1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
#' Graphlet decomposition of a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graphlets.project()` was renamed to `graphlet_proj()` to create a more
#' consistent API.
#' @inheritParams graphlet_proj
#' @keywords internal
#' @export
graphlets.project <- function(graph, weights = NULL, cliques, niter = 1000, Mu = rep(1, length(cliques))) { # nocov start
lifecycle::deprecate_soft("2.0.0", "graphlets.project()", "graphlet_proj()")
graphlet_proj(graph = graph, weights = weights, cliques = cliques, niter = niter, Mu = Mu)
} # nocov end
#' Graphlet decomposition of a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graphlets.candidate.basis()` was renamed to `graphlet_basis()` to create a more
#' consistent API.
#' @inheritParams graphlet_basis
#' @keywords internal
#' @export
graphlets.candidate.basis <- function(graph, weights = NULL) { # nocov start
lifecycle::deprecate_soft("2.0.0", "graphlets.candidate.basis()", "graphlet_basis()")
graphlet_basis(graph = graph, weights = weights)
} # nocov end
#' Graphlet decomposition of a graph
#'
#' Graphlet decomposition models a weighted undirected graph via the union of
#' potentially overlapping dense social groups. This is done by a two-step
#' algorithm. In the first step a candidate set of groups (a candidate basis)
#' is created by finding cliques if the thresholded input graph. In the second
#' step these the graph is projected on the candidate basis, resulting a weight
#' coefficient for each clique in the candidate basis.
#'
#' igraph contains three functions for performing the graph decomponsition of a
#' graph. The first is `graphlets()`, which performed both steps on the
#' method and returns a list of subgraphs, with their corresponding weights.
#' The second and third functions correspond to the first and second steps of
#' the algorithm, and they are useful if the user wishes to perform them
#' individually: `graphlet_basis()` and `graphlet_proj()`.
#'
#' @param graph The input graph, edge directions are ignored. Only simple graph
#' (i.e. graphs without self-loops and multiple edges) are supported.
#' @param weights Edge weights. If the graph has a `weight` edge attribute
#' and this argument is `NULL` (the default), then the `weight` edge
#' attribute is used.
#' @param niter Integer scalar, the number of iterations to perform.
#' @param cliques A list of vertex ids, the graphlet basis to use for the
#' projection.
#' @param Mu Starting weights for the projection.
#' @return `graphlets()` returns a list with two members: \item{cliques}{A
#' list of subgraphs, the candidate graphlet basis. Each subgraph is give by a
#' vector of vertex ids.} \item{Mu}{The weights of the subgraphs in graphlet
#' basis.}
#'
#' `graphlet_basis()` returns a list of two elements: \item{cliques}{A list
#' of subgraphs, the candidate graphlet basis. Each subgraph is give by a
#' vector of vertex ids.} \item{thresholds}{The weight thresholds used for
#' finding the subgraphs.}
#'
#' `graphlet_proj()` return a numeric vector, the weights of the graphlet
#' basis subgraphs.
#' @examples
#'
#' ## Create an example graph first
#' D1 <- matrix(0, 5, 5)
#' D2 <- matrix(0, 5, 5)
#' D3 <- matrix(0, 5, 5)
#' D1[1:3, 1:3] <- 2
#' D2[3:5, 3:5] <- 3
#' D3[2:5, 2:5] <- 1
#'
#' g <- simplify(graph_from_adjacency_matrix(D1 + D2 + D3,
#' mode = "undirected", weighted = TRUE
#' ))
#' V(g)$color <- "white"
#' E(g)$label <- E(g)$weight
#' E(g)$label.cex <- 2
#' E(g)$color <- "black"
#' layout(matrix(1:6, nrow = 2, byrow = TRUE))
#' co <- layout_with_kk(g)
#' par(mar = c(1, 1, 1, 1))
#' plot(g, layout = co)
#'
#' ## Calculate graphlets
#' gl <- graphlets(g, niter = 1000)
#'
#' ## Plot graphlets
#' for (i in 1:length(gl$cliques)) {
#' sel <- gl$cliques[[i]]
#' V(g)$color <- "white"
#' V(g)[sel]$color <- "#E495A5"
#' E(g)$width <- 1
#' E(g)[V(g)[sel] %--% V(g)[sel]]$width <- 2
#' E(g)$label <- ""
#' E(g)[width == 2]$label <- round(gl$Mu[i], 2)
#' E(g)$color <- "black"
#' E(g)[width == 2]$color <- "#E495A5"
#' plot(g, layout = co)
#' }
#' @family glet
#' @export
graphlet_basis <- function(graph, weights = NULL) {
## Argument checks
ensure_igraph(graph)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
on.exit(.Call(R_igraph_finalizer))
## Function call
res <- .Call(R_igraph_graphlets_candidate_basis, graph, weights)
res
}
#' @rdname graphlet_basis
#' @export
graphlet_proj <- function(graph, weights = NULL, cliques, niter = 1000,
Mu = rep(1, length(cliques))) {
# Argument checks
ensure_igraph(graph)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
Mu <- as.numeric(Mu)
niter <- as.numeric(niter)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_graphlets_project, graph, weights, cliques, Mu, niter)
res
}
#################
## Example code
function() {
library(igraph)
fitandplot <- function(g, gl) {
g <- simplify(g)
V(g)$color <- "white"
E(g)$label <- E(g)$weight
E(g)$label.cex <- 2
E(g)$color <- "black"
plot.new()
layout(matrix(1:6, nrow = 2, byrow = TRUE))
co <- layout_with_kk(g)
par(mar = c(1, 1, 1, 1))
plot(g, layout = co)
for (i in 1:length(gl$Bc)) {
sel <- gl$Bc[[i]]
V(g)$color <- "white"
V(g)[sel]$color <- "#E495A5"
E(g)$width <- 1
E(g)[V(g)[sel] %--% V(g)[sel]]$width <- 2
E(g)$label <- ""
E(g)[width == 2]$label <- round(gl$Muc[i], 2)
E(g)$color <- "black"
E(g)[width == 2]$color <- "#E495A5"
plot(g, layout = co)
}
}
D1 <- matrix(0, 5, 5)
D2 <- matrix(0, 5, 5)
D3 <- matrix(0, 5, 5)
D1[1:3, 1:3] <- 2
D2[3:5, 3:5] <- 3
D3[2:5, 2:5] <- 1
g <- graph_from_adjacency_matrix(D1 + D2 + D3, mode = "undirected", weighted = TRUE)
gl <- graphlets(g, iter = 1000)
fitandplot(g, gl)
## Project another graph on the graphlets
set.seed(42)
g2 <- set_edge_attr(g, "weight", value = sample(E(g)$weight))
gl2 <- graphlet_proj(g2, gl$Bc, 1000)
fitandplot(g2, gl2)
}
#' @rdname graphlet_basis
#' @export
#' @cdocs igraph_graphlets
graphlets <- graphlets_impl
|