex_disjoint_paths()` to create a more
#' consistent API.
#' @inheritParams vertex_disjoint_paths
#' @keywords internal
#' @export
vertex.disjoint.paths <- function(graph, source = NULL, target = NULL) { # nocov start
lifecycle::deprecate_soft("2.0.0", "vertex.disjoint.paths()", "vertex_disjoint_paths()")
vertex_disjoint_paths(graph = graph, source = source, target = target)
} # nocov end
#' Vertex connectivity
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `vertex.connectivity()` was renamed to `vertex_connectivity()` to create a more
#' consistent API.
#' @inheritParams vertex_connectivity
#' @keywords internal
#' @export
vertex.connectivity <- function(graph, source = NULL, target = NULL, checks = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "vertex.connectivity()", "vertex_connectivity()")
vertex_connectivity(graph = graph, source = source, target = target, checks = checks)
} # nocov end
#' List all minimum \((s,t)\)-cuts of a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `stMincuts()` was renamed to `st_min_cuts()` to create a more
#' consistent API.
#' @inheritParams st_min_cuts
#' @keywords internal
#' @export
stMincuts <- function(graph, source, target, capacity = NULL) { # nocov start
lifecycle::deprecate_soft("2.0.0", "stMincuts()", "st_min_cuts()")
st_min_cuts(graph = graph, source = source, target = target, capacity = capacity)
} # nocov end
#' List all (s,t)-cuts of a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `stCuts()` was renamed to `st_cuts()` to create a more
#' consistent API.
#' @inheritParams st_cuts
#' @keywords internal
#' @export
stCuts <- function(graph, source, target) { # nocov start
lifecycle::deprecate_soft("2.0.0", "stCuts()", "st_cuts()")
st_cuts(graph = graph, source = source, target = target)
} # nocov end
#' Minimum size vertex separators
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `minimum.size.separators()` was renamed to `min_separators()` to create a more
#' consistent API.
#' @inheritParams min_separators
#' @keywords internal
#' @export
minimum.size.separators <- function(graph) { # nocov start
lifecycle::deprecate_soft("2.0.0", "minimum.size.separators()", "min_separators()")
min_separators(graph = graph)
} # nocov end
#' Minimum size vertex separators
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `minimal.st.separators()` was renamed to `min_st_separators()` to create a more
#' consistent API.
#' @inheritParams min_st_separators
#' @keywords internal
#' @export
minimal.st.separators <- function(graph) { # nocov start
lifecycle::deprecate_soft("2.0.0", "minimal.st.separators()", "min_st_separators()")
min_st_separators(graph = graph)
} # nocov end
#' Vertex separators
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `is.separator()` was renamed to `is_separator()` to create a more
#' consistent API.
#' @inheritParams is_separator
#' @keywords internal
#' @export
is.separator <- function(graph, candidate) { # nocov start
lifecycle::deprecate_soft("2.0.0", "is.separator()", "is_separator()")
is_separator(graph = graph, candidate = candidate)
} # nocov end
#' Minimal vertex separators
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `is.minimal.separator()` was renamed to `is_min_separator()` to create a more
#' consistent API.
#' @inheritParams is_min_separator
#' @keywords internal
#' @export
is.minimal.separator <- function(graph, candidate) { # nocov start
lifecycle::deprecate_soft("2.0.0", "is.minimal.separator()", "is_min_separator()")
is_min_separator(graph = graph, candidate = candidate)
} # nocov end
#' Minimum cut in a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.mincut()` was renamed to `min_cut()` to create a more
#' consistent API.
#' @inheritParams min_cut
#' @keywords internal
#' @export
graph.mincut <- function(graph, source = NULL, target = NULL, capacity = NULL, value.only = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "graph.mincut()", "min_cut()")
min_cut(graph = graph, source = source, target = target, capacity = capacity, value.only = value.only)
} # nocov end
#' Maximum flow in a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.maxflow()` was renamed to `max_flow()` to create a more
#' consistent API.
#' @inheritParams max_flow
#' @keywords internal
#' @export
graph.maxflow <- function(graph, source, target, capacity = NULL) { # nocov start
lifecycle::deprecate_soft("2.0.0", "graph.maxflow()", "max_flow()")
max_flow(graph = graph, source = source, target = target, capacity = capacity)
} # nocov end
#' Edge connectivity
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.adhesion()` was renamed to `adhesion()` to create a more
#' consistent API.
#' @inheritParams adhesion
#' @keywords internal
#' @export
graph.adhesion <- function(graph, checks = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "graph.adhesion()", "adhesion()")
adhesion(graph = graph, checks = checks)
} # nocov end
#' Edge connectivity
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `edge.disjoint.paths()` was renamed to `edge_connectivity()` to create a more
#' consistent API.
#' @inheritParams edge_connectivity
#' @keywords internal
#' @export
edge.disjoint.paths <- function(graph, source = NULL, target = NULL, checks = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "edge.disjoint.paths()", "edge_connectivity()")
edge_connectivity(graph = graph, source = source, target = target, checks = checks)
} # nocov end
#' Edge connectivity
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `edge.connectivity()` was renamed to `edge_connectivity()` to create a more
#' consistent API.
#' @inheritParams edge_connectivity
#' @keywords internal
#' @export
edge.connectivity <- function(graph, source = NULL, target = NULL, checks = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "edge.connectivity()", "edge_connectivity()")
edge_connectivity(graph = graph, source = source, target = target, checks = checks)
} # nocov end
#' Dominator tree
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `dominator.tree()` was renamed to `dominator_tree()` to create a more
#' consistent API.
#' @inheritParams dominator_tree
#' @keywords internal
#' @export
dominator.tree <- function(graph, root, mode = c("out", "in", "all", "total")) { # nocov start
lifecycle::deprecate_soft("2.0.0", "dominator.tree()", "dominator_tree()")
dominator_tree(graph = graph, root = root, mode = mode)
} # nocov end
# IGraph R package
# Copyright (C) 2006-2012 Gabor Csardi <csardi.gabor@gmail.com>
# 334 Harvard street, Cambridge, MA 02139 USA
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301 USA
#
###################################################################
#' Minimum cut in a graph
#'
#' `min_cut()` calculates the minimum st-cut between two vertices in a graph
#' (if the `source` and `target` arguments are given) or the minimum
#' cut of the graph (if both `source` and `target` are `NULL`).
#'
#' The minimum st-cut between `source` and `target` is the minimum
#' total weight of edges needed to remove to eliminate all paths from
#' `source` to `target`.
#'
#' The minimum cut of a graph is the minimum total weight of the edges needed
#' to remove to separate the graph into (at least) two components. (Which is to
#' make the graph *not* strongly connected in the directed case.)
#'
#' The maximum flow between two vertices in a graph is the same as the minimum
#' st-cut, so `max_flow()` and `min_cut()` essentially calculate the same
#' quantity, the only difference is that `min_cut()` can be invoked without
#' giving the `source` and `target` arguments and then minimum of all
#' possible minimum cuts is calculated.
#'
#' For undirected graphs the Stoer-Wagner algorithm (see reference below) is
#' used to calculate the minimum cut.
#'
#' @param graph The input graph.
#' @param source The id of the source vertex.
#' @param target The id of the target vertex (sometimes also called sink).
#' @param capacity Vector giving the capacity of the edges. If this is
#' `NULL` (the default) then the `capacity` edge attribute is used.
#' @param value.only Logical scalar, if `TRUE` only the minimum cut value
#' is returned, if `FALSE` the edges in the cut and a the two (or more)
#' partitions are also returned.
#' @return For `min_cut()` a nuieric constant, the value of the minimum
#' cut, except if `value.only = FALSE`. In this case a named list with
#' components:
#' \item{value}{Numeric scalar, the cut value.}
#' \item{cut}{Numeric vector, the edges in the cut.}
#' \item{partition1}{The vertices in the first partition after the cut
#' edges are removed. Note that these vertices might be actually in
#' different components (after the cut edges are removed), as the graph
#' may fall apart into more than two components.}
#' \item{partition2}{The vertices in the second partition
#' after the cut edges are removed. Note that these vertices might be
#' actually in different components (after the cut edges are removed), as
#' the graph may fall apart into more than two components.}
#' @references M. Stoer and F. Wagner: A simple min-cut algorithm,
#' *Journal of the ACM*, 44 585-591, 1997.
#' @examples
#' g <- make_ring(100)
#' min_cut(g, capacity = rep(1, vcount(g)))
#' min_cut(g, value.only = FALSE, capacity = rep(1, vcount(g)))
#'
#' g2 <- make_graph(c(1, 2, 2, 3, 3, 4, 1, 6, 6, 5, 5, 4, 4, 1))
#' E(g2)$capacity <- c(3, 1, 2, 10, 1, 3, 2)
#' min_cut(g2, value.only = FALSE)
#' @family flow
#' @export
min_cut <- function(graph, source = NULL, target = NULL, capacity = NULL, value.only = TRUE) {
ensure_igraph(graph)
if (is.null(capacity)) {
if ("capacity" %in% edge_attr_names(graph)) {
capacity <- E(graph)$capacity
}
}
if (length(source) == 0) {
source <- NULL
}
if (length(target) == 0) {
target <- NULL
}
if (is.null(source) && !is.null(target) ||
is.null(target) && !is.null(source)) {
stop("Please give both source and target or neither")
}
if (!is.null(capacity)) {
capacity <- as.numeric(capacity)
}
value.only <- as.logical(value.only)
on.exit(.Call(R_igraph_finalizer))
if (is.null(target) && is.null(source)) {
if (value.only) {
res <- .Call(R_igraph_mincut_value, graph, capacity)
} else {
res <- .Call(R_igraph_mincut, graph, capacity)
res$cut <- res$cut + 1
res$partition1 <- res$partition1 + 1
res$partition2 <- res$partition2 + 1
if (igraph_opt("return.vs.es")) {
res$cut <- create_es(graph, res$cut)
res$partition1 <- create_vs(graph, res$partition1)
res$partition2 <- create_vs(graph, res$partition2)
}
}
} else {
if (value.only) {
res <- .Call(
R_igraph_st_mincut_value, graph,
as_igraph_vs(graph, source) - 1,
as_igraph_vs(graph, target) - 1, capacity
)
} else {
res <- .Call(
R_igraph_st_mincut, graph,
as_igraph_vs(graph, source) - 1,
as_igraph_vs(graph, target) - 1, capacity
)
# No need to add +1 here; R_igraph_st_mincut() is autogenerated and
# adds +1 already
if (igraph_opt("return.vs.es")) {
res$cut <- create_es(graph, res$cut)
res$partition1 <- create_vs(graph, res$partition1)
res$partition2 <- create_vs(graph, res$partition2)
}
}
}
res
}
#' Vertex connectivity
#'
#' The vertex connectivity of a graph or two vertices, this is recently also
#' called group cohesion.
#'
#' The vertex connectivity of two vertices (`source` and `target`) in
#' a graph is the minimum number of vertices that must be deleted to
#' eliminate all (directed) paths from `source` to `target`.
#' `vertex_connectivity()` calculates this quantity if both the
#' `source` and `target` arguments are given and they're not
#' `NULL`.
#'
#' The vertex connectivity of a pair is the same as the number
#' of different (i.e. node-independent) paths from source to
#' target, assuming no direct edges between them.
#'
#' The vertex connectivity of a graph is the minimum vertex connectivity of all
#' (ordered) pairs of vertices in the graph. In other words this is the minimum
#' number of vertices needed to remove to make the graph not strongly
#' connected. (If the graph is not strongly connected then this is zero.)
#' `vertex_connectivity()` calculates this quantity if neither the
#' `source` nor `target` arguments are given. (I.e. they are both
#' `NULL`.)
#'
#' A set of vertex disjoint directed paths from `source` to `vertex`
#' is a set of directed paths between them whose vertices do not contain common
#' vertices (apart from `source` and `target`). The maximum number of
#' vertex disjoint paths between two vertices is the same as their vertex
#' connectivity in most cases (if the two vertices are not connected by an
#' edge).
#'
#' The cohesion of a graph (as defined by White and Harary, see references), is
#' the vertex connectivity of the graph. This is calculated by
#' `cohesion()`.
#'
#' These three functions essentially calculate the same measure(s), more
#' precisely `vertex_connectivity()` is the most general, the other two are
#' included only for the ease of using more descriptive function names.
#'
#' @aliases cohesion
#' @param graph,x The input graph.
#' @param source The id of the source vertex, for `vertex_connectivity()` it
#' can be `NULL`, see details below.
#' @param target The id of the target vertex, for `vertex_connectivity()` it
#' can be `NULL`, see details below.
#' @param checks Logical constant. Whether to check that the graph is connected
#' and also the degree of the vertices. If the graph is not (strongly)
#' connected then the connectivity is obviously zero. Otherwise if the minimum
#' degree is one then the vertex connectivity is also one. It is a good idea to
#' perform these checks, as they can be done quickly compared to the
#' connectivity calculation itself. They were suggested by Peter McMahan,
#' thanks Peter.
#' @param ... Ignored.
#' @return A scalar real value.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references White, Douglas R and Frank Harary 2001. The Cohesiveness of
#' Blocks In Social Networks: Node Connectivity and Conditional Density.
#' *Sociological Methodology* 31 (1) : 305-359.
#' @family flow
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- sample_pa(100, m = 1)
#' g <- delete_edges(g, E(g)[100 %--% 1])
#' g2 <- sample_pa(100, m = 5)
#' g2 <- delete_edges(g2, E(g2)[100 %--% 1])
#' vertex_connectivity(g, 100, 1)
#' vertex_connectivity(g2, 100, 1)
#' vertex_disjoint_paths(g2, 100, 1)
#'
#' g <- sample_gnp(50, 5 / 50)
#' g <- as_directed(g)
#' g <- induced_subgraph(g, subcomponent(g, 1))
#' cohesion(g)
#'
vertex_connectivity <- function(graph, source = NULL, target = NULL, checks = TRUE) {
ensure_igraph(graph)
if (length(source) == 0) {
source <- NULL
}
if (length(target) == 0) {
target <- NULL
}
if (is.null(source) && is.null(target)) {
on.exit(.Call(R_igraph_finalizer))
.Call(R_igraph_vertex_connectivity, graph, as.logical(checks))
} else if (!is.null(source) && !is.null(target)) {
on.exit(.Call(R_igraph_finalizer))
.Call(
R_igraph_st_vertex_connectivity, graph, as_igraph_vs(graph, source) - 1,
as_igraph_vs(graph, target) - 1
)
} else {
stop("either give both source and target or neither")
}
}
#' Edge connectivity
#'
#' The edge connectivity of a graph or two vertices, this is recently also
#' called group adhesion.
#'
#' @section `edge_connectivity()` Edge connectivity:
#' The edge connectivity of a pair of vertices (`source` and
#' `target`) is the minimum number of edges needed to remove to eliminate
#' all (directed) paths from `source` to `target`.
#' `edge_connectivity()` calculates this quantity if both the `source`
#' and `target` arguments are given (and not `NULL`).
#'
#' The edge connectivity of a graph is the minimum of the edge connectivity of
#' every (ordered) pair of vertices in the graph. `edge_connectivity()`
#' calculates this quantity if neither the `source` nor the `target`
#' arguments are given (i.e. they are both `NULL`).
#'
#' @section `edge_disjoint_paths()` The maximum number of edge-disjoint paths between two vertices:
#' A set of paths between two vertices is called edge-disjoint if they do not
#' share any edges. The maximum number of edge-disjoint paths are calculated
#' by this function using maximum flow techniques. Directed paths are
#' considered in directed graphs.
#'
#'
#' A set of edge disjoint paths between two vertices is a set of paths between
#' them containing no common edges. The maximum number of edge disjoint paths
#' between two vertices is the same as their edge connectivity.
#'
#' When there are no direct edges between the source and the target, the number
#' of vertex-disjoint paths is the same as the vertex connectivity of
#' the two vertices. When some edges are present, each one of them
#' contributes one extra path.
#'
#' @section `adhesion()` Adhesion of a graph:
#' The adhesion of a graph is the minimum number of edges needed to remove to
#' obtain a graph which is not strongly connected. This is the same as the edge
#' connectivity of the graph.
#'
#' @section All three functions:
#' The three functions documented on this page calculate similar properties,
#' more precisely the most general is `edge_connectivity()`, the others are
#' included only for having more descriptive function names.
#'
#'
#' @param graph The input graph.
#' @param source The id of the source vertex, for `edge_connectivity()` it
#' can be `NULL`, see details below.
#' @param target The id of the target vertex, for `edge_connectivity()` it
#' can be `NULL`, see details below.
#' @param checks Logical constant. Whether to check that the graph is connected
#' and also the degree of the vertices. If the graph is not (strongly)
#' connected then the connectivity is obviously zero. Otherwise if the minimum
#' degree is one then the edge connectivity is also one. It is a good idea to
#' perform these checks, as they can be done quickly compared to the
#' connectivity calculation itself. They were suggested by Peter McMahan,
#' thanks Peter.
#' @return A scalar real value.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references Douglas R. White and Frank Harary (2001): The cohesiveness of blocks in
#' social networks: node connectivity and conditional density,
#' Sociological Methodology, vol. 31, 2001, pp. 305–59.
#' @family flow
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- sample_pa(100, m = 1)
#' g2 <- sample_pa(100, m = 5)
#' edge_connectivity(g, 100, 1)
#' edge_connectivity(g2, 100, 1)
#' edge_disjoint_paths(g2, 100, 1)
#'
#' g <- sample_gnp(50, 5 / 50)
#' g <- as_directed(g)
#' g <- induced_subgraph(g, subcomponent(g, 1))
#' adhesion(g)
#'
edge_connectivity <- function(graph, source = NULL, target = NULL, checks = TRUE) {
ensure_igraph(graph)
if (length(source) == 0) {
source <- NULL
}
if (length(target) == 0) {
target <- NULL
}
if (is.null(source) && is.null(target)) {
on.exit(.Call(R_igraph_finalizer))
.Call(R_igraph_edge_connectivity, graph, as.logical(checks))
} else if (!is.null(source) && !is.null(target)) {
on.exit(.Call(R_igraph_finalizer))
.Call(
R_igraph_st_edge_connectivity, graph,
as_igraph_vs(graph, source) - 1, as_igraph_vs(graph, target) - 1
)
} else {
stop("either give both source and target or neither")
}
}
#' @rdname edge_connectivity
#' @export
edge_disjoint_paths <- function(graph, source, target) {
ensure_igraph(graph)
if (length(source) == 0) {
source <- NULL
}
if (length(target) == 0) {
target <- NULL
}
on.exit(.Call(R_igraph_finalizer))
.Call(
R_igraph_edge_disjoint_paths, graph,
as_igraph_vs(graph, source) - 1, as_igraph_vs(graph, target) - 1
)
}
#' @rdname vertex_connectivity
#' @export
vertex_disjoint_paths <- function(graph, source = NULL, target = NULL) {
ensure_igraph(graph)
if (length(source) == 0) {
source <- NULL
}
if (length(target) == 0) {
target <- NULL
}
on.exit(.Call(R_igraph_finalizer))
.Call(
R_igraph_vertex_disjoint_paths, graph, as_igraph_vs(graph, source) - 1,
as_igraph_vs(graph, target) - 1
)
}
#' @rdname edge_connectivity
#' @export
adhesion <- function(graph, checks = TRUE) {
ensure_igraph(graph)
on.exit(.Call(R_igraph_finalizer))
.Call(R_igraph_adhesion, graph, as.logical(checks))
}
#' @rdname vertex_connectivity
#' @method cohesion igraph
#' @export
cohesion.igraph <- function(x, checks = TRUE, ...) {
ensure_igraph(x)
on.exit(.Call(R_igraph_finalizer))
.Call(R_igraph_cohesion, x, as.logical(checks))
}
#' List all (s,t)-cuts of a graph
#'
#' List all (s,t)-cuts in a directed graph.
#'
#' Given a \eqn{G} directed graph and two, different and non-ajacent vertices,
#' \eqn{s} and \eqn{t}, an \eqn{(s,t)}-cut is a set of edges, such that after
#' removing these edges from \eqn{G} there is no directed path from \eqn{s} to
#' \eqn{t}.
#'
#' @param graph The input graph. It must be directed.
#' @param source The source vertex.
#' @param target The target vertex.
#' @return A list with entries: \item{cuts}{A list of numeric vectors
#' containing edge ids. Each vector is an \eqn{(s,t)}-cut.}
#' \item{partition1s}{A list of numeric vectors containing vertex ids, they
#' correspond to the edge cuts. Each vertex set is a generator of the
#' corresponding cut, i.e. in the graph \eqn{G=(V,E)}, the vertex set \eqn{X}
#' and its complementer \eqn{V-X}, generates the cut that contains exactly the
#' edges that go from \eqn{X} to \eqn{V-X}.}
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references JS Provan and DR Shier: A Paradigm for listing (s,t)-cuts in
#' graphs, *Algorithmica* 15, 351--372, 1996.
#' @keywords graphs
#' @examples
#'
#' # A very simple graph
#' g <- graph_from_literal(a -+ b -+ c -+ d -+ e)
#' st_cuts(g, source = "a", target = "e")
#'
#' # A somewhat more difficult graph
#' g2 <- graph_from_literal(
#' s --+ a:b, a:b --+ t,
#' a --+ 1:2:3, 1:2:3 --+ b
#' )
#' st_cuts(g2, source = "s", target = "t")
#' @family flow
#' @export
#' @cdocs igraph_all_st_cuts
st_cuts <- all_st_cuts_impl
#' List all minimum \eqn{(s,t)}-cuts of a graph
#'
#' Listing all minimum \eqn{(s,t)}-cuts of a directed graph, for given \eqn{s}
#' and \eqn{t}.
#'
#' Given a \eqn{G} directed graph and two, different and non-ajacent vertices,
#' \eqn{s} and \eqn{t}, an \eqn{(s,t)}-cut is a set of edges, such that after
#' removing these edges from \eqn{G} there is no directed path from \eqn{s} to
#' \eqn{t}.
#'
#' The size of an \eqn{(s,t)}-cut is defined as the sum of the capacities (or
#' weights) in the cut. For unweighted (=equally weighted) graphs, this is
#' simply the number of edges.
#'
#' An \eqn{(s,t)}-cut is minimum if it is of the smallest possible size.
#'
#' @param graph The input graph. It must be directed.
#' @param source The id of the source vertex.
#' @param target The id of the target vertex.
#' @param capacity Numeric vector giving the edge capacities. If this is
#' `NULL` and the graph has a `weight` edge attribute, then this
#' attribute defines the edge capacities. For forcing unit edge capacities,
#' even for graphs that have a `weight` edge attribute, supply `NA`
#' here.
#' @return A list with entries: \item{value}{Numeric scalar, the size of the
#' minimum cut(s).} \item{cuts}{A list of numeric vectors containing edge ids.
#' Each vector is a minimum \eqn{(s,t)}-cut.} \item{partition1s}{A list of
#' numeric vectors containing vertex ids, they correspond to the edge cuts.
#' Each vertex set is a generator of the corresponding cut, i.e. in the graph
#' \eqn{G=(V,E)}, the vertex set \eqn{X} and its complementer \eqn{V-X},
#' generates the cut that contains exactly the edges that go from \eqn{X} to
#' \eqn{V-X}.}
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references JS Provan and DR Shier: A Paradigm for listing (s,t)-cuts in
#' graphs, *Algorithmica* 15, 351--372, 1996.
#' @keywords graphs
#' @examples
#'
#' # A difficult graph, from the Provan-Shier paper
#' g <- graph_from_literal(
#' s --+ a:b, a:b --+ t,
#' a --+ 1:2:3:4:5, 1:2:3:4:5 --+ b
#' )
#' st_min_cuts(g, source = "s", target = "t")
#' @family flow
#' @export
#' @cdocs igraph_all_st_mincuts
st_min_cuts <- all_st_mincuts_impl
#' Dominator tree
#'
#' Dominator tree of a directed graph.
#'
#' A flowgraph is a directed graph with a distinguished start (or root) vertex
#' \eqn{r}, such that for any vertex \eqn{v}, there is a path from \eqn{r} to
#' \eqn{v}. A vertex \eqn{v} dominates another vertex \eqn{w} (not equal to
#' \eqn{v}), if every path from \eqn{r} to \eqn{w} contains \eqn{v}. Vertex
#' \eqn{v} is the immediate dominator or \eqn{w},
#' \eqn{v=\textrm{idom}(w)}{v=idom(w)}, if \eqn{v} dominates \eqn{w} and every
#' other dominator of \eqn{w} dominates \eqn{v}. The edges
#' \eqn{{(\textrm{idom}(w), w)| w \ne r}}{{(idom(w),w)| w is not r}} form a
#' directed tree, rooted at \eqn{r}, called the dominator tree of the graph.
#' Vertex \eqn{v} dominates vertex \eqn{w} if and only if \eqn{v} is an
#' ancestor of \eqn{w} in the dominator tree.
#'
#' This function implements the Lengauer-Tarjan algorithm to construct the
#' dominator tree of a directed graph. For details see the reference below.
#'
#' @param graph A directed graph. If it is not a flowgraph, and it contains
#' some vertices not reachable from the root vertex, then these vertices will
#' be collected and returned as part of the result.
#' @param root The id of the root (or source) vertex, this will be the root of
#' the tree.
#' @param mode Constant, must be \sQuote{`in`} or \sQuote{`out`}. If
#' it is \sQuote{`in`}, then all directions are considered as opposite to
#' the original one in the input graph.
#' @return A list with components: \item{dom}{ A numeric vector giving the
#' immediate dominators for each vertex. For vertices that are unreachable from
#' the root, it contains `NaN`. For the root vertex itself it contains
#' minus one. } \item{domtree}{ A graph object, the dominator tree. Its vertex
#' ids are the as the vertex ids of the input graph. Isolate vertices are the
#' ones that are unreachable from the root. } \item{leftout}{ A numeric vector
#' containing the vertex ids that are unreachable from the root. }
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references Thomas Lengauer, Robert Endre Tarjan: A fast algorithm for
#' finding dominators in a flowgraph, *ACM Transactions on Programming
#' Languages and Systems (TOPLAS)* I/1, 121--141, 1979.
#' @keywords graphs
#' @examples
#'
#' ## The example from the paper
#' g <- graph_from_literal(
#' R -+ A:B:C, A -+ D, B -+ A:D:E, C -+ F:G, D -+ L,
#' E -+ H, F -+ I, G -+ I:J, H -+ E:K, I -+ K, J -+ I,
#' K -+ I:R, L -+ H
#' )
#' dtree <- dominator_tree(g, root = "R")
#' layout <- layout_as_tree(dtree$domtree, root = "R")
#' layout[, 2] <- -layout[, 2]
#' plot(dtree$domtree, layout = layout, vertex.label = V(dtree$domtree)$name)
#' @family flow
#' @export
dominator_tree <- function(graph, root, mode = c("out", "in", "all", "total")) {
# Argument checks
ensure_igraph(graph)
root <- as_igraph_vs(graph, root)
if (length(root) == 0) {
stop("No vertex was specified")
}
mode <- switch(igraph.match.arg(mode),
"out" = 1,
"in" = 2,
"all" = 3,
"total" = 3
)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_dominator_tree, graph, root - 1, mode)
if (igraph_opt("return.vs.es")) {
res$leftout <- create_vs(graph, res$leftout)
}
# Replace 0 with -1 in `res$dom' to conform with documentation
res$dom[res$dom == 0] <- -1
res
}
#' Minimum size vertex separators
#'
#' List all vertex sets that are minimal \eqn{(s,t)} separators for some
#' \eqn{s} and \eqn{t}, in an undirected graph.
#'
#' A \eqn{(s,t)} vertex separator is a set of vertices, such that after their
#' removal from the graph, there is no path between \eqn{s} and \eqn{t} in the
#' graph.
#'
#' A \eqn{(s,t)} vertex separator is minimal if none of its proper subsets is
#' an \eqn{(s,t)} vertex separator for the same \eqn{s} and \eqn{t}.
#'
#' @param graph The input graph. It may be directed, but edge directions are
#' ignored.
#' @return A list of numeric vectors. Each vector contains a vertex set
#' (defined by vertex ids), each vector is an (s,t) separator of the input
#' graph, for some \eqn{s} and \eqn{t}.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references Anne Berry, Jean-Paul Bordat and Olivier Cogis: Generating All
#' the Minimal Separators of a Graph, In: Peter Widmayer, Gabriele Neyer and
#' Stephan Eidenbenz (editors): *Graph-theoretic concepts in computer
#' science*, 1665, 167--172, 1999. Springer.
#' @keywords graphs
#' @export
#' @examples
#'
#' ring <- make_ring(4)
#' min_st_separators(ring)
#'
#' chvatal <- make_graph("chvatal")
#' min_st_separators(chvatal)
#' # https://github.com/r-lib/roxygen2/issues/1092
#' @section Note:
#' Note that the code below returns `{1, 3}` despite its subset `{1}` being a
#' separator as well. This is because `{1, 3}` is minimal with respect to
#' separating vertices 2 and 4.
#'
#' ```{r, eval=FALSE}
#' g <- make_graph(~ 0-1-2-3-4-1)
#' min_st_separators(g)
#' ```
#'
#' ```{r, echo=FALSE}
#' local_igraph_options(print.id = FALSE)
#' g <- make_graph(~ 0-1-2-3-4-1)
#' min_st_separators(g)
#' ```
#' @family flow
#' @cdocs igraph_all_minimal_st_separators
min_st_separators <- all_minimal_st_separators_impl
#' Maximum flow in a graph
#'
#' In a graph where each edge has a given flow capacity the maximal flow
#' between two vertices is calculated.
#'
#' `max_flow()` calculates the maximum flow between two vertices in a
#' weighted (i.e. valued) graph. A flow from `source` to `target` is
#' an assignment of non-negative real numbers to the edges of the graph,
#' satisfying two properties: (1) for each edge the flow (i.e. the assigned
#' number) is not more than the capacity of the edge (the `capacity`
#' parameter or edge attribute), (2) for every vertex, except the source and
#' the target the incoming flow is the same as the outgoing flow. The value of
#' the flow is the incoming flow of the `target` vertex. The maximum flow
#' is the flow of maximum value.
#'
#' @param graph The input graph.
#' @param source The id of the source vertex.
#' @param target The id of the target vertex (sometimes also called sink).
#' @param capacity Vector giving the capacity of the edges. If this is
#' `NULL` (the default) then the `capacity` edge attribute is used.
#' Note that the `weight` edge attribute is not used by this function.
#' @return A named list with components:
#' \item{value}{A numeric scalar, the value of the maximum flow.}
#' \item{flow}{A numeric vector, the flow itself, one entry for each
#' edge. For undirected graphs this entry is bit trickier, since for
#' these the flow direction is not predetermined by the edge
#' direction. For these graphs the elements of the this vector can be
#' negative, this means that the flow goes from the bigger vertex id to
#' the smaller one. Positive values mean that the flow goes from
#' the smaller vertex id to the bigger one.}
#' \item{cut}{A numeric vector of edge ids, the minimum cut corresponding
#' to the maximum flow.}
#' \item{partition1}{A numeric vector of vertex ids, the vertices in the
#' first partition of the minimum cut corresponding to the maximum
#' flow.}
#' \item{partition2}{A numeric vector of vertex ids, the vertices in the
#' second partition of the minimum cut corresponding to the maximum
#' flow.}
#' \item{stats}{A list with some statistics from the push-relabel
#' algorithm. Five integer values currently: `nopush` is the
#' number of push operations, `norelabel` the number of
#' relabelings, `nogap` is the number of times the gap heuristics
#' was used, `nogapnodes` is the total number of gap nodes omitted
#' because of the gap heuristics and `nobfs` is the number of
#' times a global breadth-first-search update was performed to assign
#' better height (=distance) values to the vertices.}
#' @references A. V. Goldberg and R. E. Tarjan: A New Approach to the Maximum
#' Flow Problem *Journal of the ACM* 35:921-940, 1988.
#' @examples
#'
#' E <- rbind(c(1, 3, 3), c(3, 4, 1), c(4, 2, 2), c(1, 5, 1), c(5, 6, 2), c(6, 2, 10))
#' colnames(E) <- c("from", "to", "capacity")
#' g1 <- graph_from_data_frame(as.data.frame(E))
#' max_flow(g1, source = V(g1)["1"], target = V(g1)["2"])
#' @family flow
#' @export
#' @cdocs igraph_maxflow
max_flow <- maxflow_impl
#' Check whether removing this set of vertices would disconnect the graph.
#'
#' `is_separator()` determines whether the supplied vertex set is a vertex
#' separator:
#' A vertex set \eqn{S} is a separator if there are vertices \eqn{u} and \eqn{v}
#' in the graph such that all paths between \eqn{u} and \eqn{v} pass
#' through some vertices in \eqn{S}.
#'
#' @param graph The input graph. It may be directed, but edge directions are
#' ignored.
#' @param candidate A numeric vector giving the vertex ids of the candidate
#' separator.
#' @return A logical scalar, whether the supplied vertex set is a (minimal)
#' vertex separator or not.
#' lists all vertex separator of minimum size.
#' @family flow
#' @examples
#' ring <- make_ring(4)
#' min_st_separators(ring)
#' is_separator(ring, 1)
#' is_separator(ring, c(1, 3))
#' is_separator(ring, c(2, 4))
#' is_separator(ring, c(2, 3))
#'
#' @export
#' @cdocs igraph_is_separator
is_separator <- is_separator_impl
#' Minimal vertex separators
#'
#' Check whether a given set of vertices is a minimal vertex separator.
#'
#' `is_min_separator()` decides whether the supplied vertex set is a minimal
#' vertex separator. A minimal vertex separator is a vertex separator, such
#' that none of its proper subsets are a vertex separator.
#'
#' @param graph The input graph. It may be directed, but edge directions are
#' ignored.
#' @param candidate A numeric vector giving the vertex ids of the candidate
#' separator.
#' @return A logical scalar, whether the supplied vertex set is a (minimal)
#' vertex separator or not.
#' @examples
#' # The graph from the Moody-White paper
#' mw <- graph_from_literal(
#' 1 - 2:3:4:5:6, 2 - 3:4:5:7, 3 - 4:6:7, 4 - 5:6:7,
#' 5 - 6:7:21, 6 - 7, 7 - 8:11:14:19, 8 - 9:11:14, 9 - 10,
#' 10 - 12:13, 11 - 12:14, 12 - 16, 13 - 16, 14 - 15, 15 - 16,
#' 17 - 18:19:20, 18 - 20:21, 19 - 20:22:23, 20 - 21,
#' 21 - 22:23, 22 - 23
#' )
#'
#' # Cohesive subgraphs
#' mw1 <- induced_subgraph(mw, as.character(c(1:7, 17:23)))
#' mw2 <- induced_subgraph(mw, as.character(7:16))
#' mw3 <- induced_subgraph(mw, as.character(17:23))
#' mw4 <- induced_subgraph(mw, as.character(c(7, 8, 11, 14)))
#' mw5 <- induced_subgraph(mw, as.character(1:7))
#'
#' check.sep <- function(G) {
#' sep <- min_separators(G)
#' sapply(sep, is_min_separator, graph = G)
#' }
#'
#' check.sep(mw)
#' check.sep(mw1)
#' check.sep(mw2)
#' check.sep(mw3)
#' check.sep(mw4)
#' check.sep(mw5)
#'
#' @family flow
#' @export
#' @cdocs igraph_is_minimal_separator
is_min_separator <- is_minimal_separator_impl
#' Minimum size vertex separators
#'
#' Find all vertex sets of minimal size whose removal separates the graph into
#' more components
#'
#' This function implements the Kanevsky algorithm for finding all minimal-size
#' vertex separators in an undirected graph. See the reference below for the
#' details.
#'
#' In the special case of a fully connected input graph with \eqn{n} vertices,
#' all subsets of size \eqn{n-1} are listed as the result.
#'
#' @param graph The input graph. It may be directed, but edge directions are
#' ignored.
#' @return A list of numeric vectors. Each numeric vector is a vertex
#' separator.
#' @references Arkady Kanevsky: Finding all minimum-size separating vertex sets
#' in a graph. *Networks* 23 533--541, 1993.
#'
#' JS Provan and DR Shier: A Paradigm for listing (s,t)-cuts in graphs,
#' *Algorithmica* 15, 351--372, 1996.
#'
#' J. Moody and D. R. White. Structural cohesion and embeddedness: A
#' hierarchical concept of social groups. *American Sociological Review*,
#' 68 103--127, Feb 2003.
#' @family flow
#' @export
#' @examples
#' # The graph from the Moody-White paper
#' mw <- graph_from_literal(
#' 1 - 2:3:4:5:6, 2 - 3:4:5:7, 3 - 4:6:7, 4 - 5:6:7,
#' 5 - 6:7:21, 6 - 7, 7 - 8:11:14:19, 8 - 9:11:14, 9 - 10,
#' 10 - 12:13, 11 - 12:14, 12 - 16, 13 - 16, 14 - 15, 15 - 16,
#' 17 - 18:19:20, 18 - 20:21, 19 - 20:22:23, 20 - 21,
#' 21 - 22:23, 22 - 23
#' )
#'
#' # Cohesive subgraphs
#' mw1 <- induced_subgraph(mw, as.character(c(1:7, 17:23)))
#' mw2 <- induced_subgraph(mw, as.character(7:16))
#' mw3 <- induced_subgraph(mw, as.character(17:23))
#' mw4 <- induced_subgraph(mw, as.character(c(7, 8, 11, 14)))
#' mw5 <- induced_subgraph(mw, as.character(1:7))
#'
#' min_separators(mw)
#' min_separators(mw1)
#' min_separators(mw2)
#' min_separators(mw3)
#' min_separators(mw4)
#' min_separators(mw5)
#'
#' # Another example, the science camp network
#' camp <- graph_from_literal(
#' Harry:Steve:Don:Bert - Harry:Steve:Don:Bert,
#' Pam:Brazey:Carol:Pat - Pam:Brazey:Carol:Pat,
#' Holly - Carol:Pat:Pam:Jennie:Bill,
#' Bill - Pauline:Michael:Lee:Holly,
#' Pauline - Bill:Jennie:Ann,
#' Jennie - Holly:Michael:Lee:Ann:Pauline,
#' Michael - Bill:Jennie:Ann:Lee:John,
#' Ann - Michael:Jennie:Pauline,
#' Lee - Michael:Bill:Jennie,
#' Gery - Pat:Steve:Russ:John,
#' Russ - Steve:Bert:Gery:John,
#' John - Gery:Russ:Michael
#' )
#' min_separators(camp)
#' @cdocs igraph_minimum_size_separators
min_separators <- minimum_size_separators_impl
|