File: games.R

package info (click to toggle)
r-cran-igraph 2.1.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 27,044 kB
  • sloc: ansic: 204,981; cpp: 21,711; fortran: 4,090; yacc: 1,229; lex: 519; sh: 52; makefile: 8
file content (2462 lines) | stat: -rw-r--r-- 100,499 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462

#' The Watts-Strogatz small-world model
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `watts.strogatz.game()` was renamed to `sample_smallworld()` to create a more
#' consistent API.
#' @inheritParams sample_smallworld
#' @keywords internal
#' @export
watts.strogatz.game <- function(dim, size, nei, p, loops = FALSE, multiple = FALSE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "watts.strogatz.game()", "sample_smallworld()")
  sample_smallworld(dim = dim, size = size, nei = nei, p = p, loops = loops, multiple = multiple)
} # nocov end

#' Scale-free random graphs, from vertex fitness scores
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `static.power.law.game()` was renamed to `sample_fitness_pl()` to create a more
#' consistent API.
#' @inheritParams sample_fitness_pl
#' @keywords internal
#' @export
static.power.law.game <- function(no.of.nodes, no.of.edges, exponent.out, exponent.in = -1, loops = FALSE, multiple = FALSE, finite.size.correction = TRUE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "static.power.law.game()", "sample_fitness_pl()")
  sample_fitness_pl(no.of.nodes = no.of.nodes, no.of.edges = no.of.edges, exponent.out = exponent.out, exponent.in = exponent.in, loops = loops, multiple = multiple, finite.size.correction = finite.size.correction)
} # nocov end

#' Random graphs from vertex fitness scores
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `static.fitness.game()` was renamed to `sample_fitness()` to create a more
#' consistent API.
#' @inheritParams sample_fitness
#' @keywords internal
#' @export
static.fitness.game <- function(no.of.edges, fitness.out, fitness.in = NULL, loops = FALSE, multiple = FALSE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "static.fitness.game()", "sample_fitness()")
  sample_fitness(no.of.edges = no.of.edges, fitness.out = fitness.out, fitness.in = fitness.in, loops = loops, multiple = multiple)
} # nocov end

#' Sample stochastic block model
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `sbm.game()` was renamed to `sample_sbm()` to create a more
#' consistent API.
#' @inheritParams sample_sbm
#' @keywords internal
#' @export
sbm.game <- function(n, pref.matrix, block.sizes, directed = FALSE, loops = FALSE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "sbm.game()", "sample_sbm()")
  sample_sbm(n = n, pref.matrix = pref.matrix, block.sizes = block.sizes, directed = directed, loops = loops)
} # nocov end

#' Trait-based random generation
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `preference.game()` was renamed to `sample_pref()` to create a more
#' consistent API.
#' @inheritParams sample_pref
#' @keywords internal
#' @export
preference.game <- function(nodes, types, type.dist = rep(1, types), fixed.sizes = FALSE, pref.matrix = matrix(1, types, types), directed = FALSE, loops = FALSE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "preference.game()", "sample_pref()")
  sample_pref(nodes = nodes, types = types, type.dist = type.dist, fixed.sizes = fixed.sizes, pref.matrix = pref.matrix, directed = directed, loops = loops)
} # nocov end

#' Random citation graphs
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `lastcit.game()` was renamed to `sample_last_cit()` to create a more
#' consistent API.
#' @inheritParams sample_last_cit
#' @keywords internal
#' @export
lastcit.game <- function(n, edges = 1, agebins = n / 7100, pref = (1:(agebins + 1))^-3, directed = TRUE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "lastcit.game()", "sample_last_cit()")
  sample_last_cit(n = n, edges = edges, agebins = agebins, pref = pref, directed = directed)
} # nocov end

#' Create a random regular graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `k.regular.game()` was renamed to `sample_k_regular()` to create a more
#' consistent API.
#' @inheritParams sample_k_regular
#' @keywords internal
#' @export
k.regular.game <- function(no.of.nodes, k, directed = FALSE, multiple = FALSE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "k.regular.game()", "sample_k_regular()")
  sample_k_regular(no.of.nodes = no.of.nodes, k = k, directed = directed, multiple = multiple)
} # nocov end

#' A graph with subgraphs that are each a random graph.
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `interconnected.islands.game()` was renamed to `sample_islands()` to create a more
#' consistent API.
#' @inheritParams sample_islands
#' @keywords internal
#' @export
interconnected.islands.game <- function(islands.n, islands.size, islands.pin, n.inter) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "interconnected.islands.game()", "sample_islands()")
  sample_islands(islands.n = islands.n, islands.size = islands.size, islands.pin = islands.pin, n.inter = n.inter)
} # nocov end

#' Geometric random graphs
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `grg.game()` was renamed to `sample_grg()` to create a more
#' consistent API.
#' @inheritParams sample_grg
#' @keywords internal
#' @export
grg.game <- function(nodes, radius, torus = FALSE, coords = FALSE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "grg.game()", "sample_grg()")
  sample_grg(nodes = nodes, radius = radius, torus = torus, coords = coords)
} # nocov end

#' Growing random graph generation
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `growing.random.game()` was renamed to `sample_growing()` to create a more
#' consistent API.
#' @inheritParams sample_growing
#' @keywords internal
#' @export
growing.random.game <- function(n, m = 1, directed = TRUE, citation = FALSE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "growing.random.game()", "sample_growing()")
  sample_growing(n = n, m = m, directed = directed, citation = citation)
} # nocov end

#' Forest Fire Network Model
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `forest.fire.game()` was renamed to `sample_forestfire()` to create a more
#' consistent API.
#' @inheritParams sample_forestfire
#' @keywords internal
#' @export
forest.fire.game <- function(nodes, fw.prob, bw.factor = 1, ambs = 1, directed = TRUE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "forest.fire.game()", "sample_forestfire()")
  sample_forestfire(nodes = nodes, fw.prob = fw.prob, bw.factor = bw.factor, ambs = ambs, directed = directed)
} # nocov end

#' Graph generation based on different vertex types
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `establishment.game()` was renamed to `sample_traits()` to create a more
#' consistent API.
#' @inheritParams sample_traits
#' @keywords internal
#' @export
establishment.game <- function(nodes, types, k = 1, type.dist = rep(1, types), pref.matrix = matrix(1, types, types), directed = FALSE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "establishment.game()", "sample_traits()")
  sample_traits(nodes = nodes, types = types, k = k, type.dist = type.dist, pref.matrix = pref.matrix, directed = directed)
} # nocov end

#' Generate random graphs with a given degree sequence
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `degree.sequence.game()` was renamed to `sample_degseq()` to create a more
#' consistent API.
#' @inheritParams sample_degseq
#' @keywords internal
#' @export
degree.sequence.game <- function(out.deg, in.deg = NULL, method = c("simple", "vl", "simple.no.multiple", "simple.no.multiple.uniform")) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "degree.sequence.game()", "sample_degseq()")
  sample_degseq(out.deg = out.deg, in.deg = in.deg, method = method)
} # nocov end

#' Neighborhood of graph vertices
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `connect.neighborhood()` was renamed to `connect()` to create a more
#' consistent API.
#' @inheritParams connect
#' @keywords internal
#' @export
connect.neighborhood <- function(graph, order, mode = c("all", "out", "in", "total")) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "connect.neighborhood()", "connect()")
  connect(graph = graph, order = order, mode = mode)
} # nocov end

#' Random citation graphs
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `citing.cited.type.game()` was renamed to `sample_cit_cit_types()` to create a more
#' consistent API.
#' @inheritParams sample_cit_cit_types
#' @keywords internal
#' @export
citing.cited.type.game <- function(n, edges = 1, types = rep(0, n), pref = matrix(1, nrow = length(types), ncol = length(types)), directed = TRUE, attr = TRUE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "citing.cited.type.game()", "sample_cit_cit_types()")
  sample_cit_cit_types(n = n, edges = edges, types = types, pref = pref, directed = directed, attr = attr)
} # nocov end

#' Random citation graphs
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `cited.type.game()` was renamed to `sample_cit_types()` to create a more
#' consistent API.
#' @inheritParams sample_cit_types
#' @keywords internal
#' @export
cited.type.game <- function(n, edges = 1, types = rep(0, n), pref = rep(1, length(types)), directed = TRUE, attr = TRUE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "cited.type.game()", "sample_cit_types()")
  sample_cit_types(n = n, edges = edges, types = types, pref = pref, directed = directed, attr = attr)
} # nocov end

#' Graph generation based on different vertex types
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `callaway.traits.game()` was renamed to `sample_traits_callaway()` to create a more
#' consistent API.
#' @inheritParams sample_traits_callaway
#' @keywords internal
#' @export
callaway.traits.game <- function(nodes, types, edge.per.step = 1, type.dist = rep(1, types), pref.matrix = matrix(1, types, types), directed = FALSE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "callaway.traits.game()", "sample_traits_callaway()")
  sample_traits_callaway(nodes = nodes, types = types, edge.per.step = edge.per.step, type.dist = type.dist, pref.matrix = pref.matrix, directed = directed)
} # nocov end

#' Bipartite random graphs
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `bipartite.random.game()` was renamed to `sample_bipartite()` to create a more
#' consistent API.
#' @inheritParams sample_bipartite
#' @keywords internal
#' @export
bipartite.random.game <- function(n1, n2, type = c("gnp", "gnm"), p, m, directed = FALSE, mode = c("out", "in", "all")) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "bipartite.random.game()", "sample_bipartite()")
  sample_bipartite(n1 = n1, n2 = n2, type = type, p = p, m = m, directed = directed, mode = mode)
} # nocov end

#' Generate random graphs using preferential attachment
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `barabasi.game()` was renamed to `sample_pa()` to create a more
#' consistent API.
#' @inheritParams sample_pa
#' @keywords internal
#' @export
barabasi.game <- function(n, power = 1, m = NULL, out.dist = NULL, out.seq = NULL, out.pref = FALSE, zero.appeal = 1, directed = TRUE, algorithm = c("psumtree", "psumtree-multiple", "bag"), start.graph = NULL) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "barabasi.game()", "sample_pa()")
  sample_pa(n = n, power = power, m = m, out.dist = out.dist, out.seq = out.seq, out.pref = out.pref, zero.appeal = zero.appeal, directed = directed, algorithm = algorithm, start.graph = start.graph)
} # nocov end

#' Generate random graphs using preferential attachment
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `ba.game()` was renamed to `sample_pa()` to create a more
#' consistent API.
#' @inheritParams sample_pa
#' @keywords internal
#' @export
ba.game <- function(n, power = 1, m = NULL, out.dist = NULL, out.seq = NULL, out.pref = FALSE, zero.appeal = 1, directed = TRUE, algorithm = c("psumtree", "psumtree-multiple", "bag"), start.graph = NULL) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "ba.game()", "sample_pa()")
  sample_pa(n = n, power = power, m = m, out.dist = out.dist, out.seq = out.seq, out.pref = out.pref, zero.appeal = zero.appeal, directed = directed, algorithm = algorithm, start.graph = start.graph)
} # nocov end

#' Trait-based random generation
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `asymmetric.preference.game()` was renamed to `sample_asym_pref()` to create a more
#' consistent API.
#' @inheritParams sample_asym_pref
#' @keywords internal
#' @export
asymmetric.preference.game <- function(nodes, types, type.dist.matrix = matrix(1, types, types), pref.matrix = matrix(1, types, types), loops = FALSE) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "asymmetric.preference.game()", "sample_asym_pref()")
  sample_asym_pref(nodes = nodes, types = types, type.dist.matrix = type.dist.matrix, pref.matrix = pref.matrix, loops = loops)
} # nocov end

#' Generate an evolving random graph with preferential attachment and aging
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `aging.barabasi.game()` was renamed to `sample_pa_age()` to create a more
#' consistent API.
#' @inheritParams sample_pa_age
#' @keywords internal
#' @export
aging.barabasi.game <- function(n, pa.exp, aging.exp, m = NULL, aging.bin = 300, out.dist = NULL, out.seq = NULL, out.pref = FALSE, directed = TRUE, zero.deg.appeal = 1, zero.age.appeal = 0, deg.coef = 1, age.coef = 1, time.window = NULL) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "aging.barabasi.game()", "sample_pa_age()")
  sample_pa_age(n = n, pa.exp = pa.exp, aging.exp = aging.exp, m = m, aging.bin = aging.bin, out.dist = out.dist, out.seq = out.seq, out.pref = out.pref, directed = directed, zero.deg.appeal = zero.deg.appeal, zero.age.appeal = zero.age.appeal, deg.coef = deg.coef, age.coef = age.coef, time.window = time.window)
} # nocov end

#' Generate an evolving random graph with preferential attachment and aging
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `aging.ba.game()` was renamed to `sample_pa_age()` to create a more
#' consistent API.
#' @inheritParams sample_pa_age
#' @keywords internal
#' @export
aging.ba.game <- function(n, pa.exp, aging.exp, m = NULL, aging.bin = 300, out.dist = NULL, out.seq = NULL, out.pref = FALSE, directed = TRUE, zero.deg.appeal = 1, zero.age.appeal = 0, deg.coef = 1, age.coef = 1, time.window = NULL) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "aging.ba.game()", "sample_pa_age()")
  sample_pa_age(n = n, pa.exp = pa.exp, aging.exp = aging.exp, m = m, aging.bin = aging.bin, out.dist = out.dist, out.seq = out.seq, out.pref = out.pref, directed = directed, zero.deg.appeal = zero.deg.appeal, zero.age.appeal = zero.age.appeal, deg.coef = deg.coef, age.coef = age.coef, time.window = time.window)
} # nocov end

#' Generate an evolving random graph with preferential attachment and aging
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `aging.prefatt.game()` was renamed to `sample_pa_age()` to create a more
#' consistent API.
#' @inheritParams sample_pa_age
#' @keywords internal
#' @export
aging.prefatt.game <- function(n, pa.exp, aging.exp, m = NULL, aging.bin = 300, out.dist = NULL, out.seq = NULL, out.pref = FALSE, directed = TRUE, zero.deg.appeal = 1, zero.age.appeal = 0, deg.coef = 1, age.coef = 1, time.window = NULL) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "aging.prefatt.game()", "sample_pa_age()")
  sample_pa_age(n = n, pa.exp = pa.exp, aging.exp = aging.exp, m = m, aging.bin = aging.bin, out.dist = out.dist, out.seq = out.seq, out.pref = out.pref, directed = directed, zero.deg.appeal = zero.deg.appeal, zero.age.appeal = zero.age.appeal, deg.coef = deg.coef, age.coef = age.coef, time.window = time.window)
} # nocov end

## -----------------------------------------------------------------
##   IGraph R package
##   Copyright (C) 2005-2014  Gabor Csardi <csardi.gabor@gmail.com>
##   334 Harvard street, Cambridge, MA 02139 USA
##
##   This program is free software; you can redistribute it and/or modify
##   it under the terms of the GNU General Public License as published by
##   the Free Software Foundation; either version 2 of the License, or
##   (at your option) any later version.
##
##   This program is distributed in the hope that it will be useful,
##   but WITHOUT ANY WARRANTY; without even the implied warranty of
##   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##   GNU General Public License for more details.
##
##   You should have received a copy of the GNU General Public License
##   along with this program; if not, write to the Free Software
##   Foundation, Inc.,  51 Franklin Street, Fifth Floor, Boston, MA
##   02110-1301 USA
##
## -----------------------------------------------------------------

#' Generate random graphs using preferential attachment
#'
#' Preferential attachment is a family of simple stochastic algorithms for building
#' a graph. Variants include the Barabási-Abert model and the Price model.
#'
#' This is a simple stochastic algorithm to generate a graph. It is a discrete
#' time step model and in each time step a single vertex is added.
#'
#' We start with a single vertex and no edges in the first time step. Then we
#' add one vertex in each time step and the new vertex initiates some edges to
#' old vertices. The probability that an old vertex is chosen is given by
#' \deqn{P[i] \sim k_i^\alpha+a}{P[i] ~ k[i]^alpha + a} where \eqn{k_i}{k[i]}
#' is the in-degree of vertex \eqn{i} in the current time step (more precisely
#' the number of adjacent edges of \eqn{i} which were not initiated by \eqn{i}
#' itself) and \eqn{\alpha}{alpha} and \eqn{a} are parameters given by the
#' `power` and `zero.appeal` arguments.
#'
#' The number of edges initiated in a time step is given by the `m`,
#' `out.dist` and `out.seq` arguments. If `out.seq` is given and
#' not NULL then it gives the number of edges to add in a vector, the first
#' element is ignored, the second is the number of edges to add in the second
#' time step and so on. If `out.seq` is not given or null and
#' `out.dist` is given and not NULL then it is used as a discrete
#' distribution to generate the number of edges in each time step. Its first
#' element is the probability that no edges will be added, the second is the
#' probability that one edge is added, etc. (`out.dist` does not need to
#' sum up to one, it normalized automatically.) `out.dist` should contain
#' non-negative numbers and at east one element should be positive.
#'
#' If both `out.seq` and `out.dist` are omitted or NULL then `m`
#' will be used, it should be a positive integer constant and `m` edges
#' will be added in each time step.
#'
#' `sample_pa()` generates a directed graph by default, set
#' `directed` to `FALSE` to generate an undirected graph. Note that
#' even if an undirected graph is generated \eqn{k_i}{k[i]} denotes the number
#' of adjacent edges not initiated by the vertex itself and not the total
#' (in- + out-) degree of the vertex, unless the `out.pref` argument is set to
#' `TRUE`.
#'
#' @param n Number of vertices.
#' @param power The power of the preferential attachment, the default is one,
#'   i.e. linear preferential attachment.
#' @param m Numeric constant, the number of edges to add in each time step This
#'   argument is only used if both `out.dist` and `out.seq` are omitted
#'   or NULL.
#' @param out.dist Numeric vector, the distribution of the number of edges to
#'   add in each time step. This argument is only used if the `out.seq`
#'   argument is omitted or NULL.
#' @param out.seq Numeric vector giving the number of edges to add in each time
#'   step. Its first element is ignored as no edges are added in the first time
#'   step.
#' @param out.pref Logical, if true the total degree is used for calculating
#'   the citation probability, otherwise the in-degree is used.
#' @param zero.appeal The \sQuote{attractiveness} of the vertices with no
#'   adjacent edges. See details below.
#' @param directed Whether to create a directed graph.
#' @param algorithm The algorithm to use for the graph generation.
#'   `psumtree` uses a partial prefix-sum tree to generate the graph, this
#'   algorithm can handle any `power` and `zero.appeal` values and
#'   never generates multiple edges.  `psumtree-multiple` also uses a
#'   partial prefix-sum tree, but the generation of multiple edges is allowed.
#'   Before the 0.6 version igraph used this algorithm if `power` was not
#'   one, or `zero.appeal` was not one.  `bag` is the algorithm that
#'   was previously (before version 0.6) used if `power` was one and
#'   `zero.appeal` was one as well. It works by putting the ids of the
#'   vertices into a bag (multiset, really), exactly as many times as their
#'   (in-)degree, plus once more. Then the required number of cited vertices are
#'   drawn from the bag, with replacement. This method might generate multiple
#'   edges. It only works if `power` and `zero.appeal` are equal one.
#' @param start.graph `NULL` or an igraph graph. If a graph, then the
#'   supplied graph is used as a starting graph for the preferential attachment
#'   algorithm. The graph should have at least one vertex. If a graph is supplied
#'   here and the `out.seq` argument is not `NULL`, then it should
#'   contain the out degrees of the new vertices only, not the ones in the
#'   `start.graph`.
#' @return A graph object.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references Barabási, A.-L. and Albert R. 1999. Emergence of scaling in
#' random networks *Science*, 286 509--512.
#'
#' de Solla Price, D. J. 1965. Networks of Scientific Papers *Science*,
#' 149 510--515.
#' @family games
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- sample_pa(10000)
#' degree_distribution(g)
#'
sample_pa <- function(n, power = 1, m = NULL, out.dist = NULL, out.seq = NULL,
                      out.pref = FALSE, zero.appeal = 1,
                      directed = TRUE, algorithm = c(
                        "psumtree",
                        "psumtree-multiple", "bag"
                      ),
                      start.graph = NULL) {
  if (!is.null(start.graph) && !is_igraph(start.graph)) {
    stop("`start.graph' not an `igraph' object")
  }

  # Checks
  if (!is.null(out.seq) && (!is.null(m) || !is.null(out.dist))) {
    cli::cli_warn("if {.arg out.seq} is given {.arg m} and {.arg out.dist} should be {.code NULL}.")
    m <- out.dist <- NULL
  }
  if (is.null(out.seq) && !is.null(out.dist) && !is.null(m)) {
    cli::cli_warn("if {.arg out.dist} is given {.arg m} will be ignored.")
    m <- NULL
  }
  if (!is.null(m) && m == 0) {
    cli::cli_warn("{.arg m} is zero, graph will be empty.")
  }

  if (is.null(m) && is.null(out.dist) && is.null(out.seq)) {
    m <- 1
  }

  n <- as.numeric(n)
  power <- as.numeric(power)
  if (!is.null(m)) {
    m <- as.numeric(m)
  }
  if (!is.null(out.dist)) {
    out.dist <- as.numeric(out.dist)
  }
  if (!is.null(out.seq)) {
    out.seq <- as.numeric(out.seq)
  }
  out.pref <- as.logical(out.pref)

  if (!is.null(out.dist)) {
    nn <- if (is.null(start.graph)) n else n - vcount(start.graph)
    out.seq <- as.numeric(sample(0:(length(out.dist) - 1), nn,
      replace = TRUE, prob = out.dist
    ))
  }

  if (is.null(out.seq)) {
    out.seq <- numeric()
  }

  algorithm <- igraph.match.arg(algorithm)
  algorithm1 <- switch(algorithm,
    "psumtree" = 1,
    "psumtree-multiple" = 2,
    "bag" = 0
  )

  on.exit(.Call(R_igraph_finalizer))
  res <- .Call(
    R_igraph_barabasi_game, n, power, m, out.seq, out.pref,
    zero.appeal, directed, algorithm1, start.graph
  )

  if (igraph_opt("add.params")) {
    res$name <- "Barabasi graph"
    res$power <- power
    res$m <- m
    res$zero.appeal <- zero.appeal
    res$algorithm <- algorithm
  }

  res
}

#' @rdname sample_pa
#' @param ... Passed to `sample_pa()`.
#' @export
pa <- function(...) constructor_spec(sample_pa, ...)


## -----------------------------------------------------------------


#' Generate random graphs according to the \eqn{G(n,p)} Erdős-Rényi model
#'
#' Every possible edge is created independently with the same probability `p`.
#' This model is also referred to as a Bernoulli random graph since the
#' connectivity status of vertex pairs follows a Bernoulli distribution.
#'
#' The graph has `n` vertices and each pair of vertices is connected
#' with the same probability `p`. The `loops` parameter controls whether
#' self-connections are also considered. This model effectively constrains
#' the average number of edges, \eqn{p m_\text{max}}, where \eqn{m_\text{max}}
#' is the largest possible number of edges, which depends on whether the
#' graph is directed or undirected and whether self-loops are allowed.
#'
#' @param n The number of vertices in the graph.
#' @param p The probability for drawing an edge between two
#'   arbitrary vertices (\eqn{G(n,p)} graph).
#' @param directed Logical, whether the graph will be directed, defaults to
#'   `FALSE`.
#' @param loops Logical, whether to add loop edges, defaults to `FALSE`.
#' @return A graph object.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references Erdős, P. and Rényi, A., On random graphs, *Publicationes
#' Mathematicae* 6, 290--297 (1959).
#' @family games
#' @export
#' @keywords graphs
#' @examples
#'
#' # Random graph with expected mean degree of 2
#' g <- sample_gnp(1000, 2 / 1000)
#' mean(degree(g))
#' degree_distribution(g)
#'
#' # Pick a simple graph on 6 vertices uniformly at random
#' plot(sample_gnp(6, 0.5))
sample_gnp <- function(n, p, directed = FALSE, loops = FALSE) {
  type <- "gnp"
  type1 <- switch(type,
    "gnp" = 0,
    "gnm" = 1
  )

  on.exit(.Call(R_igraph_finalizer))
  res <- .Call(
    R_igraph_erdos_renyi_game_gnp, as.numeric(n),
    as.numeric(p), as.logical(directed), as.logical(loops)
  )

  if (igraph_opt("add.params")) {
    res$name <- sprintf("Erdos-Renyi (%s) graph", type)
    res$type <- type
    res$loops <- loops
    res$p <- p
  }
  res
}

#' @rdname sample_gnp
#' @param ... Passed to `sample_gnp()`.
#' @export
gnp <- function(...) constructor_spec(sample_gnp, ...)

## -----------------------------------------------------------------



#' Generate random graphs according to the \eqn{G(n,m)} Erdős-Rényi model
#'
#' Random graph with a fixed number of edges and vertices.
#'
#' The graph has `n` vertices and `m` edges. The edges are chosen uniformly
#' at random from the set of all vertex pairs. This set includes potential
#' self-connections as well if the `loops` parameter is `TRUE`.
#'
#' @param n The number of vertices in the graph.
#' @param m The number of edges in the graph.
#' @param directed Logical, whether the graph will be directed, defaults to
#'   `FALSE`.
#' @param loops Logical, whether to add loop edges, defaults to `FALSE`.
#' @return A graph object.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references Erdős, P. and Rényi, A., On random graphs, *Publicationes
#' Mathematicae* 6, 290--297 (1959).
#' @family games
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- sample_gnm(1000, 1000)
#' degree_distribution(g)
sample_gnm <- function(n, m, directed = FALSE, loops = FALSE) {
  type <- "gnm"
  type1 <- switch(type,
    "gnp" = 0,
    "gnm" = 1
  )

  on.exit(.Call(R_igraph_finalizer))
  res <- .Call(
    R_igraph_erdos_renyi_game_gnm, as.numeric(n),
    as.numeric(m), as.logical(directed), as.logical(loops)
  )

  if (igraph_opt("add.params")) {
    res$name <- sprintf("Erdos-Renyi (%s) graph", type)
    res$type <- type
    res$loops <- loops
    res$m <- m
  }
  res
}

#' @rdname sample_gnm
#' @param ... Passed to `sample_gnm()`.
#' @export
gnm <- function(...) constructor_spec(sample_gnm, ...)

## -----------------------------------------------------------------

#' Generate random graphs according to the Erdős-Rényi model
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' Since igraph version 0.8.0, both `erdos.renyi.game()` and
#' `random.graph.game()` are deprecated, and [sample_gnp()] and
#' [sample_gnm()] should be used instead. See these for more details.
#'
#' `random.graph.game()` is an (also deprecated) alias to this function.
#'
#'
#' @aliases erdos.renyi.game random.graph.game
#' @param n The number of vertices in the graph.
#' @param p.or.m Either the probability for drawing an edge between two
#'   arbitrary vertices (\eqn{G(n,p)} graph), or the number of edges in
#'   the graph (for \eqn{G(n,m)} graphs).
#' @param type The type of the random graph to create, either `gnp()`
#'   (\eqn{G(n,p)} graph) or `gnm()` (\eqn{G(n,m)} graph).
#' @param directed Logical, whether the graph will be directed, defaults to
#'   `FALSE`.
#' @param loops Logical, whether to add loop edges, defaults to `FALSE`.
#' @return A graph object.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references Erdős, P. and Rényi, A., On random graphs, *Publicationes
#' Mathematicae* 6, 290--297 (1959).
#' @family games
#' @export
#' @keywords graphs
#' @keywords internal
#' @examples
#'
#' g <- erdos.renyi.game(1000, 1 / 1000)
#' degree_distribution(g)
#'
erdos.renyi.game <- function(n, p.or.m, type = c("gnp", "gnm"),
                             directed = FALSE, loops = FALSE) {
  type <- igraph.match.arg(type)

  if (type == "gnp") {
    lifecycle::deprecate_soft("0.8.0", "erdos.renyi.game()", "sample_gnp()")
    sample_gnp(n = n, p = p.or.m, directed = directed, loops = loops)
  } else if (type == "gnm") {
    lifecycle::deprecate_soft("0.8.0", "erdos.renyi.game()", "sample_gnm()")
    sample_gnm(n = n, m = p.or.m, directed = directed, loops = loops)
  }
}

#' @family games
#' @export
random.graph.game <- function(n, p.or.m, type = c("gnp", "gnm"),
                             directed = FALSE, loops = FALSE) {
  type <- igraph.match.arg(type)

  if (type == "gnp") {
    lifecycle::deprecate_soft("0.8.0", "random.graph.game()", "sample_gnp()")
    sample_gnp(n = n, p = p.or.m, directed = directed, loops = loops)
  } else if (type == "gnm") {
    lifecycle::deprecate_soft("0.8.0", "random.graph.game()", "sample_gnm()")
    sample_gnm(n = n, m = p.or.m, directed = directed, loops = loops)
  }
}
## -----------------------------------------------------------------

#' Generate random graphs with a given degree sequence
#'
#' It is often useful to create a graph with given vertex degrees. This function
#' creates such a graph in a randomized manner.
#'
#' The \dQuote{configuration} method (formerly called "simple") implements the
#' configuration model. For undirected graphs, it puts all vertex IDs in a bag
#' such that the multiplicity of a vertex in the bag is the same as its degree.
#' Then it draws pairs from the bag until the bag becomes empty. This method may
#'  generate both loop (self) edges and multiple edges. For directed graphs,
#'  the algorithm is basically the same, but two separate bags are used
#'  for the in- and out-degrees. Undirected graphs are generated
#'  with probability proportional to \eqn{(\prod_{i<j} A_{ij} ! \prod_i A_{ii} !!)^{-1}},
#'  where A denotes the adjacency matrix and !! denotes the double factorial.
#'  Here A is assumed to have twice the number of self-loops on its diagonal.
#'  The corresponding expression for directed graphs is \eqn{(\prod_{i,j} A_{ij}!)^{-1}}.
#'   Thus the probability of all simple graphs
#'   (which only have 0s and 1s in the adjacency matrix)
#'   is the same, while that of non-simple ones depends on their edge and
#'   self-loop multiplicities.
#'
#' The \dQuote{fast.heur.simple} method (formerly called "simple.no.multiple")
#' generates simple graphs.
#' It is similar to \dQuote{configuration} but tries to avoid multiple and
#' loop edges and restarts the generation from scratch if it gets stuck.
#' It can generate all simple realizations of a degree sequence,
#' but it is not guaranteed to sample them uniformly.
#' This method is relatively fast and it will eventually succeed
#' if the provided degree sequence is graphical, but there is no upper bound on
#' the number of iterations.
#'
#' The \dQuote{configuration.simple} method (formerly called "simple.no.multiple.uniform")
#' is
#' identical to \dQuote{configuration}, but if the generated graph is not simple,
#' it rejects it and re-starts the generation.
#' It generates all simple graphs with the same probability.
#'
#' The \dQuote{vl} method samples undirected connected graphs approximately uniformly.
#' It is a Monte Carlo method based on degree-preserving edge switches.
#' This generator should be favoured if undirected and connected graphs are to be
#'  generated and execution time is not a concern. igraph uses
#'  the original implementation of Fabien Viger; for the algorithm, see
#'  <https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html>
#'  and the paper <https://arxiv.org/abs/cs/0502085>.
#'
#' The \dQuote{edge.switching.simple} is an MCMC sampler based on
#' degree-preserving edge switches. It generates simple undirected or directed graphs.
#'
#' @param out.deg Numeric vector, the sequence of degrees (for undirected
#'   graphs) or out-degrees (for directed graphs). For undirected graphs its sum
#'   should be even. For directed graphs its sum should be the same as the sum of
#'   `in.deg`.
#' @param in.deg For directed graph, the in-degree sequence. By default this is
#'   `NULL` and an undirected graph is created.
#' @param method Character, the method for generating the graph. See Details.
#' @return The new graph object.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso
#' [simplify()] to get rid of the multiple and/or loops edges,
#' [realize_degseq()] for a deterministic variant.
#' @family games
#' @export
#' @keywords graphs
#' @examples
#'
#' ## The simple generator
#' undirected_graph <- sample_degseq(rep(2, 100))
#' degree(undirected_graph)
#' is_simple(undirected_graph) # sometimes TRUE, but can be FALSE
#'
#'
#' directed_graph <- sample_degseq(1:10, 10:1)
#' degree(directed_graph, mode = "out")
#' degree(directed_graph, mode = "in")
#'
#' ## The vl generator
#' vl_graph <- sample_degseq(rep(2, 100), method = "vl")
#' degree(vl_graph)
#' is_simple(vl_graph) # always TRUE
#'
#' ## Exponential degree distribution
#' ## We fix the seed as there's no guarantee
#' ##  that randomly picked integers will form a graphical degree sequence
#' ## (i.e. that there's a graph with these degrees)
#' ## withr::with_seed(42, {
#' ## exponential_degrees <- sample(1:100, 100, replace = TRUE, prob = exp(-0.5 * (1:100)))
#' ## })
#' exponential_degrees <- c(
#'   5L, 6L, 1L, 4L, 3L, 2L, 3L, 1L, 3L, 3L, 2L, 3L, 6L, 1L, 2L,
#'   6L, 8L, 1L, 2L, 2L, 5L, 1L, 10L, 6L, 1L, 2L, 1L, 5L, 2L, 4L,
#'   3L, 4L, 1L, 3L, 1L, 4L, 1L, 1L, 5L, 2L, 1L, 2L, 1L, 8L, 2L, 7L,
#'   5L, 3L, 8L, 2L, 1L, 1L, 2L, 4L, 1L, 3L, 3L, 1L, 1L, 2L, 3L, 9L,
#'   3L, 2L, 4L, 1L, 1L, 4L, 3L, 1L, 1L, 1L, 1L, 2L, 1L, 3L, 1L, 1L,
#'   2L, 1L, 2L, 1L, 1L, 3L, 3L, 2L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 6L,
#'   6L, 3L, 1L, 2L, 3L, 2L
#' )
#' ## Note, that we'd have to correct the degree sequence if its sum is odd
#' is_exponential_degrees_sum_odd <- (sum(exponential_degrees) %% 2 != 0)
#' if (is_exponential_degrees_sum_odd) {
#'   exponential_degrees[1] <- exponential_degrees[1] + 1
#' }
#' exp_vl_graph <- sample_degseq(exponential_degrees, method = "vl")
#' all(degree(exp_vl_graph) == exponential_degrees)
#'
#' ## An example that does not work
#' @examplesIf rlang::is_interactive()
#' ## withr::with_seed(11, {
#' ## exponential_degrees <- sample(1:100, 100, replace = TRUE, prob = exp(-0.5 * (1:100)))
#' ## })
#' exponential_degrees <- c(
#'   1L, 1L, 2L, 1L, 1L, 7L, 1L, 1L, 5L, 1L, 1L, 2L, 5L, 4L, 3L,
#'   2L, 2L, 1L, 1L, 2L, 1L, 3L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L,
#'   1L, 2L, 1L, 4L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 3L, 1L, 4L, 3L,
#'   1L, 2L, 4L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 4L, 1L, 2L, 1L, 3L, 1L,
#'   2L, 3L, 1L, 1L, 2L, 1L, 2L, 3L, 2L, 2L, 1L, 6L, 2L, 1L, 1L, 1L,
#'   1L, 1L, 2L, 2L, 1L, 4L, 2L, 1L, 3L, 4L, 1L, 1L, 3L, 1L, 2L, 4L,
#'   1L, 3L, 1L, 2L, 1L
#' )
#' ## Note, that we'd have to correct the degree sequence if its sum is odd
#' is_exponential_degrees_sum_odd <- (sum(exponential_degrees) %% 2 != 0)
#' if (is_exponential_degrees_sum_odd) {
#'   exponential_degrees[1] <- exponential_degrees[1] + 1
#' }
#' exp_vl_graph <- sample_degseq(exponential_degrees, method = "vl")
#'
#' @examples
#' ## Power-law degree distribution
#' ## We fix the seed as there's no guarantee
#' ##  that randomly picked integers will form a graphical degree sequence
#' ## (i.e. that there's a graph with these degrees)
#' ## withr::with_seed(1, {
#' ##  powerlaw_degrees <- sample(1:100, 100, replace = TRUE, prob = (1:100)^-2)
#' ## })
#' powerlaw_degrees <- c(
#'   1L, 1L, 1L, 6L, 1L, 6L, 10L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 3L,
#'   1L, 2L, 43L, 1L, 3L, 9L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 4L, 1L,
#'   1L, 1L, 1L, 1L, 3L, 2L, 3L, 1L, 2L, 1L, 3L, 2L, 3L, 1L, 1L, 3L,
#'   1L, 1L, 2L, 2L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 7L, 1L,
#'   1L, 1L, 2L, 1L, 1L, 3L, 1L, 5L, 1L, 4L, 1L, 1L, 1L, 5L, 4L, 1L,
#'   3L, 13L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L,
#'   5L, 3L, 3L, 1L, 1L, 3L, 1L
#' )
#' ## Note, that we correct the degree sequence if its sum is odd
#' is_exponential_degrees_sum_odd <- (sum(powerlaw_degrees) %% 2 != 0)
#' if (is_exponential_degrees_sum_odd) {
#'   powerlaw_degrees[1] <- powerlaw_degrees[1] + 1
#' }
#' powerlaw_vl_graph <- sample_degseq(powerlaw_degrees, method = "vl")
#' all(degree(powerlaw_vl_graph) == powerlaw_degrees)
#'
#' ## An example that does not work
#' @examplesIf rlang::is_interactive()
#' ## withr::with_seed(2, {
#' ##  powerlaw_degrees <- sample(1:100, 100, replace = TRUE, prob = (1:100)^-2)
#' ## })
#' powerlaw_degrees <- c(
#'   1L, 2L, 1L, 1L, 10L, 10L, 1L, 4L, 1L, 1L, 1L, 1L, 2L, 1L, 1L,
#'   4L, 21L, 1L, 1L, 1L, 2L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 14L, 1L,
#'   1L, 1L, 3L, 4L, 1L, 2L, 4L, 1L, 2L, 1L, 25L, 1L, 1L, 1L, 10L,
#'   3L, 19L, 1L, 1L, 3L, 1L, 1L, 2L, 8L, 1L, 3L, 3L, 36L, 2L, 2L,
#'   3L, 5L, 2L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
#'   1L, 4L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 4L, 18L, 1L, 2L, 1L, 21L,
#'   1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L
#' )
#' ## Note, that we correct the degree sequence if its sum is odd
#' is_exponential_degrees_sum_odd <- (sum(powerlaw_degrees) %% 2 != 0)
#' if (is_exponential_degrees_sum_odd) {
#'   powerlaw_degrees[1] <- powerlaw_degrees[1] + 1
#' }
#' powerlaw_vl_graph <- sample_degseq(powerlaw_degrees, method = "vl")
#' all(degree(powerlaw_vl_graph) == powerlaw_degrees)
#'
sample_degseq <- function(out.deg, in.deg = NULL,
                          method = c("configuration", "vl", "fast.heur.simple", "configuration.simple", "edge.switching.simple")) {
  if (missing(method)) {
    method <- method[1]
  }
  method <- igraph.match.arg(
    method,
    values = c(
      "configuration", "vl", "fast.heur.simple",
      "configuration.simple", "edge.switching.simple",
      "simple", "simple.no.multiple", "simple.no.multiple.uniform" # old names
    )
  )

  if (method == "simple") {
    lifecycle::deprecate_warn("2.1.0", "sample_degseq(method = 'must be configuration instead of simple')")
    method <- "configuration"
  }

  if (method == "simple.no.multiple") {
    lifecycle::deprecate_warn("2.1.0", "sample_degseq(method = 'must be fast.heur.simple instead of simple.no.multiple')")
    method <- "fast.heur.simple"
  }

  if (method == "simple.no.multiple.uniform") {
    lifecycle::deprecate_warn("2.1.0", "sample_degseq(method = 'must be configuration.simple instead of simple.no.multiple.uniform')")
    method <- "configuration.simple"
  }

  # numbers from https://github.com/igraph/igraph/blob/640083c88bf85fd322ff7b748b9b4e16ebe32aa2/include/igraph_constants.h#L94
  method1 <- switch(method,
    "configuration" = 0,
    "vl" = 1,
    "fast.heur.simple" = 2,
    "configuration.simple" = 3,
    "edge.switching.simple" = 4
  )
  if (!is.null(in.deg)) {
    in.deg <- as.numeric(in.deg)
  }

  on.exit(.Call(R_igraph_finalizer))
  res <- .Call(
    R_igraph_degree_sequence_game, as.numeric(out.deg),
    in.deg, as.numeric(method1)
  )
  if (igraph_opt("add.params")) {
    res$name <- "Degree sequence random graph"
    res$method <- method
  }
  res
}

#' @rdname sample_degseq
#' @param deterministic  Whether the construction should be deterministic
#' @param ... Passed to `realize_degseq()` if \sQuote{deterministic} is true,
#'   or to `sample_degseq()` otherwise.
#' @export
degseq <- function(..., deterministic = FALSE) {
  constructor_spec(
    if (deterministic) realize_degseq else sample_degseq, ...
  )
}

## -----------------------------------------------------------------

#' Growing random graph generation
#'
#' This function creates a random graph by simulating its stochastic evolution.
#'
#' This is discrete time step model, in each time step a new vertex is added to
#' the graph and `m` new edges are created. If `citation` is
#' `FALSE` these edges are connecting two uniformly randomly chosen
#' vertices, otherwise the edges are connecting new vertex to uniformly
#' randomly chosen old vertices.
#'
#' @param n Numeric constant, number of vertices in the graph.
#' @param m Numeric constant, number of edges added in each time step.
#' @param directed Logical, whether to create a directed graph.
#' @param citation Logical. If `TRUE` a citation graph is created, i.e. in
#'   each time step the added edges are originating from the new vertex.
#' @return A new graph object.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @family games
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- sample_growing(500, citation = FALSE)
#' g2 <- sample_growing(500, citation = TRUE)
#'
#' @cdocs igraph_growing_random_game
sample_growing <- growing_random_game_impl

#' @rdname sample_growing
#' @param ... Passed to `sample_growing()`.
#' @export
growing <- function(...) constructor_spec(sample_growing, ...)

## -----------------------------------------------------------------


#' Generate an evolving random graph with preferential attachment and aging
#'
#' This function creates a random graph by simulating its evolution. Each time
#' a new vertex is added it creates a number of links to old vertices and the
#' probability that an old vertex is cited depends on its in-degree
#' (preferential attachment) and age.
#'
#' This is a discrete time step model of a growing graph. We start with a
#' network containing a single vertex (and no edges) in the first time step.
#' Then in each time step (starting with the second) a new vertex is added and
#' it initiates a number of edges to the old vertices in the network. The
#' probability that an old vertex is connected to is proportional to
#' \deqn{P[i] \sim (c\cdot k_i^\alpha+a)(d\cdot l_i^\beta+b)}.
#'
#' Here \eqn{k_i}{k[i]} is the in-degree of vertex \eqn{i} in the current time
#' step and \eqn{l_i}{l[i]} is the age of vertex \eqn{i}. The age is simply
#' defined as the number of time steps passed since the vertex is added, with
#' the extension that vertex age is divided to be in `aging.bin` bins.
#'
#' \eqn{c}, \eqn{\alpha}{alpha}, \eqn{a}, \eqn{d}, \eqn{\beta}{beta} and
#' \eqn{b} are parameters and they can be set via the following arguments:
#' `pa.exp` (\eqn{\alpha}{alpha}, mandatory argument), `aging.exp`
#' (\eqn{\beta}{beta}, mandatory argument), `zero.deg.appeal` (\eqn{a},
#' optional, the default value is 1), `zero.age.appeal` (\eqn{b},
#' optional, the default is 0), `deg.coef` (\eqn{c}, optional, the default
#' is 1), and `age.coef` (\eqn{d}, optional, the default is 1).
#'
#' The number of edges initiated in each time step is governed by the `m`,
#' `out.seq` and `out.pref` parameters. If `out.seq` is given
#' then it is interpreted as a vector giving the number of edges to be added in
#' each time step. It should be of length `n` (the number of vertices),
#' and its first element will be ignored. If `out.seq` is not given (or
#' NULL) and `out.dist` is given then it will be used as a discrete
#' probability distribution to generate the number of edges. Its first element
#' gives the probability that zero edges are added at a time step, the second
#' element is the probability that one edge is added, etc. (`out.seq`
#' should contain non-negative numbers, but if they don't sum up to 1, they
#' will be normalized to sum up to 1. This behavior is similar to the
#' `prob` argument of the `sample` command.)
#'
#' By default a directed graph is generated, but it `directed` is set to
#' `FALSE` then an undirected is created. Even if an undirected graph is
#' generated \eqn{k_i}{k[i]} denotes only the adjacent edges not initiated by
#' the vertex itself except if `out.pref` is set to `TRUE`.
#'
#' If the `time.window` argument is given (and not NULL) then
#' \eqn{k_i}{k[i]} means only the adjacent edges added in the previous
#' `time.window` time steps.
#'
#' This function might generate graphs with multiple edges.
#'
#' @param n The number of vertices in the graph.
#' @param pa.exp The preferential attachment exponent, see the details below.
#' @param aging.exp The exponent of the aging, usually a non-positive number,
#'   see details below.
#' @param m The number of edges each new vertex creates (except the very first
#'   vertex). This argument is used only if both the `out.dist` and
#'   `out.seq` arguments are NULL.
#' @param aging.bin The number of bins to use for measuring the age of
#'   vertices, see details below.
#' @param out.dist The discrete distribution to generate the number of edges to
#'   add in each time step if `out.seq` is NULL. See details below.
#' @param out.seq The number of edges to add in each time step, a vector
#'   containing as many elements as the number of vertices. See details below.
#' @param out.pref Logical constant, whether to include edges not initiated by
#'   the vertex as a basis of preferential attachment. See details below.
#' @param directed Logical constant, whether to generate a directed graph. See
#'   details below.
#' @param zero.deg.appeal The degree-dependent part of the
#'   \sQuote{attractiveness} of the vertices with no adjacent edges. See also
#'   details below.
#' @param zero.age.appeal The age-dependent part of the \sQuote{attrativeness}
#'   of the vertices with age zero. It is usually zero, see details below.
#' @param deg.coef The coefficient of the degree-dependent
#'   \sQuote{attractiveness}. See details below.
#' @param age.coef The coefficient of the age-dependent part of the
#'   \sQuote{attractiveness}. See details below.
#' @param time.window Integer constant, if NULL only adjacent added in the last
#'   `time.windows` time steps are counted as a basis of the preferential
#'   attachment. See also details below.
#' @return A new graph.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @family games
#' @export
#' @keywords graphs
#' @examples
#'
#' # The maximum degree for graph with different aging exponents
#' g1 <- sample_pa_age(10000, pa.exp = 1, aging.exp = 0, aging.bin = 1000)
#' g2 <- sample_pa_age(10000, pa.exp = 1, aging.exp = -1, aging.bin = 1000)
#' g3 <- sample_pa_age(10000, pa.exp = 1, aging.exp = -3, aging.bin = 1000)
#' max(degree(g1))
#' max(degree(g2))
#' max(degree(g3))
sample_pa_age <- function(n, pa.exp, aging.exp, m = NULL, aging.bin = 300,
                          out.dist = NULL, out.seq = NULL,
                          out.pref = FALSE, directed = TRUE,
                          zero.deg.appeal = 1, zero.age.appeal = 0,
                          deg.coef = 1, age.coef = 1,
                          time.window = NULL) {
  # Checks
  if (!is.null(out.seq) && (!is.null(m) || !is.null(out.dist))) {
    cli::cli_warn("if {.arg out.seq} is given {.arg m} and {.arg out.dist} should be {.code NULL}.")
    m <- out.dist <- NULL
  }
  if (is.null(out.seq) && !is.null(out.dist) && !is.null(m)) {
    cli::cli_warn("if {.arg out.dist} is given {.arg m} will be ignored.")
    m <- NULL
  }
  if (!is.null(out.seq) && length(out.seq) != n) {
    stop("`out.seq' should be of length `n'")
  }
  if (!is.null(out.seq) && min(out.seq) < 0) {
    stop("negative elements in `out.seq'")
  }
  if (!is.null(m) && m < 0) {
    stop("`m' is negative")
  }
  if (!is.null(time.window) && time.window <= 0) {
    stop("time window size should be positive")
  }
  if (!is.null(m) && m == 0) {
    cli::cli_warn("{.arg m} is zero, graph will be empty.")
  }
  if (aging.exp > 0) {
    cli::cli_warn("Aging exponent {.arg aging.exp} is positive.")
  }
  if (zero.deg.appeal <= 0) {
    cli::cli_warn("Initial attractiveness {.arg zero.deg.appeal} is not positive.")
  }

  if (is.null(m) && is.null(out.dist) && is.null(out.seq)) {
    m <- 1
  }

  n <- as.numeric(n)
  if (!is.null(m)) {
    m <- as.numeric(m)
  }
  if (!is.null(out.dist)) {
    out.dist <- as.numeric(out.dist)
  }
  if (!is.null(out.seq)) {
    out.seq <- as.numeric(out.seq)
  }
  out.pref <- as.logical(out.pref)

  if (!is.null(out.dist)) {
    out.seq <- as.numeric(sample(0:(length(out.dist) - 1), n,
      replace = TRUE, prob = out.dist
    ))
  }

  if (is.null(out.seq)) {
    out.seq <- numeric()
  }

  on.exit(.Call(R_igraph_finalizer))
  res <- if (is.null(time.window)) {
    .Call(
      R_igraph_barabasi_aging_game, as.numeric(n),
      as.numeric(pa.exp), as.numeric(aging.exp),
      as.numeric(aging.bin), m, out.seq,
      out.pref, as.numeric(zero.deg.appeal), as.numeric(zero.age.appeal),
      as.numeric(deg.coef), as.numeric(age.coef), directed
    )
  } else {
    .Call(
      R_igraph_recent_degree_aging_game, as.numeric(n),
      as.numeric(pa.exp), as.numeric(aging.exp),
      as.numeric(aging.bin), m, out.seq, out.pref, as.numeric(zero.deg.appeal),
      directed, time.window
    )
  }
  if (igraph_opt("add.params")) {
    res$name <- "Aging Barabasi graph"
    res$pa.exp <- pa.exp
    res$aging.exp <- aging.exp
    res$m <- m
    res$aging.bin <- aging.bin
    res$out.pref <- out.pref
    res$zero.deg.appeal <- zero.deg.appeal
    res$zero.age.appeal <- zero.age.appeal
    res$deg.coef <- deg.coef
    res$age.coef <- age.coef
    res$time.window <- if (is.null(time.window)) Inf else time.window
  }
  res
}

#' @rdname sample_pa_age
#' @param ... Passed to `sample_pa_age()`.
#' @export
pa_age <- function(...) constructor_spec(sample_pa_age, ...)

## -----------------------------------------------------------------

#' Graph generation based on different vertex types
#'
#' These functions implement evolving network models based on different vertex
#' types.
#'
#' For `sample_traits_callaway()` the simulation goes like this: in each
#' discrete time step a new vertex is added to the graph. The type of this
#' vertex is generated based on `type.dist`. Then two vertices are
#' selected uniformly randomly from the graph. The probability that they will
#' be connected depends on the types of these vertices and is taken from
#' `pref.matrix`. Then another two vertices are selected and this is
#' repeated `edges.per.step` times in each time step.
#'
#' For `sample_traits()` the simulation goes like this: a single vertex is
#' added at each time step. This new vertex tries to connect to `k`
#' vertices in the graph. The probability that such a connection is realized
#' depends on the types of the vertices involved and is taken from
#' `pref.matrix`.
#'
#' @param nodes The number of vertices in the graph.
#' @param types The number of different vertex types.
#' @param edge.per.step The number of edges to add to the graph per time step.
#' @param type.dist The distribution of the vertex types. This is assumed to be
#'   stationary in time.
#' @param pref.matrix A matrix giving the preferences of the given vertex
#'   types. These should be probabilities, i.e. numbers between zero and one.
#' @param directed Logical constant, whether to generate directed graphs.
#' @param k The number of trials per time step, see details below.
#' @return A new graph object.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @family games
#' @export
#' @keywords graphs
#' @examples
#'
#' # two types of vertices, they like only themselves
#' g1 <- sample_traits_callaway(1000, 2, pref.matrix = matrix(c(1, 0, 0, 1), ncol = 2))
#' g2 <- sample_traits(1000, 2, k = 2, pref.matrix = matrix(c(1, 0, 0, 1), ncol = 2))
sample_traits_callaway <- function(nodes, types, edge.per.step = 1,
                                   type.dist = rep(1, types),
                                   pref.matrix = matrix(1, types, types),
                                   directed = FALSE) {
  on.exit(.Call(R_igraph_finalizer))
  res <- .Call(
    R_igraph_callaway_traits_game, as.double(nodes),
    as.double(types), as.double(edge.per.step),
    as.double(type.dist), matrix(
      as.double(pref.matrix), types,
      types
    ),
    as.logical(directed)
  )
  if (igraph_opt("add.params")) {
    res$name <- "Trait-based Callaway graph"
    res$types <- types
    res$edge.per.step <- edge.per.step
    res$type.dist <- type.dist
    res$pref.matrix <- pref.matrix
  }
  res
}

#' @rdname sample_traits_callaway
#' @param ... Passed to the constructor, `sample_traits()` or
#'   `sample_traits_callaway()`.
#' @export
traits_callaway <- function(...) constructor_spec(sample_traits_callaway, ...)

#' @rdname sample_traits_callaway
#' @export
sample_traits <- function(nodes, types, k = 1, type.dist = rep(1, types),
                          pref.matrix = matrix(1, types, types),
                          directed = FALSE) {
  on.exit(.Call(R_igraph_finalizer))
  res <- .Call(
    R_igraph_establishment_game, as.double(nodes),
    as.double(types), as.double(k), as.double(type.dist),
    matrix(as.double(pref.matrix), types, types),
    as.logical(directed)
  )
  if (igraph_opt("add.params")) {
    res$name <- "Trait-based growing graph"
    res$types <- types
    res$k <- k
    res$type.dist <- type.dist
    res$pref.matrix <- pref.matrix
  }
  res
}

#' @rdname sample_traits_callaway
#' @export
traits <- function(...) constructor_spec(sample_traits, ...)

## -----------------------------------------------------------------

#' Geometric random graphs
#'
#' Generate a random graph based on the distance of random point on a unit
#' square
#'
#' First a number of points are dropped on a unit square, these points
#' correspond to the vertices of the graph to create. Two points will be
#' connected with an undirected edge if they are closer to each other in
#' Euclidean norm than a given radius. If the `torus` argument is
#' `TRUE` then a unit area torus is used instead of a square.
#'
#' @param nodes The number of vertices in the graph.
#' @param radius The radius within which the vertices will be connected by an
#'   edge.
#' @param torus Logical constant, whether to use a torus instead of a square.
#' @param coords Logical scalar, whether to add the positions of the vertices
#'   as vertex attributes called \sQuote{`x`} and \sQuote{`y`}.
#' @return A graph object. If `coords` is `TRUE` then with vertex
#'   attributes \sQuote{`x`} and \sQuote{`y`}.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}, first version was
#' written by Keith Briggs (<http://keithbriggs.info/>).
#' @family games
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- sample_grg(1000, 0.05, torus = FALSE)
#' g2 <- sample_grg(1000, 0.05, torus = TRUE)
#'
sample_grg <- function(nodes, radius, torus = FALSE, coords = FALSE) {
  on.exit(.Call(R_igraph_finalizer))
  res <- .Call(
    R_igraph_grg_game, as.double(nodes), as.double(radius),
    as.logical(torus), as.logical(coords)
  )
  if (coords) {
    V(res[[1]])$x <- res[[2]]
    V(res[[1]])$y <- res[[3]]
  }
  if (igraph_opt("add.params")) {
    res[[1]]$name <- "Geometric random graph"
    res[[1]]$radius <- radius
    res[[1]]$torus <- torus
  }
  res[[1]]
}

#' @rdname sample_grg
#' @param ... Passed to `sample_grg()`.
#' @export
grg <- function(...) constructor_spec(sample_grg, ...)

## -----------------------------------------------------------------


#' Trait-based random generation
#'
#' Generation of random graphs based on different vertex types.
#'
#' Both models generate random graphs with given vertex types. For
#' `sample_pref()` the probability that two vertices will be connected
#' depends on their type and is given by the \sQuote{pref.matrix} argument.
#' This matrix should be symmetric to make sense but this is not checked. The
#' distribution of the different vertex types is given by the
#' \sQuote{type.dist} vector.
#'
#' For `sample_asym_pref()` each vertex has an in-type and an
#' out-type and a directed graph is created. The probability that a directed
#' edge is realized from a vertex with a given out-type to a vertex with a
#' given in-type is given in the \sQuote{pref.matrix} argument, which can be
#' asymmetric. The joint distribution for the in- and out-types is given in the
#' \sQuote{type.dist.matrix} argument.
#'
#' The types of the generated vertices can be retrieved from the
#' `type` vertex attribute for `sample_pref()` and from the
#' `intype` and `outtype` vertex attribute for `sample_asym_pref()`.
#'
#' @param nodes The number of vertices in the graphs.
#' @param types The number of different vertex types.
#' @param type.dist The distribution of the vertex types, a numeric vector of
#'   length \sQuote{types} containing non-negative numbers. The vector will be
#'   normed to obtain probabilities.
#' @param fixed.sizes Fix the number of vertices with a given vertex type
#'   label. The `type.dist` argument gives the group sizes (i.e. number of
#'   vertices with the different labels) in this case.
#' @param type.dist.matrix The joint distribution of the in- and out-vertex
#'   types.
#' @param pref.matrix A square matrix giving the preferences of the vertex
#'   types. The matrix has \sQuote{types} rows and columns. When generating
#'   an undirected graph, it must be symmetric.
#' @param directed Logical constant, whether to create a directed graph.
#' @param loops Logical constant, whether self-loops are allowed in the graph.
#' @return An igraph graph.
#' @author Tamas Nepusz \email{ntamas@@gmail.com} and Gabor Csardi
#' \email{csardi.gabor@@gmail.com} for the R interface
#' @family games
#' @export
#' @keywords graphs
#' @examples
#'
#' pf <- matrix(c(1, 0, 0, 1), nrow = 2)
#' g <- sample_pref(20, 2, pref.matrix = pf)
#' @examplesIf rlang::is_installed("tcltk") && rlang::is_interactive()
#' # example code
#'
#' tkplot(g, layout = layout_with_fr)
#' @examples
#'
#' pf <- matrix(c(0, 1, 0, 0), nrow = 2)
#' g <- sample_asym_pref(20, 2, pref.matrix = pf)
#' @examplesIf rlang::is_installed("tcltk") && rlang::is_interactive()
#' tkplot(g, layout = layout_in_circle)
#'
sample_pref <- function(nodes, types, type.dist = rep(1, types),
                        fixed.sizes = FALSE,
                        pref.matrix = matrix(1, types, types),
                        directed = FALSE, loops = FALSE) {
  if (nrow(pref.matrix) != types || ncol(pref.matrix) != types) {
    stop("Invalid size for preference matrix")
  }

  on.exit(.Call(R_igraph_finalizer))
  res <- .Call(
    R_igraph_preference_game, as.numeric(nodes), as.numeric(types),
    as.double(type.dist), as.logical(fixed.sizes),
    matrix(as.double(pref.matrix), types, types),
    as.logical(directed), as.logical(loops)
  )
  V(res[[1]])$type <- res[[2]] + 1
  if (igraph_opt("add.params")) {
    res[[1]]$name <- "Preference random graph"
    res[[1]]$types <- types
    res[[1]]$type.dist <- type.dist
    res[[1]]$fixed.sizes <- fixed.sizes
    res[[1]]$pref.matrix <- pref.matrix
    res[[1]]$loops <- loops
  }
  res[[1]]
}

#' @rdname sample_pref
#' @param ... Passed to the constructor, `sample_pref()` or
#'   `sample_asym_pref()`.
#' @export
pref <- function(...) constructor_spec(sample_pref, ...)

#' @rdname sample_pref
#' @export
sample_asym_pref <- function(nodes, types,
                             type.dist.matrix = matrix(1, types, types),
                             pref.matrix = matrix(1, types, types),
                             loops = FALSE) {
  if (nrow(pref.matrix) != types || ncol(pref.matrix) != types) {
    stop("Invalid size for preference matrix")
  }
  if (nrow(type.dist.matrix) != types || ncol(type.dist.matrix) != types) {
    stop("Invalid size for type distribution matrix")
  }

  on.exit(.Call(R_igraph_finalizer))
  res <- .Call(
    R_igraph_asymmetric_preference_game,
    as.numeric(nodes), as.numeric(types), as.numeric(types),
    matrix(as.double(type.dist.matrix), types, types),
    matrix(as.double(pref.matrix), types, types),
    as.logical(loops)
  )
  V(res[[1]])$outtype <- res[[2]] + 1
  V(res[[1]])$intype <- res[[3]] + 1
  if (igraph_opt("add.params")) {
    res[[1]]$name <- "Asymmetric preference random graph"
    res[[1]]$types <- types
    res[[1]]$type.dist.matrix <- type.dist.matrix
    res[[1]]$pref.matrix <- pref.matrix
    res[[1]]$loops <- loops
  }

  res[[1]]
}

#' @rdname sample_pref
#' @export
asym_pref <- function(...) constructor_spec(sample_asym_pref, ...)

## -----------------------------------------------------------------


#' @rdname ego
#' @export
#' @family functions for manipulating graph structure
connect <- function(graph, order, mode = c("all", "out", "in", "total")) {
  ensure_igraph(graph)
  mode <- igraph.match.arg(mode)
  mode <- switch(mode,
    "out" = 1,
    "in" = 2,
    "all" = 3,
    "total" = 3
  )

  on.exit(.Call(R_igraph_finalizer))
  .Call(
    R_igraph_connect_neighborhood, graph, as.numeric(order),
    as.numeric(mode)
  )
}


#' The Watts-Strogatz small-world model
#'
#' This function generates networks with the small-world property
#' based on a variant of the Watts-Strogatz model. The network is obtained
#' by first creating a periodic undirected lattice, then rewiring both
#' endpoints of each edge with probability `p`, while avoiding the
#' creation of multi-edges.
#'
#' Note that this function might create graphs with loops and/or multiple
#' edges. You can use [simplify()] to get rid of these.
#'
#' @details
#' This process differs from the original model of Watts and Strogatz
#' (see reference) in that it rewires **both** endpoints of edges. Thus in
#' the limit of `p=1`, we obtain a G(n,m) random graph with the
#' same number of vertices and edges as the original lattice. In comparison,
#' the original Watts-Strogatz model only rewires a single endpoint of each edge,
#' thus the network does not become fully random even for `p=1`.
#' For appropriate choices of `p`, both models exhibit the property of
#' simultaneously having short path lengths and high clustering.
#'
#'
#' @param dim Integer constant, the dimension of the starting lattice.
#' @param size Integer constant, the size of the lattice along each dimension.
#' @param nei Integer constant, the neighborhood within which the vertices of
#'   the lattice will be connected.
#' @param p Real constant between zero and one, the rewiring probability.
#' @param loops Logical scalar, whether loops edges are allowed in the
#'   generated graph.
#' @param multiple Logical scalar, whether multiple edges are allowed int the
#'   generated graph.
#' @return A graph object.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [make_lattice()], [rewire()]
#' @references Duncan J Watts and Steven H Strogatz: Collective dynamics of
#' \sQuote{small world} networks, Nature 393, 440-442, 1998.
#' @family games
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- sample_smallworld(1, 100, 5, 0.05)
#' mean_distance(g)
#' transitivity(g, type = "average")
#'
sample_smallworld <- function(dim, size, nei, p, loops = FALSE,
                              multiple = FALSE) {
  on.exit(.Call(R_igraph_finalizer))
  res <- .Call(
    R_igraph_watts_strogatz_game, as.numeric(dim),
    as.numeric(size), as.numeric(nei), as.numeric(p),
    as.logical(loops), as.logical(multiple)
  )
  if (igraph_opt("add.params")) {
    res$name <- "Watts-Strogatz random graph"
    res$dim <- dim
    res$size <- size
    res$nei <- nei
    res$p <- p
    res$loops <- loops
    res$multiple <- multiple
  }
  res
}

#' @rdname sample_smallworld
#' @param ... Passed to `sample_smallworld()`.
#' @export
smallworld <- function(...) constructor_spec(sample_smallworld, ...)

## -----------------------------------------------------------------

#' Random citation graphs
#'
#' `sample_last_cit()` creates a graph, where vertices age, and
#' gain new connections based on how long ago their last citation
#' happened.
#'
#' `sample_cit_cit_types()` is a stochastic block model where the
#' graph is growing.
#'
#' `sample_cit_types()` is similarly a growing stochastic block model,
#' but the probability of an edge depends on the (potentially) cited
#' vertex only.
#'
#' @param n Number of vertices.
#' @param edges Number of edges per step.
#' @param agebins Number of aging bins.
#' @param pref Vector (`sample_last_cit()` and `sample_cit_types()` or
#'   matrix (`sample_cit_cit_types()`) giving the (unnormalized) citation
#'   probabilities for the different vertex types.
#' @param directed Logical scalar, whether to generate directed networks.
#' @param types Vector of length \sQuote{`n`}, the types of the vertices.
#'   Types are numbered from zero.
#' @param attr Logical scalar, whether to add the vertex types to the generated
#'   graph as a vertex attribute called \sQuote{`type`}.
#' @return A new graph.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @keywords graphs
#' @family games
#' @export
sample_last_cit <- function(n, edges = 1, agebins = n / 7100, pref = (1:(agebins + 1))^-3,
                            directed = TRUE) {
  on.exit(.Call(R_igraph_finalizer))
  res <- .Call(
    R_igraph_lastcit_game, as.numeric(n), as.numeric(edges),
    as.numeric(agebins),
    as.numeric(pref), as.logical(directed)
  )
  if (igraph_opt("add.params")) {
    res$name <- "Random citation graph based on last citation"
    res$edges <- edges
    res$agebins <- agebins
  }
  res
}

#' @rdname sample_last_cit
#' @param ... Passed to the actual constructor.
#' @export
last_cit <- function(...) constructor_spec(sample_last_cit, ...)

#' @rdname sample_last_cit
#' @export
sample_cit_types <- function(n, edges = 1, types = rep(0, n),
                             pref = rep(1, length(types)),
                             directed = TRUE, attr = TRUE) {
  on.exit(.Call(R_igraph_finalizer))
  res <- .Call(
    R_igraph_cited_type_game, as.numeric(n), as.numeric(edges),
    as.numeric(types), as.numeric(pref), as.logical(directed)
  )
  if (attr) {
    V(res)$type <- types
  }
  if (igraph_opt("add.params")) {
    res$name <- "Random citation graph (cited type)"
    res$edges <- edges
  }
  res
}

#' @rdname sample_last_cit
#' @export
cit_types <- function(...) constructor_spec(sample_cit_types, ...)

#' @rdname sample_last_cit
#' @export
sample_cit_cit_types <- function(n, edges = 1, types = rep(0, n),
                                 pref = matrix(1,
                                   nrow = length(types),
                                   ncol = length(types)
                                 ),
                                 directed = TRUE, attr = TRUE) {
  pref[] <- as.numeric(pref)
  on.exit(.Call(R_igraph_finalizer))
  res <- .Call(
    R_igraph_citing_cited_type_game, as.numeric(n),
    as.numeric(types), pref, as.numeric(edges),
    as.logical(directed)
  )
  if (attr) {
    V(res)$type <- types
  }
  if (igraph_opt("add.params")) {
    res$name <- "Random citation graph (citing & cited type)"
    res$edges <- edges
  }
  res
}

#' @rdname sample_last_cit
#' @export
cit_cit_types <- function(...) constructor_spec(sample_cit_cit_types, ...)

## -----------------------------------------------------------------


#' Bipartite random graphs
#'
#' Generate bipartite graphs using the Erdős-Rényi model
#'
#' Similarly to unipartite (one-mode) networks, we can define the \eqn{G(n,p)}, and
#' \eqn{G(n,m)} graph classes for bipartite graphs, via their generating process.
#' In \eqn{G(n,p)} every possible edge between top and bottom vertices is realized
#' with probability \eqn{p}, independently of the rest of the edges. In \eqn{G(n,m)}, we
#' uniformly choose \eqn{m} edges to realize.
#'
#' @param n1 Integer scalar, the number of bottom vertices.
#' @param n2 Integer scalar, the number of top vertices.
#' @param type Character scalar, the type of the graph, \sQuote{gnp} creates a
#'   \eqn{G(n,p)} graph, \sQuote{gnm} creates a \eqn{G(n,m)} graph. See details below.
#' @param p Real scalar, connection probability for \eqn{G(n,p)} graphs. Should not
#'   be given for \eqn{G(n,m)} graphs.
#' @param m Integer scalar, the number of edges for \eqn{G(n,m)} graphs. Should not
#'   be given for \eqn{G(n,p)} graphs.
#' @param directed Logical scalar, whether to create a directed graph. See also
#'   the `mode` argument.
#' @param mode Character scalar, specifies how to direct the edges in directed
#'   graphs. If it is \sQuote{out}, then directed edges point from bottom
#'   vertices to top vertices. If it is \sQuote{in}, edges point from top
#'   vertices to bottom vertices. \sQuote{out} and \sQuote{in} do not generate
#'   mutual edges. If this argument is \sQuote{all}, then each edge direction is
#'   considered independently and mutual edges might be generated. This argument
#'   is ignored for undirected graphs.
#' @return A bipartite igraph graph.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @family games
#' @export
#' @keywords graphs
#' @examples
#'
#' ## empty graph
#' sample_bipartite(10, 5, p = 0)
#'
#' ## full graph
#' sample_bipartite(10, 5, p = 1)
#'
#' ## random bipartite graph
#' sample_bipartite(10, 5, p = .1)
#'
#' ## directed bipartite graph, G(n,m)
#' sample_bipartite(10, 5, type = "Gnm", m = 20, directed = TRUE, mode = "all")
#'
sample_bipartite <- function(n1, n2, type = c("gnp", "gnm"), p, m,
                             directed = FALSE, mode = c("out", "in", "all")) {
  n1 <- as.numeric(n1)
  n2 <- as.numeric(n2)
  type <- igraph.match.arg(type)
  if (!missing(p)) {
    p <- as.numeric(p)
  }
  if (!missing(m)) {
    m <- as.numeric(m)
  }
  directed <- as.logical(directed)
  mode <- switch(igraph.match.arg(mode),
    "out" = 1,
    "in" = 2,
    "all" = 3
  )

  if (type == "gnp" && missing(p)) {
    stop("Connection probability `p' is not given for Gnp graph")
  }
  if (type == "gnp" && !missing(m)) {
    cli::cli_warn("Number of edges {.arg m} is ignored for Gnp graph.")
  }
  if (type == "gnm" && missing(m)) {
    stop("Number of edges `m' is not given for Gnm graph")
  }
  if (type == "gnm" && !missing(p)) {
    cli::cli_warn("Connection probability {.arg p} is ignored for Gnp graph.")
  }

  on.exit(.Call(R_igraph_finalizer))
  if (type == "gnp") {
    res <- .Call(R_igraph_bipartite_game_gnp, n1, n2, p, directed, mode)
    res <- set_vertex_attr(res$graph, "type", value = res$types)
    res$name <- "Bipartite Gnp random graph"
    res$p <- p
  } else if (type == "gnm") {
    res <- .Call(R_igraph_bipartite_game_gnm, n1, n2, m, directed, mode)
    res <- set_vertex_attr(res$graph, "type", value = res$types)
    res$name <- "Bipartite Gnm random graph"
    res$m <- m
  }

  res
}

#' @rdname sample_bipartite
#' @param ... Passed to `sample_bipartite()`.
#' @export
bipartite <- function(...) constructor_spec(sample_bipartite, ...)


#' Sample stochastic block model
#'
#' Sampling from the stochastic block model of networks
#'
#' This function samples graphs from a stochastic block model by (doing the
#' equivalent of) Bernoulli trials for each potential edge with the
#' probabilities given by the Bernoulli rate matrix, `pref.matrix`.
#' The order of the vertices in the generated graph corresponds to the
#' `block.sizes` argument.
#'
#' @param n Number of vertices in the graph.
#' @param pref.matrix The matrix giving the Bernoulli rates.  This is a
#'   \eqn{K\times K}{KxK} matrix, where \eqn{K} is the number of groups. The
#'   probability of creating an edge between vertices from groups \eqn{i} and
#'   \eqn{j} is given by element \eqn{(i,j)}. For undirected graphs, this matrix
#'   must be symmetric.
#' @param block.sizes Numeric vector giving the number of vertices in each
#'   group. The sum of the vector must match the number of vertices.
#' @param directed Logical scalar, whether to generate a directed graph.
#' @param loops Logical scalar, whether self-loops are allowed in the graph.
#' @return An igraph graph.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references Faust, K., & Wasserman, S. (1992a). Blockmodels: Interpretation
#' and evaluation. *Social Networks*, 14, 5--61.
#' @keywords graphs
#' @examples
#'
#' ## Two groups with not only few connection between groups
#' pm <- cbind(c(.1, .001), c(.001, .05))
#' g <- sample_sbm(1000, pref.matrix = pm, block.sizes = c(300, 700))
#' g
#' @family games
#' @export
#' @cdocs igraph_sbm_game
sample_sbm <- sbm_game_impl

#' @rdname sample_sbm
#' @param ... Passed to `sample_sbm()`.
#' @export
sbm <- function(...) constructor_spec(sample_sbm, ...)

## -----------------------------------------------------------------

#' Sample the hierarchical stochastic block model
#'
#' Sampling from a hierarchical stochastic block model of networks.
#'
#' The function generates a random graph according to the hierarchical
#' stochastic block model.
#'
#' @param n Integer scalar, the number of vertices.
#' @param m Integer scalar, the number of vertices per block. `n / m` must
#'   be integer. Alternatively, an integer vector of block sizes, if not all the
#'   blocks have equal sizes.
#' @param rho Numeric vector, the fraction of vertices per cluster, within a
#'   block. Must sum up to 1, and `rho * m` must be integer for all elements
#'   of rho. Alternatively a list of rho vectors, one for each block, if they are
#'   not the same for all blocks.
#' @param C A square, symmetric numeric matrix, the Bernoulli rates for the
#'   clusters within a block. Its size must mach the size of the `rho`
#'   vector. Alternatively, a list of square matrices, if the Bernoulli rates
#'   differ in different blocks.
#' @param p Numeric scalar, the Bernoulli rate of connections between vertices
#'   in different blocks.
#' @return An igraph graph.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @keywords graphs
#' @examples
#'
#' ## Ten blocks with three clusters each
#' C <- matrix(c(
#'   1, 3 / 4, 0,
#'   3 / 4, 0, 3 / 4,
#'   0, 3 / 4, 3 / 4
#' ), nrow = 3)
#' g <- sample_hierarchical_sbm(100, 10, rho = c(3, 3, 4) / 10, C = C, p = 1 / 20)
#' g
#' if (require(Matrix)) {
#'   image(g[])
#' }
#' @family games
#' @export
#' @cdocs igraph_hsbm_game
#' @cdocs igraph_hsbm_list_game
sample_hierarchical_sbm <- function(n, m, rho, C, p) {
  mlen <- length(m)
  rholen <- if (is.list(rho)) length(rho) else 1
  Clen <- if (is.list(C)) length(C) else 1

  commonlen <- unique(c(mlen, rholen, Clen))

  if (length(commonlen) == 1 && commonlen == 1) {
    hsbm_game_impl(n, m, rho, C, p)
  } else {
    commonlen <- setdiff(commonlen, 1)
    if (length(commonlen) != 1) {
      stop("Lengths of `m', `rho' and `C' must match")
    }
    m <- rep(m, length.out = commonlen)
    rho <- if (is.list(rho)) {
      rep(rho, length.out = commonlen)
    } else {
      rep(list(rho), length.out = commonlen)
    }
    C <- if (is.list(C)) {
      rep(C, length.out = commonlen)
    } else {
      rep(list(C), length.out = commonlen)
    }
    hsbm_list_game_impl(n, m, rho, C, p)
  }
}

#' @rdname sample_hierarchical_sbm
#' @param ... Passed to `sample_hierarchical_sbm()`.
#' @export
hierarchical_sbm <- function(...) {
  constructor_spec(sample_hierarchical_sbm, ...)
}

## -----------------------------------------------------------------


#' Generate random graphs according to the random dot product graph model
#'
#' In this model, each vertex is represented by a latent position vector.
#' Probability of an edge between two vertices are given by the dot product of
#' their latent position vectors.
#'
#' The dot product of the latent position vectors should be in the \[0,1\]
#' interval, otherwise a warning is given. For negative dot products, no edges
#' are added; dot products that are larger than one always add an edge.
#'
#' @param vecs A numeric matrix in which each latent position vector is a
#'   column.
#' @param directed A logical scalar, TRUE if the generated graph should be
#'   directed.
#' @return An igraph graph object which is the generated random dot product
#'   graph.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [sample_dirichlet()], [sample_sphere_surface()]
#' and [sample_sphere_volume()] for sampling position vectors.
#' @references Christine Leigh Myers Nickel: Random dot product graphs, a model
#' for social networks. Dissertation, Johns Hopkins University, Maryland, USA,
#' 2006.
#' @keywords graphs
#' @examples
#'
#' ## A randomly generated  graph
#' lpvs <- matrix(rnorm(200), 20, 10)
#' lpvs <- apply(lpvs, 2, function(x) {
#'   return(abs(x) / sqrt(sum(x^2)))
#' })
#' g <- sample_dot_product(lpvs)
#' g
#'
#' ## Sample latent vectors from the surface of the unit sphere
#' lpvs2 <- sample_sphere_surface(dim = 5, n = 20)
#' g2 <- sample_dot_product(lpvs2)
#' g2
#' @family games
#' @export
#' @cdocs igraph_dot_product_game
sample_dot_product <- dot_product_game_impl

#' @rdname sample_dot_product
#' @param ... Passed to `sample_dot_product()`.
#' @export
dot_product <- function(...) constructor_spec(sample_dot_product, ...)


#' A graph with subgraphs that are each a random graph.
#'
#' Create a number of Erdős-Rényi random graphs with identical parameters, and
#' connect them with the specified number of edges.
#'
#' @section Examples:
#' \preformatted{
#' g <- sample_islands(3, 10, 5/10, 1)
#' oc <- cluster_optimal(g)
#' oc
#' }
#'
#' @param islands.n The number of islands in the graph.
#' @param islands.size The size of islands in the graph.
#' @param islands.pin The probability to create each possible edge into each
#'   island.
#' @param n.inter The number of edges to create between two islands.
#' @return An igraph graph.
#' @author Samuel Thiriot
#' @seealso [sample_gnp()]
#' @keywords graphs
#' @family games
#' @export
#' @cdocs igraph_simple_interconnected_islands_game
sample_islands <- simple_interconnected_islands_game_impl


#' Create a random regular graph
#'
#' Generate a random graph where each vertex has the same degree.
#'
#' This game generates a directed or undirected random graph where the degrees
#' of vertices are equal to a predefined constant k. For undirected graphs, at
#' least one of k and the number of vertices must be even.
#'
#' The game simply uses [sample_degseq()] with appropriately
#' constructed degree sequences.
#'
#' @param no.of.nodes Integer scalar, the number of vertices in the generated
#'   graph.
#' @param k Integer scalar, the degree of each vertex in the graph, or the
#'   out-degree and in-degree in a directed graph.
#' @param directed Logical scalar, whether to create a directed graph.
#' @param multiple Logical scalar, whether multiple edges are allowed.
#' @return An igraph graph.
#' @author Tamas Nepusz \email{ntamas@@gmail.com}
#' @seealso [sample_degseq()] for a generator with prescribed degree
#' sequence.
#' @keywords graphs
#' @examples
#'
#' ## A simple ring
#' ring <- sample_k_regular(10, 2)
#' plot(ring)
#'
#' ## k-regular graphs on 10 vertices, with k=1:9
#' k10 <- lapply(1:9, sample_k_regular, no.of.nodes = 10)
#'
#' layout(matrix(1:9, nrow = 3, byrow = TRUE))
#' sapply(k10, plot, vertex.label = NA)
#' @family games
#' @export
#' @cdocs igraph_k_regular_game
sample_k_regular <- k_regular_game_impl


#' Random graph with given expected degrees
#'
#' @description
#' `r lifecycle::badge("experimental")`
#'
#' The Chung-Lu model is useful for generating random graphs with fixed expected
#' degrees. This function implements both the original model of Chung and Lu, as
#' well as some additional variants with useful properties.
#'
#' @details
#' In the original Chung-Lu model, each pair of vertices \eqn{i} and \eqn{j} is
#' connected with independent probability
#' \deqn{p_{ij} = \frac{w_i w_j}{S},}{p_ij = w_i w_j / S,}
#' where \eqn{w_i} is a weight associated with vertex \eqn{i} and
#' \deqn{S = \sum_k w_k}{S = sum_k w_k}
#' is the sum of weights. In the directed variant, vertices have both
#' out-weights, \eqn{w^\text{out}}{w^out}, and in-weights,
#' \eqn{w^\text{in}}{w^in}, with equal sums,
#' \deqn{S = \sum_k w^\text{out}_k = \sum_k w^\text{in}_k.}{S = sum_k w^out_k = sum_k w^in_k.}
#' The connection probability between \eqn{i} and \eqn{j} is
#' \deqn{p_{ij} = \frac{w^\text{out}_i w^\text{in}_j.}{S}}{p_ij = w^out_i w^in_j / S.}
#'
#' This model is commonly used to create random graphs with a fixed
#' \emph{expected} degree sequence. The expected degree of vertex \eqn{i} is
#' approximately equal to the weight \eqn{w_i}. Specifically, if the graph is
#' directed and self-loops are allowed, then the expected out- and in-degrees
#' are precisely \eqn{w^\text{out}}{w^out} and \eqn{w^\text{in}}{w^in}. If
#' self-loops are disallowed, then the expected out- and in-degrees are
#' \eqn{\frac{w^\text{out} (S - w^\text{in})}{S}}{w^out (S - w^in) / S}
#' and
#' \eqn{\frac{w^\text{in} (S - w^\text{out})}{S}}{w^in (S - w^out) / S},
#' respectively. If the graph is undirected, then the expected degrees with and
#' without self-loops are
#' \eqn{\frac{w (S + w)}{S}}{w (S + w) / S}
#' and
#' \eqn{\frac{w (S - w)}{S}}{w (S - w) / S},
#' respectively.
#'
#' A limitation of the original Chung-Lu model is that when some of the weights
#' are large, the formula for \eqn{p_{ij}}{p_ij} yields values larger than 1.
#' Chung
#' and Lu's original paper excludes the use of such weights. When
#' \eqn{p_{ij} > 1}{p_ij > 1}, this function simply issues a warning and creates
#' a connection between \eqn{i} and \eqn{j}. However, in this case the expected
#' degrees will no longer relate to the weights in the manner stated above. Thus,
#' the original Chung-Lu model cannot produce certain (large) expected degrees.
#'
#' To overcome this limitation, this function implements additional variants of
#' the model, with modified expressions for the connection probability
#' \eqn{p_{ij}}{p_ij} between vertices \eqn{i} and \eqn{j}. Let
#' \eqn{q_{ij} = \frac{w_i w_j}{S}}{q_ij = w_i w_j / S}, or
#' \eqn{q_{ij} = \frac{w^\text{out}_i w^\text{in}_j}{S}}{q_ij = w^out_i w^in_j / S}
#' in the directed case. All model variants become equivalent in the limit of sparse
#' graphs where \eqn{q_{ij}} approaches zero. In the original Chung-Lu model,
#' selectable by setting \code{variant} to \dQuote{original}, \eqn{p_{ij} =
#' \min(q_{ij}, 1)}{p_ij = min(q_ij, 1)}. The \dQuote{maxent} variant,
#' sometimes referred to as the generalized random graph, uses \eqn{p_{ij} =
#' \frac{q_{ij}}{1 + q_{ij}}}{p_ij = q_ij / (1 + q_ij)}, and is equivalent to a
#' maximum entropy model (i.e., exponential random graph model) with a
#' constraint on expected degrees;
#' see Park and Newman (2004), Section B, setting \eqn{\exp(-\Theta_{ij}) =
#' \frac{w_i w_j}{S}}{exp(-Theta_ij) = w_i w_j / S}. This model is also discussed
#' by Britton, Deijfen, and Martin-Löf (2006). By virtue of being a
#' degree-constrained maximum entropy model, it generates graphs with the same
#' degree sequence with the same probability. A third variant can be requested
#' with \dQuote{nr}, and uses \eqn{p_{ij} = 1 - \exp(-q_{ij})}{p_ij = 1 -
#' exp(-q_ij)}. This is the underlying simple graph of a multigraph model
#' introduced by Norros and Reittu (2006). For a discussion of these three model
#' variants, see Section 16.4 of Bollobás, Janson, Riordan (2007), as well as
#' Van Der Hofstad (2013).
#'
#' @references Chung, F., and Lu, L. (2002). Connected components in a random
#'   graph with given degree sequences. Annals of Combinatorics, 6, 125-145.
#'   \doi{10.1007/PL00012580}
#'
#'   Miller, J. C., and Hagberg, A. (2011). Efficient Generation of Networks
#'   with Given Expected Degrees. \doi{10.1007/978-3-642-21286-4_10}
#'
#'   Park, J., and Newman, M. E. J. (2004). Statistical mechanics of networks.
#'   Physical Review E, 70, 066117. \doi{10.1103/PhysRevE.70.066117}
#'
#'   Britton, T., Deijfen, M., and Martin-Löf, A. (2006). Generating Simple
#'   Random Graphs with Prescribed Degree Distribution. Journal of Statistical
#'   Physics, 124, 1377-1397. \doi{10.1007/s10955-006-9168-x}
#'
#'   Norros, I., and Reittu, H. (2006). On a conditionally Poissonian graph
#'   process. Advances in Applied Probability, 38, 59-75.
#'   \doi{10.1239/aap/1143936140}
#'
#'   Bollobás, B., Janson, S., and Riordan, O. (2007). The phase transition in
#'   inhomogeneous random graphs. Random Structures & Algorithms, 31, 3-122.
#'   \doi{10.1002/rsa.20168}
#'
#'   Van Der Hofstad, R. (2013). Critical behavior in inhomogeneous random
#'   graphs. Random Structures & Algorithms, 42, 480-508.
#'   \doi{10.1002/rsa.20450}
#'
#' @inheritParams rlang::args_dots_empty
#' @param out.weights A vector of non-negative vertex weights (or out-weights).
#'   In sparse graphs, these will be approximately equal to the expected
#'   (out-)degrees.
#' @param in.weights A vector of non-negative in-weights, approximately equal to
#'   the expected in-degrees in sparse graphs. May be set to \code{NULL}, in
#'   which case undirected graphs are generated.
#' @param loops Logical, whether to allow the creation of self-loops. Since
#'   vertex pairs are connected independently, setting this to \code{FALSE} is
#'   equivalent to simply discarding self-loops from an existing loopy Chung-Lu
#'   graph.
#' @param variant The model variant to sample from, with different definitions
#'   of the connection probability between vertices \eqn{i} and \eqn{j}. Given
#'   \eqn{q_{ij} = \frac{w_i w_j}{S}}{q_ij = w_i w_j / S}, the following
#'   formulations are available:
#'   \describe{
#'     \item{\dQuote{original}}{the original Chung-Lu model, \eqn{p_{ij} = \min(q_{ij}, 1)}{p_ij = min(q_ij, 1)}.}
#'     \item{\dQuote{maxent}}{maximum entropy model with fixed expected degrees,
#'       \eqn{p_{ij} = \frac{q_{ij}}{1 + q_{ij}}}{p_ij = q_ij / (1 + q_ij)}.}
#'     \item{\dQuote{nr}}{Norros and Reittu's model, \eqn{p_{ij} = 1 - \exp(-q_{ij})}{p_ij = 1 - exp(-q_ij)}.}
#'   }
#' @return An igraph graph.
#' @seealso [sample_fitness()] implements a similar model with a sharp
#'   constraint on the number of edges. [sample_degseq()] samples random graphs
#'   with sharply specified degrees. [sample_gnp()] creates random graphs with a
#'   fixed connection probability \eqn{p} between all vertex pairs.
#'
#' @family games
#' @examples
#'
#' g <- sample_chung_lu(c(3, 3, 2, 2, 2, 1, 1))
#'
#' rowMeans(replicate(
#'   100,
#'   degree(sample_chung_lu(c(1, 3, 2, 1), c(2, 1, 2, 2)), mode = "out")
#' ))
#'
#' rowMeans(replicate(
#'   100,
#'   degree(sample_chung_lu(c(1, 3, 2, 1), c(2, 1, 2, 2), variant = "maxent"), mode='out')
#' ))
#' @export
#' @cdocs igraph_chung_lu_game
sample_chung_lu <- chung_lu_game_impl

#' @rdname sample_chung_lu
#' @export
chung_lu <- function(
    out.weights,
    in.weights = NULL,
    ...,
    loops = TRUE,
    variant = c("original", "maxent", "nr")
) {
  variant <- rlang::arg_match(variant)
  constructor_spec(
    sample_chung_lu,
    out.weights,
    in.weights,
    ...,
    loops = loops,
    variant = variant
  )
}


#' Random graphs from vertex fitness scores
#'
#' This function generates a non-growing random graph with edge probabilities
#' proportional to node fitness scores.
#'
#' This game generates a directed or undirected random graph where the
#' probability of an edge between vertices \eqn{i} and \eqn{j} depends on the
#' fitness scores of the two vertices involved. For undirected graphs, each
#' vertex has a single fitness score. For directed graphs, each vertex has an
#' out- and an in-fitness, and the probability of an edge from \eqn{i} to
#' \eqn{j} depends on the out-fitness of vertex \eqn{i} and the in-fitness of
#' vertex \eqn{j}.
#'
#' The generation process goes as follows. We start from \eqn{N} disconnected
#' nodes (where \eqn{N} is given by the length of the fitness vector). Then we
#' randomly select two vertices \eqn{i} and \eqn{j}, with probabilities
#' proportional to their fitnesses. (When the generated graph is directed,
#' \eqn{i} is selected according to the out-fitnesses and \eqn{j} is selected
#' according to the in-fitnesses). If the vertices are not connected yet (or if
#' multiple edges are allowed), we connect them; otherwise we select a new
#' pair. This is repeated until the desired number of links are created.
#'
#' It can be shown that the *expected* degree of each vertex will be
#' proportional to its fitness, although the actual, observed degree will not
#' be. If you need to generate a graph with an exact degree sequence, consider
#' [sample_degseq()] instead.
#'
#' This model is commonly used to generate static scale-free networks. To
#' achieve this, you have to draw the fitness scores from the desired power-law
#' distribution. Alternatively, you may use [sample_fitness_pl()]
#' which generates the fitnesses for you with a given exponent.
#'
#' @param no.of.edges The number of edges in the generated graph.
#' @param fitness.out A numeric vector containing the fitness of each vertex.
#'   For directed graphs, this specifies the out-fitness of each vertex.
#' @param fitness.in If `NULL` (the default), the generated graph will be
#'   undirected. If not `NULL`, then it should be a numeric vector and it
#'   specifies the in-fitness of each vertex.
#'
#'   If this argument is not `NULL`, then a directed graph is generated,
#'   otherwise an undirected one.
#' @param loops Logical scalar, whether to allow loop edges in the graph.
#' @param multiple Logical scalar, whether to allow multiple edges in the
#'   graph.
#' @return An igraph graph, directed or undirected.
#' @author Tamas Nepusz \email{ntamas@@gmail.com}
#' @references Goh K-I, Kahng B, Kim D: Universal behaviour of load
#' distribution in scale-free networks. *Phys Rev Lett* 87(27):278701,
#' 2001.
#' @keywords graphs
#' @family games
#' @export
#' @examples
#'
#' N <- 10000
#' g <- sample_fitness(5 * N, sample((1:50)^-2, N, replace = TRUE))
#' degree_distribution(g)
#' plot(degree_distribution(g, cumulative = TRUE), log = "xy")
#' @cdocs igraph_static_fitness_game
sample_fitness <- static_fitness_game_impl


#' Scale-free random graphs, from vertex fitness scores
#'
#' This function generates a non-growing random graph with expected power-law
#' degree distributions.
#'
#' This game generates a directed or undirected random graph where the degrees
#' of vertices follow power-law distributions with prescribed exponents. For
#' directed graphs, the exponents of the in- and out-degree distributions may
#' be specified separately.
#'
#' The game simply uses [sample_fitness()] with appropriately
#' constructed fitness vectors. In particular, the fitness of vertex \eqn{i} is
#' \eqn{i^{-\alpha}}{i^(-alpha)}, where \eqn{\alpha = 1/(\gamma-1)}{alpha = 1/(gamma - 1)}
#' and \eqn{\gamma}{gamma} is the exponent given in the arguments.
#'
#' To remove correlations between in- and out-degrees in case of directed
#' graphs, the in-fitness vector will be shuffled after it has been set up and
#' before [sample_fitness()] is called.
#'
#' Note that significant finite size effects may be observed for exponents
#' smaller than 3 in the original formulation of the game. This function
#' provides an argument that lets you remove the finite size effects by
#' assuming that the fitness of vertex \eqn{i} is
#' \eqn{(i+i_0-1)^{-\alpha}}{(i+i0-1)^(-alpha)} where \eqn{i_0}{i0} is a
#' constant chosen appropriately to ensure that the maximum degree is less than
#' the square root of the number of edges times the average degree; see the
#' paper of Chung and Lu, and Cho et al for more details.
#'
#' @param no.of.nodes The number of vertices in the generated graph.
#' @param no.of.edges The number of edges in the generated graph.
#' @param exponent.out Numeric scalar, the power law exponent of the degree
#'   distribution. For directed graphs, this specifies the exponent of the
#'   out-degree distribution. It must be greater than or equal to 2. If you pass
#'   `Inf` here, you will get back an Erdős-Rényi random network.
#' @param exponent.in Numeric scalar. If negative, the generated graph will be
#'   undirected. If greater than or equal to 2, this argument specifies the
#'   exponent of the in-degree distribution. If non-negative but less than 2, an
#'   error will be generated.
#' @param loops Logical scalar, whether to allow loop edges in the generated
#'   graph.
#' @param multiple Logical scalar, whether to allow multiple edges in the
#'   generated graph.
#' @param finite.size.correction Logical scalar, whether to use the proposed
#'   finite size correction of Cho et al., see references below.
#' @return An igraph graph, directed or undirected.
#' @author Tamas Nepusz \email{ntamas@@gmail.com}
#' @references Goh K-I, Kahng B, Kim D: Universal behaviour of load
#' distribution in scale-free networks. *Phys Rev Lett* 87(27):278701,
#' 2001.
#'
#' Chung F and Lu L: Connected components in a random graph with given degree
#' sequences. *Annals of Combinatorics* 6, 125-145, 2002.
#'
#' Cho YS, Kim JS, Park J, Kahng B, Kim D: Percolation transitions in
#' scale-free networks under the Achlioptas process. *Phys Rev Lett*
#' 103:135702, 2009.
#' @family games
#' @keywords graphs
#' @export
#' @examples
#'
#' g <- sample_fitness_pl(10000, 30000, 2.2, 2.3)
#' plot(degree_distribution(g, cumulative = TRUE, mode = "out"), log = "xy")
#' @cdocs igraph_static_power_law_game
sample_fitness_pl <- static_power_law_game_impl


#' Forest Fire Network Model
#'
#' This is a growing network model, which resembles of how the forest fire
#' spreads by igniting trees close by.
#'
#' The forest fire model intends to reproduce the following network
#' characteristics, observed in real networks: \itemize{ \item Heavy-tailed
#' in-degree distribution.  \item Heavy-tailed out-degree distribution.  \item
#' Communities.  \item Densification power-law. The network is densifying in
#' time, according to a power-law rule.  \item Shrinking diameter. The diameter
#' of the network decreases in time.  }
#'
#' The network is generated in the following way. One vertex is added at a
#' time. This vertex connects to (cites) `ambs` vertices already present
#' in the network, chosen uniformly random. Now, for each cited vertex \eqn{v}
#' we do the following procedure: \enumerate{ \item We generate two random
#' number, \eqn{x} and \eqn{y}, that are geometrically distributed with means
#' \eqn{p/(1-p)} and \eqn{rp(1-rp)}. (\eqn{p} is `fw.prob`, \eqn{r} is
#' `bw.factor`.) The new vertex cites \eqn{x} outgoing neighbors and
#' \eqn{y} incoming neighbors of \eqn{v}, from those which are not yet cited by
#' the new vertex. If there are less than \eqn{x} or \eqn{y} such vertices
#' available then we cite all of them.  \item The same procedure is applied to
#' all the newly cited vertices.  }
#'
#' @param nodes The number of vertices in the graph.
#' @param fw.prob The forward burning probability, see details below.
#' @param bw.factor The backward burning ratio. The backward burning
#'   probability is calculated as `bw.factor*fw.prob`.
#' @param ambs The number of ambassador vertices.
#' @param directed Logical scalar, whether to create a directed graph.
#' @return A simple graph, possibly directed if the `directed` argument is
#'   `TRUE`.
#' @note The version of the model in the published paper is incorrect in the
#' sense that it cannot generate the kind of graphs the authors claim. A
#' corrected version is available from
#' <http://www.cs.cmu.edu/~jure/pubs/powergrowth-tkdd.pdf>, our
#' implementation is based on this.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [sample_pa()] for the basic preferential attachment
#' model.
#' @references Jure Leskovec, Jon Kleinberg and Christos Faloutsos. Graphs over
#' time: densification laws, shrinking diameters and possible explanations.
#' *KDD '05: Proceeding of the eleventh ACM SIGKDD international
#' conference on Knowledge discovery in data mining*, 177--187, 2005.
#' @family games
#' @keywords graphs
#' @export
#' @examples
#'
#' fire <- sample_forestfire(50, fw.prob = 0.37, bw.factor = 0.32 / 0.37)
#' plot(fire)
#'
#' g <- sample_forestfire(10000, fw.prob = 0.37, bw.factor = 0.32 / 0.37)
#' dd1 <- degree_distribution(g, mode = "in")
#' dd2 <- degree_distribution(g, mode = "out")
#' # The forest fire model produces graphs with a heavy tail degree distribution.
#' # Note that some in- or out-degrees are zero which will be excluded from the logarithmic plot.
#' plot(seq(along.with = dd1) - 1, dd1, log = "xy")
#' points(seq(along.with = dd2) - 1, dd2, col = 2, pch = 2)
#' @cdocs igraph_forest_fire_game
sample_forestfire <- forest_fire_game_impl


#' Generate a new random graph from a given graph by randomly
#' adding/removing edges
#'
#' Sample a new graph by perturbing the adjacency matrix of a given graph
#' and shuffling its vertices.
#'
#' Please see the reference given below.
#'
#' @param old.graph The original graph.
#' @param corr A scalar in the unit interval, the target Pearson
#'   correlation between the adjacency matrices of the original and the generated
#'   graph (the adjacency matrix being used as a vector).
#' @param p A numeric scalar, the probability of an edge between two
#'   vertices, it must in the open (0,1) interval. The default is the empirical
#'   edge density of the graph. If you are resampling an Erdős-Rényi graph and
#'   you know the original edge probability of the Erdős-Rényi model, you should
#'   supply that explicitly.
#' @param permutation A numeric vector, a permutation vector that is
#'   applied on the vertices of the first graph, to get the second graph.  If
#'   `NULL`, the vertices are not permuted.
#' @return An unweighted graph of the same size as `old.graph` such
#'   that the correlation coefficient between the entries of the two
#'   adjacency matrices is `corr`.  Note each pair of corresponding
#'   matrix entries is a pair of correlated Bernoulli random variables.
#'
#' @references Lyzinski, V., Fishkind, D. E., Priebe, C. E. (2013).  Seeded
#' graph matching for correlated Erdős-Rényi graphs.
#' <https://arxiv.org/abs/1304.7844>
#' @family games
#' @export
#' @examples
#' g <- sample_gnp(1000, .1)
#' g2 <- sample_correlated_gnp(g, corr = 0.5)
#' cor(as.vector(g[]), as.vector(g2[]))
#' g
#' g2
#' @cdocs igraph_correlated_game
sample_correlated_gnp <- correlated_game_impl


#' Sample a pair of correlated \eqn{G(n,p)} random graphs
#'
#' Sample a new graph by perturbing the adjacency matrix of a given graph and
#' shuffling its vertices.
#'
#' Please see the reference given below.
#'
#' @param n Numeric scalar, the number of vertices for the sampled graphs.
#' @param corr A scalar in the unit interval, the target Pearson correlation
#'   between the adjacency matrices of the original the generated graph (the
#'   adjacency matrix being used as a vector).
#' @param p A numeric scalar, the probability of an edge between two vertices,
#'   it must in the open (0,1) interval.
#' @param directed Logical scalar, whether to generate directed graphs.
#' @param permutation A numeric vector, a permutation vector that is applied on
#'   the vertices of the first graph, to get the second graph.  If `NULL`,
#'   the vertices are not permuted.
#' @return A list of two igraph objects, named `graph1` and
#'   `graph2`, which are two graphs whose adjacency matrix entries are
#'   correlated with `corr`.
#'
#' @references Lyzinski, V., Fishkind, D. E., Priebe, C. E. (2013).  Seeded
#' graph matching for correlated Erdős-Rényi graphs.
#' <https://arxiv.org/abs/1304.7844>
#' @keywords graphs
#' @family games
#' @export
#' @examples
#' gg <- sample_correlated_gnp_pair(
#'   n = 10, corr = .8, p = .5,
#'   directed = FALSE
#' )
#' gg
#' cor(as.vector(gg[[1]][]), as.vector(gg[[2]][]))
#' @cdocs igraph_correlated_pair_game
sample_correlated_gnp_pair <- correlated_pair_game_impl