1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
|
#' Create an igraph graph from a list of edges, or a notable graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph()` was renamed to `make_graph()` to create a more
#' consistent API.
#' @inheritParams make_graph
#' @keywords internal
#' @export
graph <- function(edges , ... , n = max(edges) , isolates = NULL , directed = TRUE , dir = directed , simplify = TRUE) { # nocov start
lifecycle::deprecate_soft("2.1.0", "graph()", "make_graph()")
if (inherits(edges, "formula")) {
if (!missing(n)) stop("'n' should not be given for graph literals")
if (!missing(isolates)) {
stop("'isolates' should not be given for graph literals")
}
if (!missing(directed)) {
stop("'directed' should not be given for graph literals")
}
mf <- as.list(match.call())[-1]
mf[[1]] <- mf[[1]][[2]]
graph_from_literal_i(mf)
} else {
if (!missing(simplify)) {
stop("'simplify' should only be used for graph literals")
}
if (!missing(dir) && !missing(directed)) {
stop("Only give one of 'dir' and 'directed'")
}
if (!missing(dir) && missing(directed)) directed <- dir
if (is.character(edges) && length(edges) == 1) {
if (!missing(n)) cli::cli_warn("{.arg n} is ignored for the {.str {edges}} graph.")
if (!missing(isolates)) {
cli::cli_warn("{.arg isolates} is ignored for the {.str {edges}} graph.")
}
if (!missing(directed)) {
cli::cli_warn("{.arg directed} is ignored for the {.str {edges}} graph.")
}
if (!missing(dir)) {
cli::cli_warn("{.arg dir} is ignored for the {.str {edges}} graph")
}
if (length(list(...))) stop("Extra arguments in make_graph")
make_famous_graph(edges)
## NULL and empty logical vector is allowed for compatibility
} else if (is.numeric(edges) || is.null(edges) ||
(is.logical(edges) && length(edges) == 0)) {
if (is.null(edges) || is.logical(edges)) edges <- as.numeric(edges)
if (!is.null(isolates)) {
cli::cli_warn("{.arg isolates} ignored for numeric edge list.")
}
old_graph <- function(edges, n = max(edges), directed = TRUE) {
on.exit(.Call(R_igraph_finalizer))
if (missing(n) && (is.null(edges) || length(edges) == 0)) {
n <- 0
}
.Call(
R_igraph_create, as.numeric(edges) - 1, as.numeric(n),
as.logical(directed)
)
}
args <- list(edges, ...)
if (!missing(n)) args <- c(args, list(n = n))
if (!missing(directed)) args <- c(args, list(directed = directed))
do.call(old_graph, args)
} else if (is.character(edges)) {
if (!missing(n)) {
cli::cli_warn("{.arg n} is ignored for edge list with vertex names.")
}
if (length(list(...))) stop("Extra arguments in make_graph")
el <- matrix(edges, ncol = 2, byrow = TRUE)
res <- graph_from_edgelist(el, directed = directed)
if (!is.null(isolates)) {
isolates <- as.character(isolates)
res <- res + vertices(isolates)
}
res
} else {
stop("'edges' must be numeric or character")
}
}
} # nocov end
#' Create an igraph graph from a list of edges, or a notable graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.famous()` was renamed to `make_graph()` to create a more
#' consistent API.
#' @inheritParams make_graph
#' @keywords internal
#' @export
graph.famous <- function(edges , ... , n = max(edges) , isolates = NULL , directed = TRUE , dir = directed , simplify = TRUE) { # nocov start
lifecycle::deprecate_soft("2.1.0", "graph.famous()", "make_graph()")
if (inherits(edges, "formula")) {
if (!missing(n)) stop("'n' should not be given for graph literals")
if (!missing(isolates)) {
stop("'isolates' should not be given for graph literals")
}
if (!missing(directed)) {
stop("'directed' should not be given for graph literals")
}
mf <- as.list(match.call())[-1]
mf[[1]] <- mf[[1]][[2]]
graph_from_literal_i(mf)
} else {
if (!missing(simplify)) {
stop("'simplify' should only be used for graph literals")
}
if (!missing(dir) && !missing(directed)) {
stop("Only give one of 'dir' and 'directed'")
}
if (!missing(dir) && missing(directed)) directed <- dir
if (is.character(edges) && length(edges) == 1) {
if (!missing(n)) cli::cli_warn("{.arg n} is ignored for the {.str {edges}} graph.")
if (!missing(isolates)) {
cli::cli_warn("{.arg isolates} is ignored for the {.str {edges}} graph.")
}
if (!missing(directed)) {
cli::cli_warn("{.arg directed} is ignored for the {.str {edges}} graph.")
}
if (!missing(dir)) {
cli::cli_warn("{.arg dir} is ignored for the {.str {edges}} graph.")
}
if (length(list(...))) stop("Extra arguments in make_graph")
make_famous_graph(edges)
## NULL and empty logical vector is allowed for compatibility
} else if (is.numeric(edges) || is.null(edges) ||
(is.logical(edges) && length(edges) == 0)) {
if (is.null(edges) || is.logical(edges)) edges <- as.numeric(edges)
if (!is.null(isolates)) {
cli::cli_warn("{.arg isolates} ignored for numeric edge list.")
}
old_graph <- function(edges, n = max(edges), directed = TRUE) {
on.exit(.Call(R_igraph_finalizer))
if (missing(n) && (is.null(edges) || length(edges) == 0)) {
n <- 0
}
.Call(
R_igraph_create, as.numeric(edges) - 1, as.numeric(n),
as.logical(directed)
)
}
args <- list(edges, ...)
if (!missing(n)) args <- c(args, list(n = n))
if (!missing(directed)) args <- c(args, list(directed = directed))
do.call(old_graph, args)
} else if (is.character(edges)) {
if (!missing(n)) {
cli::cli_warn("{.arg n} is ignored for edge list with vertex names.")
}
if (length(list(...))) stop("Extra arguments in make_graph")
el <- matrix(edges, ncol = 2, byrow = TRUE)
res <- graph_from_edgelist(el, directed = directed)
if (!is.null(isolates)) {
isolates <- as.character(isolates)
res <- res + vertices(isolates)
}
res
} else {
stop("'edges' must be numeric or character")
}
}
} # nocov end
#' Line graph of a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `line.graph()` was renamed to `make_line_graph()` to create a more
#' consistent API.
#' @inheritParams make_line_graph
#' @keywords internal
#' @export
line.graph <- function(graph) { # nocov start
lifecycle::deprecate_soft("2.1.0", "line.graph()", "make_line_graph()")
ensure_igraph(graph)
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_linegraph, graph)
if (igraph_opt("add.params")) {
res$name <- "Line graph"
}
res
} # nocov end
#' Create a ring graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.ring()` was renamed to `make_ring()` to create a more
#' consistent API.
#' @inheritParams make_ring
#' @keywords internal
#' @export
graph.ring <- function(n , directed = FALSE , mutual = FALSE , circular = TRUE) { # nocov start
lifecycle::deprecate_soft("2.1.0", "graph.ring()", "make_ring()")
on.exit(.Call(R_igraph_finalizer))
res <- .Call(
R_igraph_ring, as.numeric(n), as.logical(directed),
as.logical(mutual), as.logical(circular)
)
if (igraph_opt("add.params")) {
res$name <- "Ring graph"
res$mutual <- mutual
res$circular <- circular
}
res
} # nocov end
#' Create tree graphs
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.tree()` was renamed to `make_tree()` to create a more
#' consistent API.
#' @inheritParams make_tree
#' @keywords internal
#' @export
graph.tree <- function(n , children = 2 , mode = c("out","in","undirected")) { # nocov start
lifecycle::deprecate_soft("2.1.0", "graph.tree()", "make_tree()")
mode <- igraph.match.arg(mode)
mode1 <- switch(mode,
"out" = 0,
"in" = 1,
"undirected" = 2
)
on.exit(.Call(R_igraph_finalizer))
res <- .Call(
R_igraph_kary_tree, as.numeric(n), as.numeric(children),
as.numeric(mode1)
)
if (igraph_opt("add.params")) {
res$name <- "Tree"
res$children <- children
res$mode <- mode
}
res
} # nocov end
#' Create a star graph, a tree with n vertices and n - 1 leaves
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.star()` was renamed to `make_star()` to create a more
#' consistent API.
#' @inheritParams make_star
#' @keywords internal
#' @export
graph.star <- function(n , mode = c("in","out","mutual","undirected") , center = 1) { # nocov start
lifecycle::deprecate_soft("2.1.0", "graph.star()", "make_star()")
mode <- igraph.match.arg(mode)
mode1 <- switch(mode,
"out" = 0,
"in" = 1,
"undirected" = 2,
"mutual" = 3
)
on.exit(.Call(R_igraph_finalizer))
res <- .Call(
R_igraph_star, as.numeric(n), as.numeric(mode1),
as.numeric(center) - 1
)
if (igraph_opt("add.params")) {
res$name <- switch(mode,
"in" = "In-star",
"out" = "Out-star",
"Star"
)
res$mode <- mode
res$center <- center
}
res
} # nocov end
#' Creating a graph from LCF notation
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.lcf()` was renamed to `graph_from_lcf()` to create a more
#' consistent API.
#' @inheritParams graph_from_lcf
#' @keywords internal
#' @export
graph.lcf <- function(n , shifts , repeats = 1) { # nocov start
lifecycle::deprecate_soft("2.1.0", "graph.lcf()", "graph_from_lcf()")
# Argument checks
n <- as.numeric(n)
shifts <- as.numeric(shifts)
repeats <- as.numeric(repeats)
on.exit( .Call(R_igraph_finalizer) )
# Function call
res <- .Call(R_igraph_lcf_vector, n, shifts, repeats)
if (igraph_opt("add.params")) {
res$name <- 'LCF graph'
}
res
} # nocov end
#' Create a lattice graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.lattice()` was renamed to `make_lattice()` to create a more
#' consistent API.
#' @inheritParams make_lattice
#' @keywords internal
#' @export
#' @cdocs igraph_square_lattice
graph.lattice <- function(dimvector = NULL , length = NULL , dim = NULL , nei = 1 , directed = FALSE , mutual = FALSE , periodic = FALSE, circular = deprecated()) { # nocov start
lifecycle::deprecate_soft("2.1.0", "graph.lattice()", "make_lattice()")
if (is.numeric(length) && length != floor(length)) {
cli::cli_warn("{.arg length} was rounded to the nearest integer.")
length <- round(length)
}
if (lifecycle::is_present(circular)) {
lifecycle::deprecate_soft(
"2.0.3",
"graph.lattice(circular = 'use periodic argument instead')",
details = c("`circular` is now deprecated, use `periodic` instead.")
)
periodic <- circular
}
if (is.numeric(length) && length != floor(length)) {
cli::cli_warn("{.arg length} was rounded to the nearest integer.")
length <- round(length)
}
if (is.null(dimvector)) {
dimvector <- rep(length, dim)
}
if (length(periodic) == 1) {
periodic <- rep(periodic, length(dimvector))
}
on.exit(.Call(R_igraph_finalizer))
res <- square_lattice_impl(dimvector, nei, directed, mutual, periodic)
if (igraph_opt("add.params")) {
res$name <- "Lattice graph"
res$dimvector <- dimvector
res$nei <- nei
res$mutual <- mutual
res$circular <- periodic
}
res
} # nocov end
#' Kautz graphs
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.kautz()` was renamed to `make_kautz_graph()` to create a more
#' consistent API.
#' @inheritParams make_kautz_graph
#' @keywords internal
#' @export
graph.kautz <- function(m , n) { # nocov start
lifecycle::deprecate_soft("2.1.0", "graph.kautz()", "make_kautz_graph()")
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_kautz, as.numeric(m), as.numeric(n))
if (igraph_opt("add.params")) {
res$name <- sprintf("Kautz graph %i-%i", m, n)
res$m <- m
res$n <- n
}
res
} # nocov end
#' Create a complete (full) citation graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.full.citation()` was renamed to `make_full_citation_graph()` to create a more
#' consistent API.
#' @inheritParams make_full_citation_graph
#' @keywords internal
#' @export
graph.full.citation <- function(n , directed = TRUE) { # nocov start
lifecycle::deprecate_soft("2.1.0", "graph.full.citation()", "make_full_citation_graph()")
# Argument checks
n <- as.numeric(n)
directed <- as.logical(directed)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_full_citation, n, directed)
res <- set_graph_attr(res, "name", "Full citation graph")
res
} # nocov end
#' Create a full bipartite graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.full.bipartite()` was renamed to `make_full_bipartite_graph()` to create a more
#' consistent API.
#' @inheritParams make_full_bipartite_graph
#' @keywords internal
#' @export
graph.full.bipartite <- function(n1 , n2 , directed = FALSE , mode = c("all","out","in")) { # nocov start
lifecycle::deprecate_soft("2.1.0", "graph.full.bipartite()", "make_full_bipartite_graph()")
n1 <- as.numeric(n1)
n2 <- as.numeric(n2)
directed <- as.logical(directed)
mode1 <- switch(igraph.match.arg(mode),
"out" = 1,
"in" = 2,
"all" = 3,
"total" = 3
)
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_full_bipartite, n1, n2, as.logical(directed), mode1)
if (igraph_opt("add.params")) {
res$graph$name <- "Full bipartite graph"
res$n1 <- n1
res$n2 <- n2
res$mode <- mode
}
set_vertex_attr(res$graph, "type", value = res$types)
} # nocov end
#' Create a full graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.full()` was renamed to `make_full_graph()` to create a more
#' consistent API.
#' @inheritParams make_full_graph
#' @keywords internal
#' @export
graph.full <- function(n , directed = FALSE , loops = FALSE) { # nocov start
lifecycle::deprecate_soft("2.1.0", "graph.full()", "make_full_graph()")
on.exit(.Call(R_igraph_finalizer))
res <- .Call(
R_igraph_full, as.numeric(n), as.logical(directed),
as.logical(loops)
)
if (igraph_opt("add.params")) {
res$name <- "Full graph"
res$loops <- loops
}
res
} # nocov end
#' Creating (small) graphs via a simple interface
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.formula()` was renamed to `graph_from_literal()` to create a more
#' consistent API.
#' @inheritParams graph_from_literal
#' @keywords internal
#' @export
graph.formula <- function(... , simplify = TRUE) { # nocov start
lifecycle::deprecate_soft("2.1.0", "graph.formula()", "graph_from_literal()")
mf <- as.list(match.call())[-1]
graph_from_literal_i(mf)
} # nocov end
#' Create an extended chordal ring graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.extended.chordal.ring()` was renamed to `make_chordal_ring()` to create a more
#' consistent API.
#' @inheritParams make_chordal_ring
#' @keywords internal
#' @export
graph.extended.chordal.ring <- function(n , w , directed = FALSE) { # nocov start
lifecycle::deprecate_soft("2.1.0", "graph.extended.chordal.ring()", "make_chordal_ring()")
on.exit(.Call(R_igraph_finalizer))
res <- .Call(
R_igraph_extended_chordal_ring, as.numeric(n),
as.matrix(w), as.logical(directed)
)
if (igraph_opt("add.params")) {
res$name <- "Extended chordal ring"
res$w <- w
}
res
} # nocov end
#' A graph with no edges
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.empty()` was renamed to `make_empty_graph()` to create a more
#' consistent API.
#' @inheritParams make_empty_graph
#' @keywords internal
#' @export
graph.empty <- function(n = 0 , directed = TRUE) { # nocov start
lifecycle::deprecate_soft("2.1.0", "graph.empty()", "make_empty_graph()")
# Argument checks
n <- as.numeric(n)
directed <- as.logical(directed)
on.exit( .Call(R_igraph_finalizer) )
# Function call
res <- .Call(R_igraph_empty, n, directed)
res
} # nocov end
#' De Bruijn graphs
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.de.bruijn()` was renamed to `make_de_bruijn_graph()` to create a more
#' consistent API.
#' @inheritParams make_de_bruijn_graph
#' @keywords internal
#' @export
graph.de.bruijn <- function(m , n) { # nocov start
lifecycle::deprecate_soft("2.1.0", "graph.de.bruijn()", "make_de_bruijn_graph()")
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_de_bruijn, as.numeric(m), as.numeric(n))
if (igraph_opt("add.params")) {
res$name <- sprintf("De-Bruijn graph %i-%i", m, n)
res$m <- m
res$n <- n
}
res
} # nocov end
#' Create a bipartite graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.bipartite()` was renamed to `make_bipartite_graph()` to create a more
#' consistent API.
#' @inheritParams make_bipartite_graph
#' @keywords internal
#' @export
graph.bipartite <- function(types , edges , directed = FALSE) { # nocov start
lifecycle::deprecate_soft("2.1.0", "graph.bipartite()", "make_bipartite_graph()")
vertex.names <- names(types)
if (is.character(edges)) {
if (is.null(vertex.names)) {
stop("`types` vector must be named when the edge vector contains strings")
}
edges <- match(edges, vertex.names)
if (any(is.na(edges))) {
stop("edge vector contains a vertex name that is not found in `types`")
}
}
types <- as.logical(types)
edges <- as.numeric(edges) - 1
directed <- as.logical(directed)
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_create_bipartite, types, edges, directed)
res <- set_vertex_attr(res, "type", value = types)
if (!is.null(vertex.names)) {
res <- set_vertex_attr(res, "name", value = vertex.names)
}
res
} # nocov end
#' Create a graph from the Graph Atlas
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.atlas()` was renamed to `graph_from_atlas()` to create a more
#' consistent API.
#' @inheritParams graph_from_atlas
#' @keywords internal
#' @export
graph.atlas <- function(n) { # nocov start
lifecycle::deprecate_soft("2.1.0", "graph.atlas()", "graph_from_atlas()")
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_atlas, as.numeric(n))
if (igraph_opt("add.params")) {
res$name <- sprintf("Graph from the Atlas #%i", n)
res$n <- n
}
res
} # nocov end
## ----------------------------------------------------------------
##
## IGraph R package
## Copyright (C) 2005-2014 Gabor Csardi <csardi.gabor@gmail.com>
## 334 Harvard street, Cambridge, MA 02139 USA
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
## 02110-1301 USA
##
## -----------------------------------------------------------------
#' Takes an argument list and extracts the constructor specification and
#' constructor modifiers from it.
#'
#' This is a helper function for the common parts of `make_()` and
#' `sample_()`.
#'
#' @param ... Parameters to extract from
#' @param .operation Human-readable description of the operation that this
#' helper is a part of
#' @param .variant Constructor variant; must be one of \sQuote{make},
#' \sQuote{graph} or \sQuote{sample}. Used in cases when the same constructor
#' specification has deterministic and random variants.
#' @return A named list with three items: \sQuote{cons} for the constructor
#' function, \sQuote{mods} for the modifiers and \sQuote{args} for the
#' remaining, unparsed arguments.
#' @dev
.extract_constructor_and_modifiers <- function(..., .operation, .variant) {
args <- list(...)
cidx <- vapply(args, inherits, TRUE, what = "igraph_constructor_spec")
if (sum(cidx) == 0) {
stop("Don't know how to ", .operation, ", nothing given")
}
if (sum(cidx) > 1) {
stop("Don't know how to ", .operation, ", multiple constructors given")
}
cons <- args[cidx][[1]]
args <- args[!cidx]
## Modifiers
wmods <- vapply(args, inherits, TRUE, what = "igraph_constructor_modifier")
mods <- args[wmods]
args <- args[!wmods]
## Resolve the actual function in the specifier if it has multiple variants
if (!is.function(cons$fun)) {
variants <- names(cons$fun)
## 'graph' can fall back to 'make' and vice versa if one is present but
## not the other
if (!(.variant %in% variants)) {
if (.variant == "graph" && "make" %in% variants) {
.variant <- "make"
} else if (.variant == "make" && "graph" %in% variants) {
.variant <- "graph"
}
}
if (.variant %in% variants) {
cons$fun <- cons$fun[[.variant]]
} else {
stop("Don't know how to ", .operation, ", unknown constructor")
}
}
list(cons = cons, mods = mods, args = args)
}
#' Applies a set of constructor modifiers to an already constructed graph.
#'
#' This is a helper function for the common parts of `make_()` and
#' `sample_()`.
#'
#' @param graph The graph to apply the modifiers to
#' @param mods The modifiers to apply
#' @return The modified graph
#' @dev
.apply_modifiers <- function(graph, mods) {
for (m in mods) {
if (m$id == "without_attr") {
## TODO: speed this up
ga <- graph_attr_names(graph)
va <- vertex_attr_names(graph)
ea <- edge_attr_names(graph)
for (g in ga) graph <- delete_graph_attr(graph, g)
for (v in va) graph <- delete_vertex_attr(graph, v)
for (e in ea) graph <- delete_edge_attr(graph, e)
} else if (m$id == "without_loops") {
graph <- simplify(graph, remove.loops = TRUE, remove.multiple = FALSE)
} else if (m$id == "without_multiples") {
graph <- simplify(graph, remove.loops = FALSE, remove.multiple = TRUE)
} else if (m$id == "simplified") {
graph <- simplify(graph)
} else if (m$id == "with_vertex_") {
m$args <- lapply(m$args, eval)
## TODO speed this up
for (a in seq_along(m$args)) {
n <- names(m$args)[a]
v <- m$args[[a]]
stopifnot(!is.null(n))
graph <- set_vertex_attr(graph, n, value = v)
}
} else if (m$id == "with_edge_") {
m$args <- lapply(m$args, eval)
## TODO speed this up
for (a in seq_along(m$args)) {
n <- names(m$args)[a]
v <- m$args[[a]]
stopifnot(!is.null(n))
graph <- set_edge_attr(graph, n, value = v)
}
} else if (m$id == "with_graph_") {
m$args <- lapply(m$args, eval)
## TODO speed this up
for (a in seq_along(m$args)) {
n <- names(m$args)[a]
v <- m$args[[a]]
stopifnot(!is.null(n))
graph <- set_graph_attr(graph, n, value = v)
}
}
}
graph
}
#' Make a new graph
#'
#' This is a generic function for creating graphs.
#'
#' @details
#' `make_()` is a generic function for creating graphs.
#' For every graph constructor in igraph that has a `make_` prefix,
#' there is a corresponding function without the prefix: e.g.
#' for [make_ring()] there is also [ring()], etc.
#'
#' The same is true for the random graph samplers, i.e. for each
#' constructor with a `sample_` prefix, there is a corresponding
#' function without that prefix.
#'
#' These shorter forms can be used together with `make_()`.
#' The advantage of this form is that the user can specify constructor
#' modifiers which work with all constructors. E.g. the
#' [with_vertex_()] modifier adds vertex attributes
#' to the newly created graphs.
#'
#' See the examples and the various constructor modifiers below.
#'
#' @param ... Parameters, see details below.
#'
#' @export
#' @examples
#' r <- make_(ring(10))
#' l <- make_(lattice(c(3, 3, 3)))
#'
#' r2 <- make_(ring(10), with_vertex_(color = "red", name = LETTERS[1:10]))
#' l2 <- make_(lattice(c(3, 3, 3)), with_edge_(weight = 2))
#'
#' ran <- sample_(degseq(c(3, 3, 3, 3, 3, 3), method = "configuration"), simplified())
#' degree(ran)
#' is_simple(ran)
#' @family deterministic constructors
#' @family constructor modifiers
make_ <- function(...) {
me <- attr(sys.function(), "name") %||% "construct"
extracted <- .extract_constructor_and_modifiers(..., .operation = me, .variant = "make")
cons <- extracted$cons
if (cons$lazy) {
cons_args <- lapply(cons$args, rlang::quo_get_expr)
} else {
cons_args <- lapply(cons$args, rlang::eval_tidy)
}
res <- do_call(cons$fun, cons_args, extracted$args)
.apply_modifiers(res, extracted$mods)
}
#' Sample from a random graph model
#'
#' Generic function for sampling from network models.
#'
#' @details
#' `sample_()` is a generic function for creating graphs.
#' For every graph constructor in igraph that has a `sample_` prefix,
#' there is a corresponding function without the prefix: e.g.
#' for [sample_pa()] there is also [pa()], etc.
#'
#' The same is true for the deterministic graph samplers, i.e. for each
#' constructor with a `make_` prefix, there is a corresponding
#' function without that prefix.
#'
#' These shorter forms can be used together with `sample_()`.
#' The advantage of this form is that the user can specify constructor
#' modifiers which work with all constructors. E.g. the
#' [with_vertex_()] modifier adds vertex attributes
#' to the newly created graphs.
#'
#' See the examples and the various constructor modifiers below.
#'
#'
#' @param ... Parameters, see details below.
#'
#' @export
#' @examples
#' pref_matrix <- cbind(c(0.8, 0.1), c(0.1, 0.7))
#' blocky <- sample_(sbm(
#' n = 20, pref.matrix = pref_matrix,
#' block.sizes = c(10, 10)
#' ))
#'
#' blocky2 <- pref_matrix %>%
#' sample_sbm(n = 20, block.sizes = c(10, 10))
#'
#' ## Arguments are passed on from sample_ to sample_sbm
#' blocky3 <- pref_matrix %>%
#' sample_(sbm(), n = 20, block.sizes = c(10, 10))
#' @family games
#' @family constructor modifiers
sample_ <- function(...) {
me <- attr(sys.function(), "name") %||% "construct"
extracted <- .extract_constructor_and_modifiers(..., .operation = me, .variant = "sample")
cons <- extracted$cons
if (cons$lazy) {
cons_args <- lapply(cons$args, rlang::quo_get_expr)
} else {
cons_args <- lapply(cons$args, rlang::eval_tidy)
}
res <- do_call(cons$fun, cons_args, extracted$args)
.apply_modifiers(res, extracted$mods)
}
#' Convert object to a graph
#'
#' This is a generic function to convert R objects to igraph graphs.
#'
#' @details
#' TODO
#'
#' @param ... Parameters, see details below.
#'
#' @export
#' @examples
#' ## These are equivalent
#' graph_(cbind(1:5, 2:6), from_edgelist(directed = FALSE))
#' graph_(cbind(1:5, 2:6), from_edgelist(), directed = FALSE)
graph_ <- function(...) {
lifecycle::deprecate_soft(
"2.1.0",
"graph_()",
details = c(
"Please use constructors directly, for instance graph_from_edgelist().",
"graph_() will be removed in a future version of igraph."
)
)
me <- attr(sys.function(), "name") %||% "construct"
extracted <- .extract_constructor_and_modifiers(..., .operation = me, .variant = "graph")
cons <- extracted$cons
if (cons$lazy) {
cons_args <- lapply(cons$args, rlang::quo_get_expr)
} else {
cons_args <- lapply(cons$args, rlang::eval_tidy)
}
res <- do_call(cons$fun, cons_args, extracted$args)
.apply_modifiers(res, extracted$mods)
}
attr(make_, "name") <- "make_"
attr(sample_, "name") <- "sample_"
attr(graph_, "name") <- "graph_"
constructor_spec <- function(fun, ..., .lazy = FALSE) {
structure(
list(
fun = fun,
args = rlang::enquos(...),
lazy = .lazy
),
class = "igraph_constructor_spec"
)
}
## -----------------------------------------------------------------
## Constructor modifiers
constructor_modifier <- function(...) {
structure(
list(...),
class = "igraph_constructor_modifier"
)
}
#' Construtor modifier to remove all attributes from a graph
#'
#' @family constructor modifiers
#'
#' @export
#' @examples
#' g1 <- make_ring(10)
#' g1
#'
#' g2 <- make_(ring(10), without_attr())
#' g2
without_attr <- function() {
constructor_modifier(
id = "without_attr"
)
}
#' Constructor modifier to drop loop edges
#'
#' @family constructor modifiers
#'
#' @export
#' @examples
#' # An artificial example
#' make_(full_graph(5, loops = TRUE))
#' make_(full_graph(5, loops = TRUE), without_loops())
without_loops <- function() {
constructor_modifier(
id = "without_loops"
)
}
#' Constructor modifier to drop multiple edges
#'
#' @family constructor modifiers
#'
#' @export
#' @examples
#' sample_(pa(10, m = 3, algorithm = "bag"))
#' sample_(pa(10, m = 3, algorithm = "bag"), without_multiples())
without_multiples <- function() {
constructor_modifier(
id = "without_multiples"
)
}
#' Constructor modifier to drop multiple and loop edges
#'
#' @family constructor modifiers
#'
#' @export
#' @examples
#' sample_(pa(10, m = 3, algorithm = "bag"))
#' sample_(pa(10, m = 3, algorithm = "bag"), simplified())
simplified <- function() {
constructor_modifier(
id = "simplified"
)
}
#' Constructor modifier to add vertex attributes
#'
#' @param ... The attributes to add. They must be named.
#'
#' @family constructor modifiers
#'
#' @export
#' @examples
#' make_(
#' ring(10),
#' with_vertex_(
#' color = "#7fcdbb",
#' frame.color = "#7fcdbb",
#' name = LETTERS[1:10]
#' )
#' ) %>%
#' plot()
with_vertex_ <- function(...) {
args <- grab_args()
constructor_modifier(
id = "with_vertex_",
args = args
)
}
#' Constructor modifier to add edge attributes
#'
#' @param ... The attributes to add. They must be named.
#'
#' @family constructor modifiers
#'
#' @export
#' @examples
#' make_(
#' ring(10),
#' with_edge_(
#' color = "red",
#' weight = rep(1:2, 5)
#' )
#' ) %>%
#' plot()
with_edge_ <- function(...) {
args <- grab_args()
constructor_modifier(
id = "with_edge_",
args = args
)
}
#' Constructor modifier to add graph attributes
#'
#' @param ... The attributes to add. They must be named.
#'
#' @family constructor modifiers
#'
#' @export
#' @examples
#' make_(ring(10), with_graph_(name = "10-ring"))
with_graph_ <- function(...) {
args <- grab_args()
constructor_modifier(
id = "with_graph_",
args = args
)
}
## -----------------------------------------------------------------
#' Create an igraph graph from a list of edges, or a notable graph
#'
#' @section Notable graphs:
#'
#' `make_graph()` can create some notable graphs. The name of the
#' graph (case insensitive), a character scalar must be supplied as
#' the `edges` argument, and other arguments are ignored. (A warning
#' is given is they are specified.)
#'
#' `make_graph()` knows the following graphs: \describe{
#' \item{Bull}{The bull graph, 5 vertices, 5 edges, resembles to the head
#' of a bull if drawn properly.}
#' \item{Chvatal}{This is the smallest triangle-free graph that is
#' both 4-chromatic and 4-regular. According to the Grunbaum conjecture there
#' exists an m-regular, m-chromatic graph with n vertices for every m>1 and
#' n>2. The Chvatal graph is an example for m=4 and n=12. It has 24 edges.}
#' \item{Coxeter}{A non-Hamiltonian cubic symmetric graph with 28 vertices and
#' 42 edges.}
#' \item{Cubical}{The Platonic graph of the cube. A convex regular
#' polyhedron with 8 vertices and 12 edges.}
#' \item{Diamond}{A graph with 4 vertices and 5 edges, resembles to a
#' schematic diamond if drawn properly.}
#' \item{Dodecahedral, Dodecahedron}{Another Platonic solid with 20 vertices
#' and 30 edges.}
#' \item{Folkman}{The semisymmetric graph with minimum number of
#' vertices, 20 and 40 edges. A semisymmetric graph is regular, edge transitive
#' and not vertex transitive.}
#' \item{Franklin}{This is a graph whose embedding
#' to the Klein bottle can be colored with six colors, it is a counterexample
#' to the necessity of the Heawood conjecture on a Klein bottle. It has 12
#' vertices and 18 edges.}
#' \item{Frucht}{The Frucht Graph is the smallest
#' cubical graph whose automorphism group consists only of the identity
#' element. It has 12 vertices and 18 edges.}
#' \item{Grotzsch}{The Groetzsch
#' graph is a triangle-free graph with 11 vertices, 20 edges, and chromatic
#' number 4. It is named after German mathematician Herbert Groetzsch, and its
#' existence demonstrates that the assumption of planarity is necessary in
#' Groetzsch's theorem that every triangle-free planar graph is 3-colorable.}
#' \item{Heawood}{The Heawood graph is an undirected graph with 14 vertices and
#' 21 edges. The graph is cubic, and all cycles in the graph have six or more
#' edges. Every smaller cubic graph has shorter cycles, so this graph is the
#' 6-cage, the smallest cubic graph of girth 6.}
#' \item{Herschel}{The Herschel
#' graph is the smallest nonhamiltonian polyhedral graph. It is the unique such
#' graph on 11 nodes, and has 18 edges.}
#' \item{House}{The house graph is a
#' 5-vertex, 6-edge graph, the schematic draw of a house if drawn properly,
#' basicly a triangle of the top of a square.}
#' \item{HouseX}{The same as the
#' house graph with an X in the square. 5 vertices and 8 edges.}
#' \item{Icosahedral, Icosahedron}{A Platonic solid with 12 vertices and 30
#' edges.}
#' \item{Krackhardt kite}{A social network with 10 vertices and 18
#' edges. Krackhardt, D. Assessing the Political Landscape: Structure,
#' Cognition, and Power in Organizations. Admin. Sci. Quart. 35, 342-369,
#' 1990.}
#' \item{Levi}{The graph is a 4-arc transitive cubic graph, it has 30
#' vertices and 45 edges.}
#' \item{McGee}{The McGee graph is the unique 3-regular
#' 7-cage graph, it has 24 vertices and 36 edges.}
#' \item{Meredith}{The Meredith
#' graph is a quartic graph on 70 nodes and 140 edges that is a counterexample
#' to the conjecture that every 4-regular 4-connected graph is Hamiltonian.}
#' \item{Noperfectmatching}{A connected graph with 16 vertices and 27 edges
#' containing no perfect matching. A matching in a graph is a set of pairwise
#' non-adjacent edges; that is, no two edges share a common vertex. A perfect
#' matching is a matching which covers all vertices of the graph.}
#' \item{Nonline}{A graph whose connected components are the 9 graphs whose
#' presence as a vertex-induced subgraph in a graph makes a nonline graph. It
#' has 50 vertices and 72 edges.}
#' \item{Octahedral, Octahedron}{Platonic solid
#' with 6 vertices and 12 edges.}
#' \item{Petersen}{A 3-regular graph with 10
#' vertices and 15 edges. It is the smallest hypohamiltonian graph, i.e. it is
#' non-hamiltonian but removing any single vertex from it makes it
#' Hamiltonian.}
#' \item{Robertson}{The unique (4,5)-cage graph, i.e. a 4-regular
#' graph of girth 5. It has 19 vertices and 38 edges.}
#' \item{Smallestcyclicgroup}{A smallest nontrivial graph whose automorphism
#' group is cyclic. It has 9 vertices and 15 edges.}
#' \item{Tetrahedral,
#' Tetrahedron}{Platonic solid with 4 vertices and 6 edges.}
#' \item{Thomassen}{The smallest hypotraceable graph, on 34 vertices and 52
#' edges. A hypotraceable graph does not contain a Hamiltonian path but after
#' removing any single vertex from it the remainder always contains a
#' Hamiltonian path. A graph containing a Hamiltonian path is called traceable.}
#' \item{Tutte}{Tait's Hamiltonian graph conjecture states that every
#' 3-connected 3-regular planar graph is Hamiltonian. This graph is a
#' counterexample. It has 46 vertices and 69 edges.}
#' \item{Uniquely3colorable}{Returns a 12-vertex, triangle-free graph with
#' chromatic number 3 that is uniquely 3-colorable.}
#' \item{Walther}{An identity
#' graph with 25 vertices and 31 edges. An identity graph has a single graph
#' automorphism, the trivial one.}
#' \item{Zachary}{Social network of friendships
#' between 34 members of a karate club at a US university in the 1970s. See W.
#' W. Zachary, An information flow model for conflict and fission in small
#' groups, Journal of Anthropological Research 33, 452-473 (1977). } }
#'
#' @encoding UTF-8
#' @param edges A vector defining the edges, the first edge points
#' from the first element to the second, the second edge from the third
#' to the fourth, etc. For a numeric vector, these are interpreted
#' as internal vertex ids. For character vectors, they are interpreted
#' as vertex names.
#'
#' Alternatively, this can be a character scalar, the name of a
#' notable graph. See Notable graphs below. The name is case
#' insensitive.
#'
#' Starting from igraph 0.8.0, you can also include literals here,
#' via igraph's formula notation (see [graph_from_literal()]).
#' In this case, the first term of the formula has to start with
#' a \sQuote{`~`} character, just like regular formulae in R.
#' See examples below.
#' @param ... For `make_graph()`: extra arguments for the case when the
#' graph is given via a literal, see [graph_from_literal()].
#' For `directed_graph()` and `undirected_graph()`:
#' Passed to `make_directed_graph()` or `make_undirected_graph()`.
#' @param n The number of vertices in the graph. This argument is
#' ignored (with a warning) if `edges` are symbolic vertex names. It
#' is also ignored if there is a bigger vertex id in `edges`. This
#' means that for this function it is safe to supply zero here if the
#' vertex with the largest id is not an isolate.
#' @param isolates Character vector, names of isolate vertices,
#' for symbolic edge lists. It is ignored for numeric edge lists.
#' @param directed Whether to create a directed graph.
#' @param dir It is the same as `directed`, for compatibility.
#' Do not give both of them.
#' @param simplify For graph literals, whether to simplify the graph.
#' @return An igraph graph.
#'
#' @family deterministic constructors
#' @export
#' @examples
#' make_graph(c(1, 2, 2, 3, 3, 4, 5, 6), directed = FALSE)
#' make_graph(c("A", "B", "B", "C", "C", "D"), directed = FALSE)
#'
#' solids <- list(
#' make_graph("Tetrahedron"),
#' make_graph("Cubical"),
#' make_graph("Octahedron"),
#' make_graph("Dodecahedron"),
#' make_graph("Icosahedron")
#' )
#'
#' graph <- make_graph(
#' ~ A - B - C - D - A, E - A:B:C:D,
#' F - G - H - I - F, J - F:G:H:I,
#' K - L - M - N - K, O - K:L:M:N,
#' P - Q - R - S - P, T - P:Q:R:S,
#' B - F, E - J, C - I, L - T, O - T, M - S,
#' C - P, C - L, I - L, I - P
#' )
make_graph <- function(edges, ..., n = max(edges), isolates = NULL,
directed = TRUE, dir = directed, simplify = TRUE) {
if (inherits(edges, "formula")) {
if (!missing(n)) stop("'n' should not be given for graph literals")
if (!missing(isolates)) {
stop("'isolates' should not be given for graph literals")
}
if (!missing(directed)) {
stop("'directed' should not be given for graph literals")
}
mf <- as.list(match.call())[-1]
mf[[1]] <- mf[[1]][[2]]
graph_from_literal_i(mf)
} else {
if (!missing(simplify)) {
stop("'simplify' should only be used for graph literals")
}
if (!missing(dir) && !missing(directed)) {
stop("Only give one of 'dir' and 'directed'")
}
if (!missing(dir) && missing(directed)) directed <- dir
if (is.character(edges) && length(edges) == 1) {
if (!missing(n)) cli::cli_warn("{.arg n} is ignored for the {.str {edges}} graph.")
if (!missing(isolates)) {
cli::cli_warn("{.arg isolates} is ignored for the {.str {edges}} graph.")
}
if (!missing(directed)) {
cli::cli_warn("{.arg directed} is ignored for the {.str {edges}} graph.")
}
if (!missing(dir)) {
cli::cli_warn("{.arg dir} is ignored for the {.str {edges}} graph.")
}
if (length(list(...))) stop("Extra arguments in make_graph")
make_famous_graph(edges)
## NULL and empty logical vector is allowed for compatibility
} else if (is.numeric(edges) || is.null(edges) ||
(is.logical(edges) && length(edges) == 0)) {
if (is.null(edges) || is.logical(edges)) edges <- as.numeric(edges)
if (!is.null(isolates)) {
cli::cli_warn("{.arg isolates} ignored for numeric edge list.")
}
old_graph <- function(edges, n = max(edges), directed = TRUE) {
on.exit(.Call(R_igraph_finalizer))
if (missing(n) && (is.null(edges) || length(edges) == 0)) {
n <- 0
}
.Call(
R_igraph_create, as.numeric(edges) - 1, as.numeric(n),
as.logical(directed)
)
}
args <- list(edges, ...)
if (!missing(n)) args <- c(args, list(n = n))
if (!missing(directed)) args <- c(args, list(directed = directed))
do.call(old_graph, args)
} else if (is.character(edges)) {
if (!missing(n)) {
cli::cli_warn("{.arg n} is ignored for edge list with vertex names.")
}
if (length(list(...))) stop("Extra arguments in make_graph")
el <- matrix(edges, ncol = 2, byrow = TRUE)
res <- graph_from_edgelist(el, directed = directed)
if (!is.null(isolates)) {
isolates <- as.character(isolates)
res <- res + vertices(isolates)
}
res
} else {
stop("'edges' must be numeric or character")
}
}
}
make_famous_graph <- function(name) {
name <- gsub("\\s", "_", name)
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_famous, as.character(name))
if (igraph_opt("add.params")) {
res$name <- capitalize(name)
}
res
}
#' @rdname make_graph
#' @export
make_directed_graph <- function(edges, n = max(edges)) {
if (missing(n)) {
make_graph(edges, directed = TRUE)
} else {
make_graph(edges, n = n, directed = TRUE)
}
}
#' @rdname make_graph
#' @export
make_undirected_graph <- function(edges, n = max(edges)) {
if (missing(n)) {
make_graph(edges, directed = FALSE)
} else {
make_graph(edges, n = n, directed = FALSE)
}
}
#' @rdname make_graph
#' @export
directed_graph <- function(...) constructor_spec(make_directed_graph, ...)
#' @rdname make_graph
#' @export
undirected_graph <- function(...) constructor_spec(make_undirected_graph, ...)
## -----------------------------------------------------------------
#' A graph with no edges
#'
#' @concept Empty graph.
#' @param n Number of vertices.
#' @param directed Whether to create a directed graph.
#' @return An igraph graph.
#'
#' @family deterministic constructors
#' @export
#' @examples
#' make_empty_graph(n = 10)
#' make_empty_graph(n = 5, directed = FALSE)
#' @cdocs igraph_empty
make_empty_graph <- empty_impl
#' @rdname make_empty_graph
#' @param ... Passed to `make_graph_empty`.
#' @export
empty_graph <- function(...) constructor_spec(make_empty_graph, ...)
## -----------------------------------------------------------------
#' Creating (small) graphs via a simple interface
#'
#' This function is useful if you want to create a small (named) graph
#' quickly, it works for both directed and undirected graphs.
#'
#' @details
#' `graph_from_literal()` is very handy for creating small graphs quickly.
#' You need to supply one or more R expressions giving the structure of
#' the graph. The expressions consist of vertex names and edge
#' operators. An edge operator is a sequence of \sQuote{`-`} and
#' \sQuote{`+`} characters, the former is for the edges and the
#' latter is used for arrow heads. The edges can be arbitrarily long,
#' i.e. you may use as many \sQuote{`-`} characters to \dQuote{draw}
#' them as you like.
#'
#' If all edge operators consist of only \sQuote{`-`} characters
#' then the graph will be undirected, whereas a single \sQuote{`+`}
#' character implies a directed graph.
#'
#' Let us see some simple examples. Without arguments the function
#' creates an empty graph:
#' \preformatted{ graph_from_literal()
#' }
#'
#' A simple undirected graph with two vertices called \sQuote{A} and
#' \sQuote{B} and one edge only:
#' \preformatted{ graph_from_literal(A-B)
#' }
#'
#' Remember that the length of the edges does not matter, so we could
#' have written the following, this creates the same graph:
#' \preformatted{ graph_from_literal( A-----B )
#' }
#'
#' If you have many disconnected components in the graph, separate them
#' with commas. You can also give isolate vertices.
#' \preformatted{ graph_from_literal( A--B, C--D, E--F, G--H, I, J, K )
#' }
#'
#' The \sQuote{`:`} operator can be used to define vertex sets. If
#' an edge operator connects two vertex sets then every vertex from the
#' first set will be connected to every vertex in the second set. The
#' following form creates a full graph, including loop edges:
#' \preformatted{ graph_from_literal( A:B:C:D -- A:B:C:D )
#' }
#'
#' In directed graphs, edges will be created only if the edge operator
#' includes a arrow head (\sQuote{+}) *at the end* of the edge:
#' \preformatted{ graph_from_literal( A -+ B -+ C )
#' graph_from_literal( A +- B -+ C )
#' graph_from_literal( A +- B -- C )
#' }
#' Thus in the third example no edge is created between vertices `B`
#' and `C`.
#'
#' Mutual edges can be also created with a simple edge operator:
#' \preformatted{ graph_from_literal( A +-+ B +---+ C ++ D + E)
#' }
#' Note again that the length of the edge operators is arbitrary,
#' \sQuote{`+`}, \sQuote{`++`} and \sQuote{`+-----+`} have
#' exactly the same meaning.
#'
#' If the vertex names include spaces or other special characters then
#' you need to quote them:
#' \preformatted{ graph_from_literal( "this is" +- "a silly" -+ "graph here" )
#' }
#' You can include any character in the vertex names this way, even
#' \sQuote{+} and \sQuote{-} characters.
#'
#' See more examples below.
#'
#' @param ... For `graph_from_literal()` the formulae giving the
#' structure of the graph, see details below. For `from_literal()`
#' all arguments are passed to `graph_from_literal()`.
#' @param simplify Logical scalar, whether to call [simplify()]
#' on the created graph. By default the graph is simplified, loop and
#' multiple edges are removed.
#' @return An igraph graph
#'
#' @family deterministic constructors
#' @export
#' @examples
#' # A simple undirected graph
#' g <- graph_from_literal(
#' Alice - Bob - Cecil - Alice,
#' Daniel - Cecil - Eugene,
#' Cecil - Gordon
#' )
#' g
#'
#' # Another undirected graph, ":" notation
#' g2 <- graph_from_literal(Alice - Bob:Cecil:Daniel, Cecil:Daniel - Eugene:Gordon)
#' g2
#'
#' # A directed graph
#' g3 <- graph_from_literal(
#' Alice +-+ Bob --+ Cecil +-- Daniel,
#' Eugene --+ Gordon:Helen
#' )
#' g3
#'
#' # A graph with isolate vertices
#' g4 <- graph_from_literal(Alice -- Bob -- Daniel, Cecil:Gordon, Helen)
#' g4
#' V(g4)$name
#'
#' # "Arrows" can be arbitrarily long
#' g5 <- graph_from_literal(Alice +---------+ Bob)
#' g5
#'
#' # Special vertex names
#' g6 <- graph_from_literal("+" -- "-", "*" -- "/", "%%" -- "%/%")
#' g6
#'
graph_from_literal <- function(..., simplify = TRUE) {
mf <- as.list(match.call())[-1]
graph_from_literal_i(mf)
}
graph_from_literal_i <- function(mf) {
## In case 'simplify' is given
simplify <- TRUE
if ("simplify" %in% names(mf)) {
w <- which(names(mf) == "simplify")
if (length(w) > 1) {
stop("'simplify' specified multiple times")
}
simplify <- eval(mf[[w]])
mf <- mf[-w]
}
## Operators first
f <- function(x) {
if (is.call(x)) {
return(list(as.character(x[[1]]), lapply(x[-1], f)))
} else {
return(NULL)
}
}
ops <- unlist(lapply(mf, f))
if (all(ops %in% c("-", ":"))) {
directed <- FALSE
} else if (all(ops %in% c("-", "+", ":"))) {
directed <- TRUE
} else {
stop("Invalid operator in formula")
}
f <- function(x) {
if (is.call(x)) {
if (length(x) == 3) {
return(list(f(x[[2]]), op = as.character(x[[1]]), f(x[[3]])))
} else {
return(list(op = as.character(x[[1]]), f(x[[2]])))
}
} else {
return(c(sym = as.character(x)))
}
}
ret <- lapply(mf, function(x) unlist(f(x)))
v <- unique(unlist(lapply(ret, function(x) {
x[names(x) == "sym"]
})))
## Merge symbols for ":"
ret <- lapply(ret, function(x) {
res <- list()
for (i in seq(along.with = x)) {
if (x[i] == ":" && names(x)[i] == "op") {
## SKIP
} else if (i > 1 && x[i - 1] == ":" && names(x)[i - 1] == "op") {
res[[length(res)]] <- c(res[[length(res)]], unname(x[i]))
} else {
res <- c(res, x[i])
}
}
res
})
## Ok, create the edges
edges <- numeric()
for (i in seq(along.with = ret)) {
prev.sym <- character()
lhead <- rhead <- character()
for (j in seq(along.with = ret[[i]])) {
act <- ret[[i]][[j]]
if (names(ret[[i]])[j] == "op") {
if (length(lhead) == 0) {
lhead <- rhead <- act
} else {
rhead <- act
}
} else if (names(ret[[i]])[j] == "sym") {
for (ps in prev.sym) {
for (ps2 in act) {
if (lhead == "+") {
edges <- c(edges, unname(c(ps2, ps)))
}
if (!directed || rhead == "+") {
edges <- c(edges, unname(c(ps, ps2)))
}
}
}
lhead <- rhead <- character()
prev.sym <- act
}
}
}
ids <- seq(along.with = v)
names(ids) <- v
res <- make_graph(unname(ids[edges]), n = length(v), directed = directed)
if (simplify) res <- simplify(res)
res <- set_vertex_attr(res, "name", value = v)
res
}
#' @rdname graph_from_literal
#' @export
from_literal <- function(...) {
constructor_spec(graph_from_literal, ..., .lazy = TRUE)
}
## -----------------------------------------------------------------
#' Create a star graph, a tree with n vertices and n - 1 leaves
#'
#' `star()` creates a star graph, in this every single vertex is
#' connected to the center vertex and nobody else.
#'
#' @concept Star graph
#' @param n Number of vertices.
#' @param mode It defines the direction of the
#' edges, `in`: the edges point *to* the center, `out`:
#' the edges point *from* the center, `mutual`: a directed
#' star is created with mutual edges, `undirected`: the edges
#' are undirected.
#' @param center ID of the center vertex.
#' @return An igraph graph.
#'
#' @family deterministic constructors
#' @export
#' @examples
#' make_star(10, mode = "out")
#' make_star(5, mode = "undirected")
make_star <- function(n, mode = c("in", "out", "mutual", "undirected"),
center = 1) {
mode <- igraph.match.arg(mode)
mode1 <- switch(mode,
"out" = 0,
"in" = 1,
"undirected" = 2,
"mutual" = 3
)
on.exit(.Call(R_igraph_finalizer))
res <- .Call(
R_igraph_star, as.numeric(n), as.numeric(mode1),
as.numeric(center) - 1
)
if (igraph_opt("add.params")) {
res$name <- switch(mode,
"in" = "In-star",
"out" = "Out-star",
"Star"
)
res$mode <- mode
res$center <- center
}
res
}
#' @rdname make_star
#' @param ... Passed to `make_star()`.
#' @export
star <- function(...) constructor_spec(make_star, ...)
## -----------------------------------------------------------------
#' Create a full graph
#'
#' @concept Full graph
#' @param n Number of vertices.
#' @param directed Whether to create a directed graph.
#' @param loops Whether to add self-loops to the graph.
#' @return An igraph graph
#'
#' @family deterministic constructors
#' @export
#' @examples
#' make_full_graph(5)
#' print_all(make_full_graph(4, directed = TRUE))
make_full_graph <- function(n, directed = FALSE, loops = FALSE) {
on.exit(.Call(R_igraph_finalizer))
res <- .Call(
R_igraph_full, as.numeric(n), as.logical(directed),
as.logical(loops)
)
if (igraph_opt("add.params")) {
res$name <- "Full graph"
res$loops <- loops
}
res
}
#' @rdname make_full_graph
#' @param ... Passed to `make_full_graph()`.
#' @export
full_graph <- function(...) constructor_spec(make_full_graph, ...)
## -----------------------------------------------------------------
#' Create a lattice graph
#'
#' `make_lattice()` is a flexible function, it can create lattices of
#' arbitrary dimensions, periodic or aperiodic ones. It has two
#' forms. In the first form you only supply `dimvector`, but not
#' `length` and `dim`. In the second form you omit
#' `dimvector` and supply `length` and `dim`.
#'
#' @concept Lattice
#' @param dimvector A vector giving the size of the lattice in each
#' dimension.
#' @param length Integer constant, for regular lattices, the size of the
#' lattice in each dimension.
#' @param dim Integer constant, the dimension of the lattice.
#' @param nei The distance within which (inclusive) the neighbors on the
#' lattice will be connected. This parameter is not used right now.
#' @param directed Whether to create a directed lattice.
#' @param mutual Logical, if `TRUE` directed lattices will be
#' mutually connected.
#' @param periodic Logical vector, Boolean vector, defines whether the generated lattice is
#' periodic along each dimension. This parameter may also be scalar boolen value which will
#' be extended to boolean vector with dimvector length.
#' @param circular Deprecated, use `periodic` instead.
#' @return An igraph graph.
#'
#' @family deterministic constructors
#' @export
#' @examples
#' make_lattice(c(5, 5, 5))
#' make_lattice(length = 5, dim = 3)
#' @cdocs igraph_square_lattice
make_lattice <- function(dimvector = NULL, length = NULL, dim = NULL,
nei = 1, directed = FALSE, mutual = FALSE,
periodic = FALSE, circular = deprecated()) {
if (lifecycle::is_present(circular)) {
lifecycle::deprecate_soft(
"2.0.3",
"make_lattice(circular = 'use periodic argument instead')",
details = c("`circular` is now deprecated, use `periodic` instead.")
)
periodic <- circular
}
if (is.numeric(length) && length != floor(length)) {
cli::cli_warn("{.arg length} was rounded to the nearest integer.")
length <- round(length)
}
if (is.null(dimvector)) {
dimvector <- rep(length, dim)
}
if (length(periodic) == 1) {
periodic <- rep(periodic, length(dimvector))
}
on.exit(.Call(R_igraph_finalizer))
res <- square_lattice_impl(dimvector, nei, directed, mutual, periodic)
if (igraph_opt("add.params")) {
res$name <- "Lattice graph"
res$dimvector <- dimvector
res$nei <- nei
res$mutual <- mutual
res$circular <- periodic
}
res
}
#' @rdname make_lattice
#' @param ... Passed to `make_lattice()`.
#' @export
lattice <- function(...) constructor_spec(make_lattice, ...)
## -----------------------------------------------------------------
#' Create a ring graph
#'
#' A ring is a one-dimensional lattice and this function is a special case
#' of [make_lattice()].
#'
#' @param n Number of vertices.
#' @param directed Whether the graph is directed.
#' @param mutual Whether directed edges are mutual. It is ignored in
#' undirected graphs.
#' @param circular Whether to create a circular ring. A non-circular
#' ring is essentially a \dQuote{line}: a tree where every non-leaf
#' vertex has one child.
#' @return An igraph graph.
#'
#' @family deterministic constructors
#' @export
#' @examples
#' print_all(make_ring(10))
#' print_all(make_ring(10, directed = TRUE, mutual = TRUE))
make_ring <- function(n, directed = FALSE, mutual = FALSE, circular = TRUE) {
on.exit(.Call(R_igraph_finalizer))
res <- .Call(
R_igraph_ring, as.numeric(n), as.logical(directed),
as.logical(mutual), as.logical(circular)
)
if (igraph_opt("add.params")) {
res$name <- "Ring graph"
res$mutual <- mutual
res$circular <- circular
}
res
}
#' @rdname make_ring
#' @param ... Passed to `make_ring()`.
#' @export
ring <- function(...) constructor_spec(make_ring, ...)
## -----------------------------------------------------------------
#' Create tree graphs
#'
#' Create a k-ary tree graph, where almost all vertices other than the leaves
#' have the same number of children.
#'
#' @concept Trees.
#' @param n Number of vertices.
#' @param children Integer scalar, the number of children of a vertex
#' (except for leafs)
#' @param mode Defines the direction of the
#' edges. `out` indicates that the edges point from the parent to
#' the children, `in` indicates that they point from the children
#' to their parents, while `undirected` creates an undirected
#' graph.
#' @return An igraph graph
#'
#' @family deterministic constructors
#' @export
#' @examples
#' make_tree(10, 2)
#' make_tree(10, 3, mode = "undirected")
make_tree <- function(n, children = 2, mode = c("out", "in", "undirected")) {
mode <- igraph.match.arg(mode)
mode1 <- switch(mode,
"out" = 0,
"in" = 1,
"undirected" = 2
)
on.exit(.Call(R_igraph_finalizer))
res <- .Call(
R_igraph_kary_tree, as.numeric(n), as.numeric(children),
as.numeric(mode1)
)
if (igraph_opt("add.params")) {
res$name <- "Tree"
res$children <- children
res$mode <- mode
}
res
}
#' Sample trees randomly and uniformly
#'
#' `sample_tree()` generates a random with a given number of nodes uniform
#' at random from the set of labelled trees.
#'
#' In other words, the function generates each possible labelled tree with the
#' given number of nodes with the same probability.
#'
#' @param n The number of nodes in the tree
#' @param directed Whether to create a directed tree. The edges of the tree are
#' oriented away from the root.
#' @param method The algorithm to use to generate the tree. \sQuote{prufer}
#' samples Prüfer sequences uniformly and then converts the sampled sequence to
#' a tree. \sQuote{lerw} performs a loop-erased random walk on the complete
#' graph to uniformly sampleits spanning trees. (This is also known as Wilson's
#' algorithm). The default is \sQuote{lerw}. Note that the method based on
#' Prüfer sequences does not support directed trees at the moment.
#' @return A graph object.
#'
#' @family games
#' @keywords graphs
#' @examples
#'
#' g <- sample_tree(100, method = "lerw")
#'
#' @export
#' @cdocs igraph_tree_game
sample_tree <- tree_game_impl
#' @rdname make_tree
#' @param ... Passed to `make_tree()` or `sample_tree()`.
#' @export
tree <- function(...) constructor_spec(list(make = make_tree, sample = sample_tree), ...)
## -----------------------------------------------------------------
#' Create an undirected tree graph from its Prüfer sequence
#'
#' `make_from_prufer()` creates an undirected tree graph from its Prüfer
#' sequence.
#'
#' The Prüfer sequence of a tree graph with n labeled vertices is a sequence of
#' n-2 numbers, constructed as follows. If the graph has more than two vertices,
#' find a vertex with degree one, remove it from the tree and add the label of
#' the vertex that it was connected to to the sequence. Repeat until there are
#' only two vertices in the remaining graph.
#'
#' @param prufer The Prüfer sequence to convert into a graph
#' @return A graph object.
#'
#' @seealso [to_prufer()] to convert a graph into its Prüfer sequence
#' @keywords graphs
#' @examples
#'
#' g <- make_tree(13, 3)
#' to_prufer(g)
#' @family trees
#' @export
#' @cdocs igraph_from_prufer
make_from_prufer <- from_prufer_impl
#' @rdname make_from_prufer
#' @param ... Passed to `make_from_prufer()`
#' @export
from_prufer <- function(...) constructor_spec(make_from_prufer, ...)
## -----------------------------------------------------------------
#' Create a graph from the Graph Atlas
#'
#' `graph_from_atlas()` creates graphs from the book
#' \sQuote{An Atlas of Graphs} by
#' Roland C. Read and Robin J. Wilson. The atlas contains all undirected
#' graphs with up to seven vertices, numbered from 0 up to 1252. The
#' graphs are listed:
#' \enumerate{
#' \item in increasing order of number of nodes;
#' \item for a fixed number of nodes, in increasing order of the number
#' of edges;
#' \item for fixed numbers of nodes and edges, in increasing order of
#' the degree sequence, for example 111223 < 112222;
#' \item for fixed degree sequence, in increasing number of
#' automorphisms.
#' }
#'
#' @concept Graph Atlas.
#' @param n The id of the graph to create.
#' @return An igraph graph.
#'
#' @family deterministic constructors
#' @export
#' @examples
#' ## Some randomly picked graphs from the atlas
#' graph_from_atlas(sample(0:1252, 1))
#' graph_from_atlas(sample(0:1252, 1))
graph_from_atlas <- function(n) {
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_atlas, as.numeric(n))
if (igraph_opt("add.params")) {
res$name <- sprintf("Graph from the Atlas #%i", n)
res$n <- n
}
res
}
#' @rdname graph_from_atlas
#' @param ... Passed to `graph_from_atlas()`.
#' @export
atlas <- function(...) constructor_spec(graph_from_atlas, ...)
## -----------------------------------------------------------------
#' Create an extended chordal ring graph
#'
#' `make_chordal_ring()` creates an extended chordal ring.
#' An extended chordal ring is regular graph, each node has the same
#' degree. It can be obtained from a simple ring by adding some extra
#' edges specified by a matrix. Let p denote the number of columns in
#' the \sQuote{`W`} matrix. The extra edges of vertex `i`
#' are added according to column `i mod p` in
#' \sQuote{`W`}. The number of extra edges is the number
#' of rows in \sQuote{`W`}: for each row `j` an edge
#' `i->i+w[ij]` is added if `i+w[ij]` is less than the number
#' of total nodes. See also Kotsis, G: Interconnection Topologies for
#' Parallel Processing Systems, PARS Mitteilungen 11, 1-6, 1993.
#'
#' @param n The number of vertices.
#' @param w A matrix which specifies the extended chordal ring. See
#' details below.
#' @param directed Logical scalar, whether or not to create a directed graph.
#' @return An igraph graph.
#'
#' @family deterministic constructors
#' @export
#' @examples
#' chord <- make_chordal_ring(
#' 15,
#' matrix(c(3, 12, 4, 7, 8, 11), nr = 2)
#' )
make_chordal_ring <- function(n, w, directed = FALSE) {
on.exit(.Call(R_igraph_finalizer))
res <- .Call(
R_igraph_extended_chordal_ring, as.numeric(n),
as.matrix(w), as.logical(directed)
)
if (igraph_opt("add.params")) {
res$name <- "Extended chordal ring"
res$w <- w
}
res
}
#' @rdname make_chordal_ring
#' @param ... Passed to `make_chordal_ring()`.
#' @export
chordal_ring <- function(...) constructor_spec(make_chordal_ring, ...)
## -----------------------------------------------------------------
#' Line graph of a graph
#'
#' This function calculates the line graph of another graph.
#'
#' The line graph `L(G)` of a `G` undirected graph is defined as
#' follows. `L(G)` has one vertex for each edge in `G` and two
#' vertices in `L(G)` are connected by an edge if their corresponding
#' edges share an end point.
#'
#' The line graph `L(G)` of a `G` directed graph is slightly
#' different, `L(G)` has one vertex for each edge in `G` and two
#' vertices in `L(G)` are connected by a directed edge if the target of
#' the first vertex's corresponding edge is the same as the source of the
#' second vertex's corresponding edge.
#'
#' @param graph The input graph, it can be directed or undirected.
#' @return A new graph object.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}, the first version of
#' the C code was written by Vincent Matossian.
#' @keywords graphs
#' @examples
#'
#' # generate the first De-Bruijn graphs
#' g <- make_full_graph(2, directed = TRUE, loops = TRUE)
#' make_line_graph(g)
#' make_line_graph(make_line_graph(g))
#' make_line_graph(make_line_graph(make_line_graph(g)))
#'
#' @export
make_line_graph <- function(graph) {
ensure_igraph(graph)
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_linegraph, graph)
if (igraph_opt("add.params")) {
res$name <- "Line graph"
}
res
}
#' @rdname make_line_graph
#' @param ... Passed to `make_line_graph()`.
#' @export
line_graph <- function(...) constructor_spec(make_line_graph, ...)
## -----------------------------------------------------------------
#' De Bruijn graphs
#'
#' De Bruijn graphs are labeled graphs representing the overlap of strings.
#'
#' A de Bruijn graph represents relationships between strings. An alphabet of
#' `m` letters are used and strings of length `n` are considered. A
#' vertex corresponds to every possible string and there is a directed edge
#' from vertex `v` to vertex `w` if the string of `v` can be
#' transformed into the string of `w` by removing its first letter and
#' appending a letter to it.
#'
#' Please note that the graph will have `m` to the power `n` vertices
#' and even more edges, so probably you don't want to supply too big numbers
#' for `m` and `n`.
#'
#' De Bruijn graphs have some interesting properties, please see another
#' source, e.g. Wikipedia for details.
#'
#' @param m Integer scalar, the size of the alphabet. See details below.
#' @param n Integer scalar, the length of the labels. See details below.
#' @return A graph object.
#' @author Gabor Csardi <csardi.gabor@@gmail.com>
#' @seealso [make_kautz_graph()], [make_line_graph()]
#' @keywords graphs
#' @export
#' @examples
#'
#' # de Bruijn graphs can be created recursively by line graphs as well
#' g <- make_de_bruijn_graph(2, 1)
#' make_de_bruijn_graph(2, 2)
#' make_line_graph(g)
make_de_bruijn_graph <- function(m, n) {
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_de_bruijn, as.numeric(m), as.numeric(n))
if (igraph_opt("add.params")) {
res$name <- sprintf("De-Bruijn graph %i-%i", m, n)
res$m <- m
res$n <- n
}
res
}
#' @rdname make_de_bruijn_graph
#' @param ... Passed to `make_de_bruijn_graph()`.
#' @export
de_bruijn_graph <- function(...) constructor_spec(make_de_bruijn_graph, ...)
## -----------------------------------------------------------------
#' Kautz graphs
#'
#' Kautz graphs are labeled graphs representing the overlap of strings.
#'
#' A Kautz graph is a labeled graph, vertices are labeled by strings of length
#' `n+1` above an alphabet with `m+1` letters, with the restriction
#' that every two consecutive letters in the string must be different. There is
#' a directed edge from a vertex `v` to another vertex `w` if it is
#' possible to transform the string of `v` into the string of `w` by
#' removing the first letter and appending a letter to it.
#'
#' Kautz graphs have some interesting properties, see e.g. Wikipedia for
#' details.
#'
#' @param m Integer scalar, the size of the alphabet. See details below.
#' @param n Integer scalar, the length of the labels. See details below.
#' @return A graph object.
#' @author Gabor Csardi <csardi.gabor@@gmail.com>, the first version in R was
#' written by Vincent Matossian.
#' @seealso [make_de_bruijn_graph()], [make_line_graph()]
#' @keywords graphs
#' @export
#' @examples
#'
#' make_line_graph(make_kautz_graph(2, 1))
#' make_kautz_graph(2, 2)
#'
make_kautz_graph <- function(m, n) {
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_kautz, as.numeric(m), as.numeric(n))
if (igraph_opt("add.params")) {
res$name <- sprintf("Kautz graph %i-%i", m, n)
res$m <- m
res$n <- n
}
res
}
#' @rdname make_kautz_graph
#' @param ... Passed to `make_kautz_graph()`.
#' @export
kautz_graph <- function(...) constructor_spec(make_kautz_graph, ...)
## -----------------------------------------------------------------
#' Create a full bipartite graph
#'
#' Bipartite graphs are also called two-mode by some. This function creates a
#' bipartite graph in which every possible edge is present.
#'
#' Bipartite graphs have a \sQuote{`type`} vertex attribute in igraph,
#' this is boolean and `FALSE` for the vertices of the first kind and
#' `TRUE` for vertices of the second kind.
#'
#' @param n1 The number of vertices of the first kind.
#' @param n2 The number of vertices of the second kind.
#' @param directed Logical scalar, whether the graphs is directed.
#' @param mode Scalar giving the kind of edges to create for directed graphs.
#' If this is \sQuote{`out`} then all vertices of the first kind are
#' connected to the others; \sQuote{`in`} specifies the opposite
#' direction; \sQuote{`all`} creates mutual edges. This argument is
#' ignored for undirected graphs.x
#' @return An igraph graph, with the \sQuote{`type`} vertex attribute set.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [make_full_graph()] for creating one-mode full graphs
#' @keywords graphs
#' @examples
#'
#' g <- make_full_bipartite_graph(2, 3)
#' g2 <- make_full_bipartite_graph(2, 3, directed = TRUE)
#' g3 <- make_full_bipartite_graph(2, 3, directed = TRUE, mode = "in")
#' g4 <- make_full_bipartite_graph(2, 3, directed = TRUE, mode = "all")
#'
#' @export
make_full_bipartite_graph <- function(n1, n2, directed = FALSE,
mode = c("all", "out", "in")) {
n1 <- as.numeric(n1)
n2 <- as.numeric(n2)
directed <- as.logical(directed)
mode1 <- switch(igraph.match.arg(mode),
"out" = 1,
"in" = 2,
"all" = 3,
"total" = 3
)
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_full_bipartite, n1, n2, as.logical(directed), mode1)
if (igraph_opt("add.params")) {
res$graph$name <- "Full bipartite graph"
res$n1 <- n1
res$n2 <- n2
res$mode <- mode
}
set_vertex_attr(res$graph, "type", value = res$types)
}
#' @rdname make_full_bipartite_graph
#' @param ... Passed to `make_full_bipartite_graph()`.
#' @export
full_bipartite_graph <- function(...) constructor_spec(make_full_bipartite_graph, ...)
## -----------------------------------------------------------------
#' Create a bipartite graph
#'
#' A bipartite graph has two kinds of vertices and connections are only allowed
#' between different kinds.
#'
#' Bipartite graphs have a `type` vertex attribute in igraph, this is
#' boolean and `FALSE` for the vertices of the first kind and `TRUE`
#' for vertices of the second kind.
#'
#' `make_bipartite_graph()` basically does three things. First it checks the
#' `edges` vector against the vertex `types`. Then it creates a graph
#' using the `edges` vector and finally it adds the `types` vector as
#' a vertex attribute called `type`. `edges` may contain strings as
#' vertex names; in this case, `types` must be a named vector that specifies
#' the type for each vertex name that occurs in `edges`.
#'
#' @param types A vector giving the vertex types. It will be coerced into
#' boolean. The length of the vector gives the number of vertices in the graph.
#' When the vector is a named vector, the names will be attached to the graph
#' as the `name` vertex attribute.
#' @param edges A vector giving the edges of the graph, the same way as for the
#' regular [make_graph()] function. It is checked that the edges indeed
#' connect vertices of different kind, according to the supplied `types`
#' vector. The vector may be a string vector if `types` is a named vector.
#' @param directed Whether to create a directed graph, boolean constant. Note
#' that by default undirected graphs are created, as this is more common for
#' bipartite graphs.
#' @return `make_bipartite_graph()` returns a bipartite igraph graph. In other
#' words, an igraph graph that has a vertex attribute named `type`.
#'
#' `is_bipartite()` returns a logical scalar.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [make_graph()] to create one-mode networks
#' @keywords graphs
#' @family bipartite
#' @examples
#'
#' g <- make_bipartite_graph(rep(0:1, length.out = 10), c(1:10))
#' print(g, v = TRUE)
#'
#' @export
make_bipartite_graph <- function(types, edges, directed = FALSE) {
vertex.names <- names(types)
if (is.character(edges)) {
if (is.null(vertex.names)) {
stop("`types` vector must be named when the edge vector contains strings")
}
edges <- match(edges, vertex.names)
if (any(is.na(edges))) {
stop("edge vector contains a vertex name that is not found in `types`")
}
}
types <- as.logical(types)
edges <- as.numeric(edges) - 1
directed <- as.logical(directed)
on.exit(.Call(R_igraph_finalizer))
res <- .Call(R_igraph_create_bipartite, types, edges, directed)
res <- set_vertex_attr(res, "type", value = types)
if (!is.null(vertex.names)) {
res <- set_vertex_attr(res, "name", value = vertex.names)
}
res
}
#' @rdname make_bipartite_graph
#' @param ... Passed to `make_bipartite_graph()`.
#' @export
bipartite_graph <- function(...) constructor_spec(make_bipartite_graph, ...)
## -----------------------------------------------------------------
#' Create a complete (full) citation graph
#'
#' `make_full_citation_graph()` creates a full citation graph. This is a
#' directed graph, where every `i->j` edge is present if and only if
#' \eqn{j<i}. If `directed=FALSE` then the graph is just a full graph.
#'
#' @param n The number of vertices.
#' @param directed Whether to create a directed graph.
#' @return An igraph graph.
#'
#' @family deterministic constructors
#' @export
#' @examples
#' print_all(make_full_citation_graph(10))
make_full_citation_graph <- function(n, directed = TRUE) {
# Argument checks
n <- as.numeric(n)
directed <- as.logical(directed)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_full_citation, n, directed)
res <- set_graph_attr(res, "name", "Full citation graph")
res
}
#' @rdname make_full_citation_graph
#' @param ... Passed to `make_full_citation_graph()`.
#' @export
full_citation_graph <- function(...) constructor_spec(make_full_citation_graph, ...)
## -----------------------------------------------------------------
#' Creating a graph from LCF notation
#'
#' LCF is short for Lederberg-Coxeter-Frucht, it is a concise notation for
#' 3-regular Hamiltonian graphs. It constists of three parameters, the number
#' of vertices in the graph, a list of shifts giving additional edges to a
#' cycle backbone and another integer giving how many times the shifts should
#' be performed. See <http://mathworld.wolfram.com/LCFNotation.html> for
#' details.
#'
#'
#' @aliases graph_from_lcf
#' @param n Integer, the number of vertices in the graph.
#' @param shifts Integer vector, the shifts.
#' @param repeats Integer constant, how many times to repeat the shifts.
#' @return A graph object.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @seealso [make_graph()] can create arbitrary graphs, see also the other
#' functions on the its manual page for creating special graphs.
#' @keywords graphs
#' @examples
#'
#' # This is the Franklin graph:
#' g1 <- graph_from_lcf(12, c(5, -5), 6)
#' g2 <- make_graph("Franklin")
#' isomorphic(g1, g2)
#' @export
#' @cdocs igraph_lcf_vector
graph_from_lcf <- lcf_vector_impl
## -----------------------------------------------------------------
#' Creating a graph from a given degree sequence, deterministically
#'
#' It is often useful to create a graph with given vertex degrees. This function
#' creates such a graph in a deterministic manner.
#'
#' Simple undirected graphs are constructed using the Havel-Hakimi algorithm
#' (undirected case), or the analogous Kleitman-Wang algorithm (directed case).
#' These algorithms work by choosing an arbitrary vertex and connecting all its
#' stubs to other vertices. This step is repeated until all degrees have been
#' connected up.
#'
#' The \sQuote{method} argument controls in which order the vertices are
#' selected during the course of the algorithm.
#'
#' The \dQuote{smallest} method selects the vertex with the smallest remaining
#' degree. The result is usually a graph with high negative degree assortativity.
#' In the undirected case, this method is guaranteed to generate a connected
#' graph, regardless of whether multi-edges are allowed, provided that a
#' connected realization exists. See Horvát and Modes (2021) for details.
#' In the directed case it tends to generate weakly connected graphs, but this
#' is not guaranteed. This is the default method.
#'
#' The \dQuote{largest} method selects the vertex with the largest remaining
#' degree. The result is usually a graph with high positive degree assortativity,
#' and is often disconnected.
#'
#' The \dQuote{index} method selects the vertices in order of their index.
#'
#' @param out.deg Numeric vector, the sequence of degrees (for undirected
#' graphs) or out-degrees (for directed graphs). For undirected graphs its sum
#' should be even. For directed graphs its sum should be the same as the sum of
#' `in.deg`.
#' @param in.deg For directed graph, the in-degree sequence. By default this is
#' `NULL` and an undirected graph is created.
#' @param method Character, the method for generating the graph; see below.
#' @param allowed.edge.types Character, specifies the types of allowed edges.
#' \dQuote{simple} allows simple graphs only (no loops, no multiple edges).
#' \dQuote{multiple} allows multiple edges but disallows loop.
#' \dQuote{loops} allows loop edges but disallows multiple edges (currently
#' unimplemented). \dQuote{all} allows all types of edges. The default is
#' \dQuote{simple}.
#' @return The new graph object.
#' @seealso [sample_degseq()] for a randomized variant that samples
#' from graphs with the given degree sequence.
#' @references V. Havel,
#' Poznámka o existenci konečných grafů (A remark on the existence of finite graphs),
#' Časopis pro pěstování matematiky 80, 477-480 (1955).
#' https://eudml.org/doc/19050
#'
#' S. L. Hakimi,
#' On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph,
#' Journal of the SIAM 10, 3 (1962).
#' \doi{10.1137/0111010}
#'
#' D. J. Kleitman and D. L. Wang,
#' Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors,
#' Discrete Mathematics 6, 1 (1973).
#' \doi{10.1016/0012-365X(73)90037-X}
#'
#' Sz. Horvát and C. D. Modes,
#' Connectedness matters: construction and exact random sampling of connected networks (2021).
#' \doi{10.1088/2632-072X/abced5}
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- realize_degseq(rep(2, 100))
#' degree(g)
#' is_simple(g)
#'
#' ## Exponential degree distribution, with high positive assortativity.
#' ## Loop and multiple edges are explicitly allowed.
#' ## Note that we correct the degree sequence if its sum is odd.
#' degs <- sample(1:100, 100, replace = TRUE, prob = exp(-0.5 * (1:100)))
#' if (sum(degs) %% 2 != 0) {
#' degs[1] <- degs[1] + 1
#' }
#' g4 <- realize_degseq(degs, method = "largest", allowed.edge.types = "all")
#' all(degree(g4) == degs)
#'
#' ## Power-law degree distribution, no loops allowed but multiple edges
#' ## are okay.
#' ## Note that we correct the degree sequence if its sum is odd.
#' degs <- sample(1:100, 100, replace = TRUE, prob = (1:100)^-2)
#' if (sum(degs) %% 2 != 0) {
#' degs[1] <- degs[1] + 1
#' }
#' g5 <- realize_degseq(degs, allowed.edge.types = "multi")
#' all(degree(g5) == degs)
#' @cdocs igraph_realize_degree_sequence
realize_degseq <- realize_degree_sequence_impl
#' Creating a bipartite graph from two degree sequences, deterministically
#'
#' @description
#' `r lifecycle::badge("experimental")`
#'
#' Constructs a bipartite graph from the degree sequences of its partitions,
#' if one exists. This function uses a Havel-Hakimi style construction
#' algorithm.
#'
#' @details
#' The \sQuote{method} argument controls in which order the vertices are
#' selected during the course of the algorithm.
#'
#' The \dQuote{smallest} method selects the vertex with the smallest remaining
#' degree, from either partition. The result is usually a graph with high
#' negative degree assortativity. In the undirected case, this method is
#' guaranteed to generate a connected graph, regardless of whether multi-edges
#' are allowed, provided that a connected realization exists. This is the
#' default method.
#'
#' The \dQuote{largest} method selects the vertex with the largest remaining
#' degree. The result is usually a graph with high positive degree
#' assortativity, and is often disconnected.
#'
#' The \dQuote{index} method selects the vertices in order of their index.
#'
#' @return The new graph object.
#' @param degrees1 The degrees of the first partition.
#' @param degrees2 The degrees of the second partition.
#' @param allowed.edge.types Character, specifies the types of allowed edges.
#' \dQuote{simple} allows simple graphs only (no multiple edges).
#' \dQuote{multiple} allows multiple edges.
#' @param method Character, the method for generating the graph; see below.
#' @inheritParams rlang::args_dots_empty
#' @seealso [realize_degseq()] to create a not necessarily bipartite graph.
#' @export
#' @keywords graphs
#' @examples
#' g <- realize_bipartite_degseq(c(3, 3, 2, 1, 1), c(2, 2, 2, 2, 2))
#' degree(g)
#' @cdocs igraph_realize_bipartite_degree_sequence
realize_bipartite_degseq <- function(degrees1, degrees2, ...,
allowed.edge.types = c("simple", "multiple"),
method = c("smallest", "largest", "index")) {
check_dots_empty()
allowed.edge.types <- igraph.match.arg(allowed.edge.types)
method <- igraph.match.arg(method)
g <- realize_bipartite_degree_sequence_impl(degrees1 = degrees1, degrees2 = degrees2,
allowed.edge.types = allowed.edge.types,
method = method)
V(g)$type <- c(rep(TRUE, length(degrees1)), rep(FALSE, length(degrees2)))
g
}
|