1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
|
## -----------------------------------------------------------------------
##
## IGraph R package
## Copyright (C) 2014 Gabor Csardi <csardi.gabor@gmail.com>
## 334 Harvard street, Cambridge, MA 02139 USA
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
## 02110-1301 USA
##
## -----------------------------------------------------------------------
#' Compute local scan statistics on graphs
#'
#' The scan statistic is a summary of the locality statistics that is
#' computed from the local neighborhood of each vertex. The
#' `local_scan()` function computes the local statistics for each vertex
#' for a given neighborhood size and the statistic function.
#'
#' See the given reference below for the details on the local scan
#' statistics.
#'
#' `local_scan()` calculates exact local scan statistics.
#'
#' If `graph.them` is `NULL`, then `local_scan()` computes the
#' \sQuote{us} variant of the scan statistics. Otherwise,
#' `graph.them` should be an igraph object and the \sQuote{them}
#' variant is computed using `graph.us` to extract the neighborhood
#' information, and applying `FUN` on these neighborhoods in
#' `graph.them`.
#'
#' @param graph.us,graph An igraph object, the graph for which the scan
#' statistics will be computed
#' @param graph.them An igraph object or `NULL`, if not `NULL`,
#' then the \sQuote{them} statistics is computed, i.e. the neighborhoods
#' calculated from `graph.us` are evaluated on `graph.them`.
#' @param k An integer scalar, the size of the local neighborhood for each
#' vertex. Should be non-negative.
#' @param FUN Character, a function name, or a function object itself, for
#' computing the local statistic in each neighborhood. If `NULL`(the
#' default value), `ecount()` is used for unweighted graphs (if
#' `weighted=FALSE`) and a function that computes the sum of edge
#' weights is used for weighted graphs (if `weighted=TRUE`). This
#' argument is ignored if `k` is zero.
#' @param weighted Logical scalar, TRUE if the edge weights should be used
#' for computation of the scan statistic. If TRUE, the graph should be
#' weighted. Note that this argument is ignored if `FUN` is not
#' `NULL`, `"ecount"` and `"sumweights"`.
#' @param mode Character scalar, the kind of neighborhoods to use for the
#' calculation. One of \sQuote{`out`}, \sQuote{`in`},
#' \sQuote{`all`} or \sQuote{`total`}. This argument is ignored
#' for undirected graphs.
#' @param neighborhoods A list of neighborhoods, one for each vertex, or
#' `NULL`. If it is not `NULL`, then the function is evaluated on
#' the induced subgraphs specified by these neighborhoods.
#'
#' In theory this could be useful if the same `graph.us` graph is used
#' for multiple `graph.them` arguments. Then the neighborhoods can be
#' calculated on `graph.us` and used with multiple graphs. In
#' practice, this is currently slower than simply using `graph.them`
#' multiple times.
#' @param \dots Arguments passed to `FUN`, the function that computes
#' the local statistics.
#' @return For `local_scan()` typically a numeric vector containing the
#' computed local statistics for each vertex. In general a list or vector
#' of objects, as returned by `FUN`.
#'
#' @references Priebe, C. E., Conroy, J. M., Marchette, D. J., Park,
#' Y. (2005). Scan Statistics on Enron Graphs. *Computational and
#' Mathematical Organization Theory*.
#'
#' @family scan statistics
#' @export
#' @examples
#' pair <- sample_correlated_gnp_pair(n = 10^3, corr = 0.8, p = 0.1)
#' local_0_us <- local_scan(graph.us = pair$graph1, k = 0)
#' local_1_us <- local_scan(graph.us = pair$graph1, k = 1)
#'
#' local_0_them <- local_scan(
#' graph.us = pair$graph1,
#' graph.them = pair$graph2, k = 0
#' )
#' local_1_them <- local_scan(
#' graph.us = pair$graph1,
#' graph.them = pair$graph2, k = 1
#' )
#'
#' Neigh_1 <- neighborhood(pair$graph1, order = 1)
#' local_1_them_nhood <- local_scan(
#' graph.us = pair$graph1,
#' graph.them = pair$graph2,
#' neighborhoods = Neigh_1
#' )
local_scan <- function(graph.us, graph.them = NULL, k = 1, FUN = NULL,
weighted = FALSE, mode = c("out", "in", "all"),
neighborhoods = NULL, ...) {
## Must be igraph object
stopifnot(is_igraph(graph.us))
## Must be NULL or igraph object
stopifnot(is.null(graph.them) || is_igraph(graph.them))
## If given, number of vertices must match
stopifnot(is.null(graph.them) || vcount(graph.them) == vcount(graph.us))
## k must be non-negative integer
stopifnot(length(k) == 1, k >= 0, trunc(k) == k)
## Must be NULL or a function
stopifnot(is.null(FUN) || is.function(FUN) ||
(is.character(FUN) && length(FUN) == 1))
## Logical scalar
stopifnot(is.logical(weighted), length(weighted) == 1)
## If weighted, then the graph(s) must be weighted
stopifnot(!weighted || (is_weighted(graph.us) && (is.null(graph.them) ||
is_weighted(graph.them))))
## Check if 'neighborhoods' makes sense
if (!is.null(neighborhoods)) {
stopifnot(is.list(neighborhoods))
stopifnot(length(neighborhoods) == vcount(graph.us))
}
if (!is.null(neighborhoods) && k == 0) {
cli::cli_warn("{.arg neighborhoods} ignored for {.code k=0}.")
neighborhoods <- NULL
}
## Check mode argument
mode <- igraph.match.arg(mode)
cmode <- switch(mode,
out = 1,
`in` = 2,
all = 3,
total = 3
)
sumweights <- function(g) sum(E(g)$weight)
if (is.null(FUN)) {
FUN <- if (weighted) "sumweights" else "ecount"
}
res <- if (is.null(graph.them)) {
if (!is.null(neighborhoods)) {
if (is.character(FUN) && FUN %in% c("ecount", "sumweights")) {
neighborhoods <- lapply(neighborhoods, function(x) {
as.numeric(x) - 1
})
on.exit(.Call(R_igraph_finalizer))
.Call(
R_igraph_local_scan_neighborhood_ecount, graph.us,
if (weighted) as.numeric(E(graph.us)$weight) else NULL,
neighborhoods
)
} else {
sapply(
lapply(neighborhoods, induced.subgraph, graph = graph.us),
FUN, ...
)
}
} else {
## scan-0
if (k == 0) {
on.exit(.Call(R_igraph_finalizer))
.Call(
R_igraph_local_scan_0, graph.us,
if (weighted) as.numeric(E(graph.us)$weight) else NULL, cmode
)
## scan-1, ecount
} else if (k == 1 && is.character(FUN) &&
FUN %in% c("ecount", "sumweights")) {
on.exit(.Call(R_igraph_finalizer))
.Call(
R_igraph_local_scan_1_ecount, graph.us,
if (weighted) as.numeric(E(graph.us)$weight) else NULL, cmode
)
## scan-k, ecount
} else if (is.character(FUN) && FUN %in% c("ecount", "sumweights")) {
on.exit(.Call(R_igraph_finalizer))
.Call(
R_igraph_local_scan_k_ecount, graph.us, as.numeric(k),
if (weighted) as.numeric(E(graph.us)$weight) else NULL, cmode
)
## General
} else {
sapply(
make_ego_graph(graph.us, order = k, V(graph.us), mode = mode),
FUN, ...
)
}
}
} else {
if (!is.null(neighborhoods)) {
neighborhoods <- lapply(neighborhoods, as.vector)
if (is.character(FUN) && FUN %in% c("ecount", "wumweights")) {
neighborhoods <- lapply(neighborhoods, function(x) {
as.numeric(x) - 1
})
on.exit(.Call(R_igraph_finalizer))
.Call(
R_igraph_local_scan_neighborhood_ecount, graph.them,
if (weighted) as.numeric(E(graph.them)$weight) else NULL,
neighborhoods
)
} else {
sapply(
lapply(neighborhoods, induced.subgraph, graph = graph.them),
FUN, ...
)
}
} else {
## scan-0
if (k == 0) {
on.exit(.Call(R_igraph_finalizer))
.Call(
R_igraph_local_scan_0_them, graph.us, graph.them,
if (weighted) as.numeric(E(graph.them)$weight) else NULL,
cmode
)
## scan-1, ecount
} else if (k == 1 && is.character(FUN) &&
FUN %in% c("ecount", "sumweights")) {
on.exit(.Call(R_igraph_finalizer))
.Call(
R_igraph_local_scan_1_ecount_them, graph.us, graph.them,
if (weighted) as.numeric(E(graph.them)$weight) else NULL,
cmode
)
## scan-k, ecount
} else if (is.character(FUN) && FUN %in% c("ecount", "sumweights")) {
on.exit(.Call(R_igraph_finalizer))
.Call(
R_igraph_local_scan_k_ecount_them, graph.us, graph.them,
as.numeric(k),
if (weighted) as.numeric(E(graph.them)$weight) else NULL,
cmode
)
## general case
} else {
sapply(V(graph.us), function(x) {
vei <- neighborhood(graph.us, order = k, nodes = x, mode = mode)[[1]]
if (!is.function(FUN)) {
FUN <- getFunction(FUN, where = environment())
}
FUN(induced_subgraph(graph.them, vei), ...)
})
}
}
}
res <- as.numeric(res)
if (igraph_opt("add.vertex.names") && is_named(graph.us)) {
names(res) <- V(graph.us)$name
}
res
}
#' Scan statistics on a time series of graphs
#'
#' Calculate scan statistics on a time series of graphs.
#' This is done by calculating the local scan statistics for
#' each graph and each vertex, and then normalizing across the
#' vertices and across the time steps.
#'
#' @param graphs A list of igraph graph objects. They must be all directed
#' or all undirected and they must have the same number of vertices.
#' @param tau The number of previous time steps to consider for the
#' time-dependent normalization for individual vertices. In other words,
#' the current locality statistics of each vertex will be compared to this
#' many previous time steps of the same vertex to decide whether it is
#' significantly larger.
#' @param ell The number of previous time steps to consider
#' for the aggregated scan statistics. This is essentially a smoothing
#' parameter.
#' @param locality Whether to calculate the \sQuote{us} or \sQuote{them}
#' statistics.
#' @param ... Extra arguments are passed to [local_scan()].
#' @return A list with entries:
#' \item{stat}{The scan statistics in each time step. It is `NA`
#' for the initial `tau + ell` time steps.}
#' \item{arg_max_v}{The (numeric) vertex ids for the vertex with
#' the largest locality statistics, at each time step. It is `NA`
#' for the initial `tau + ell` time steps.}
#'
#' @family scan statistics
#' @export
#' @examples
#' ## Generate a bunch of SBMs, with the last one being different
#' num_t <- 20
#' block_sizes <- c(10, 5, 5)
#' p_ij <- list(p = 0.1, h = 0.9, q = 0.9)
#'
#' P0 <- matrix(p_ij$p, 3, 3)
#' P0[2, 2] <- p_ij$h
#' PA <- P0
#' PA[3, 3] <- p_ij$q
#' num_v <- sum(block_sizes)
#'
#' tsg <- replicate(num_t - 1, P0, simplify = FALSE) %>%
#' append(list(PA)) %>%
#' lapply(sample_sbm, n = num_v, block.sizes = block_sizes, directed = TRUE)
#'
#' scan_stat(graphs = tsg, k = 1, tau = 4, ell = 2)
#' scan_stat(graphs = tsg, locality = "them", k = 1, tau = 4, ell = 2)
scan_stat <- function(graphs, tau = 1, ell = 0,
locality = c("us", "them"), ...) {
## List of igraph graphs, all have same directedness and
## weightedness
stopifnot(
is.list(graphs),
length(graphs) > 0,
all(sapply(graphs, is_igraph)),
length(unique(sapply(graphs, is_directed))) == 1,
length(unique(sapply(graphs, gorder))) == 1
)
## tau must the a non-negative integer
stopifnot(length(tau) == 1, tau >= 0, trunc(tau) == tau)
## ell must the a non-negative integer
stopifnot(length(ell) == 1, ell >= 0, trunc(ell) == ell)
locality <- igraph.match.arg(locality)
## number of time steps and number of vertices
maxTime <- length(graphs)
nVertex <- vcount(graphs[[1]])
if (locality == "us") {
## Underlying locality stat is us
lstatPsi <- matrix(0, nrow = nVertex, ncol = maxTime)
for (i in 1:maxTime) {
## locality statistics \Psi over all vertices at t=i
lstatPsi[, i] <- local_scan(graphs[[i]], ...)
}
lstat <- lstatPsi
} else if (locality == "them") {
## Underlying locality stat is \Phi
lstatPhi <- array(0, dim = c(nVertex, (tau + 1), maxTime))
for (i in 1:maxTime) {
if (i > tau) {
## graph to trace k-th order neighborhood
g <- graphs[[i]]
for (j in 0:tau) {
## locality statistics \Phi over all vertices with t=i and t'=i-tau+j
lstatPhi[, (j + 1), i] <- local_scan(
graph.us = graphs[[i]],
graph.them = graphs[[i - tau + j]],
...
)
}
}
}
lstat <- lstatPhi
}
## vertex-dependent and temporal normalization
scan_temp_norm(
scan_vertex_norm(lstat, tau),
tau,
ell
)
}
#' @importFrom stats sd
scan_vertex_norm <- function(input_stat, tau) {
if (is.matrix(input_stat)) {
n <- nrow(input_stat)
nbins <- ncol(input_stat)
nstat <- matrix(0, n, nbins)
for (i in 1:nbins) {
if (i > tau) {
if (tau == 0) {
nstat[, i] <- input_stat[, i]
} else {
muv <- apply(as.matrix(input_stat[, (i - tau):(i - 1)]), 1, mean)
sdv <- apply(as.matrix(input_stat[, (i - tau):(i - 1)]), 1, sd)
sdv[is.na(sdv)] <- 1
nstat[, i] <- (input_stat[, i] - muv) / pmax(sdv, 1)
}
}
}
} else {
dd <- dim(input_stat)
n <- dd[1]
nbins <- dd[3]
nstat <- matrix(0, n, nbins)
for (i in 1:nbins) {
if (i > tau) {
if (tau == 0) {
nstat[, i] <- input_stat[, (tau + 1), i]
} else {
muv <- apply(as.matrix(input_stat[, (1:tau), i]), 1, mean)
sdv <- apply(as.matrix(input_stat[, (1:tau), i]), 1, sd)
sdv[is.na(sdv)] <- 1
nstat[, i] <- (input_stat[, (tau + 1), i] - muv) / pmax(sdv, 1)
}
}
}
}
return(nstat)
}
#' @importFrom stats sd
scan_temp_norm <- function(stat, tau, ell) {
maxTime <- ncol(stat)
Mtilde <- apply(stat, 2, max)
argmaxV <- apply(stat, 2, which.max)
if (ell == 0) {
res <- list(stat = Mtilde, arg_max_v = argmaxV)
} else if (ell == 1) {
res <- list(stat = Mtilde - c(NA, Mtilde[-maxTime]), arg_max_v = argmaxV)
} else {
muMtilde <- rep(0, maxTime)
sdMtilde <- rep(1, maxTime)
for (i in (ell + 1):maxTime) {
muMtilde[i] <- mean(Mtilde[(i - ell):(i - 1)])
sdMtilde[i] <- sd(Mtilde[(i - ell):(i - 1)])
}
sstat <- (Mtilde - muMtilde) / pmax(sdMtilde, 1)
res <- list(stat = sstat, arg_max_v = argmaxV)
}
res$stat[seq_len(tau + ell)] <- NA
res$arg_max_v[seq_len(tau + ell)] <- NA
res
}
|