1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
|
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>igraph (R interface)</title>
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
var i, h, a;
for (i = 0; i < hs.length; i++) {
h = hs[i];
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
a = h.attributes;
while (a.length > 0) h.removeAttribute(a[0].name);
}
});
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
html { -webkit-text-size-adjust: 100%; }
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; }
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.at { color: #7d9029; }
code span.bn { color: #40a070; }
code span.bu { color: #008000; }
code span.cf { color: #007020; font-weight: bold; }
code span.ch { color: #4070a0; }
code span.cn { color: #880000; }
code span.co { color: #60a0b0; font-style: italic; }
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.do { color: #ba2121; font-style: italic; }
code span.dt { color: #902000; }
code span.dv { color: #40a070; }
code span.er { color: #ff0000; font-weight: bold; }
code span.ex { }
code span.fl { color: #40a070; }
code span.fu { color: #06287e; }
code span.im { color: #008000; font-weight: bold; }
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.kw { color: #007020; font-weight: bold; }
code span.op { color: #666666; }
code span.ot { color: #007020; }
code span.pp { color: #bc7a00; }
code span.sc { color: #4070a0; }
code span.ss { color: #bb6688; }
code span.st { color: #4070a0; }
code span.va { color: #19177c; }
code span.vs { color: #4070a0; }
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
var j = 0;
while (j < rules.length) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
j++;
continue;
}
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') {
j++;
continue;
}
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap;
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }
code > span.kw { color: #555; font-weight: bold; }
code > span.dt { color: #902000; }
code > span.dv { color: #40a070; }
code > span.bn { color: #d14; }
code > span.fl { color: #d14; }
code > span.ch { color: #d14; }
code > span.st { color: #d14; }
code > span.co { color: #888888; font-style: italic; }
code > span.ot { color: #007020; }
code > span.al { color: #ff0000; font-weight: bold; }
code > span.fu { color: #900; font-weight: bold; }
code > span.er { color: #a61717; background-color: #e3d2d2; }
</style>
</head>
<body>
<h1 class="title toc-ignore">igraph (R interface)</h1>
<div id="TOC">
<ul>
<li><a href="#installation" id="toc-installation">Installation</a></li>
<li><a href="#usage" id="toc-usage">Usage</a></li>
<li><a href="#creating-a-graph" id="toc-creating-a-graph">Creating a
graph</a></li>
<li><a href="#vertex-and-edge-ids" id="toc-vertex-and-edge-ids">Vertex
and edge IDs</a></li>
<li><a href="#addingdeleting-vertices-and-edges" id="toc-addingdeleting-vertices-and-edges">Adding/deleting vertices and
edges</a></li>
<li><a href="#constructing-graphs" id="toc-constructing-graphs">Constructing graphs</a></li>
<li><a href="#setting-and-retrieving-attributes" id="toc-setting-and-retrieving-attributes">Setting and retrieving
attributes</a></li>
<li><a href="#structural-properties-of-graphs" id="toc-structural-properties-of-graphs">Structural properties of
graphs</a></li>
<li><a href="#querying-vertices-and-edges-based-on-attributes" id="toc-querying-vertices-and-edges-based-on-attributes">Querying
vertices and edges based on attributes</a>
<ul>
<li><a href="#selecting-vertices" id="toc-selecting-vertices">Selecting
vertices</a></li>
<li><a href="#selecting-edges" id="toc-selecting-edges">Selecting
edges</a></li>
</ul></li>
<li><a href="#treating-a-graph-as-an-adjacency-matrix" id="toc-treating-a-graph-as-an-adjacency-matrix">Treating a graph as an
adjacency matrix</a></li>
<li><a href="#layouts-and-plotting" id="toc-layouts-and-plotting">Layouts and plotting</a>
<ul>
<li><a href="#layout-algorithms" id="toc-layout-algorithms">Layout
algorithms</a></li>
<li><a href="#drawing-a-graph-using-a-layout" id="toc-drawing-a-graph-using-a-layout">Drawing a graph using a
layout</a></li>
<li><a href="#vertex-attributes-controlling-graph-plots" id="toc-vertex-attributes-controlling-graph-plots">Vertex attributes
controlling graph plots</a></li>
<li><a href="#edge-attributes-controlling-graph-plots" id="toc-edge-attributes-controlling-graph-plots">Edge attributes
controlling graph plots</a></li>
<li><a href="#generic-arguments-of-plot" id="toc-generic-arguments-of-plot">Generic arguments of
<code>plot()</code></a></li>
</ul></li>
<li><a href="#igraph-and-the-outside-world" id="toc-igraph-and-the-outside-world">igraph and the outside
world</a></li>
<li><a href="#where-to-go-next" id="toc-where-to-go-next">Where to go
next</a></li>
<li><a href="#session-info" id="toc-session-info">Session info</a></li>
</ul>
</div>
<p><code>igraph</code> is a fast and open source library for the
analysis of graphs or networks. The library consists of a core written
in C and bindings for high-level languages including <a href="https://r.igraph.org/">R</a>, <a href="https://python.igraph.org/en/stable/">Python</a>, and <a href="http://szhorvat.net/pelican/igraphm-a-mathematica-interface-for-igraph.html">Mathematica</a>.
This vignette aims to give you an overview of the functions available in
the R interface of <code>igraph</code>. For detailed function by
function API documentation, check out <a href="https://r.igraph.org/reference/" class="uri">https://r.igraph.org/reference/</a>.</p>
<hr />
<p><strong>NOTE:</strong> Throughout this tutorial, we will use words
<code>graph</code> and <code>network</code> as synonyms, and also
<code>vertex</code> or <code>node</code> as synonyms.</p>
<hr />
<div id="installation" class="section level2">
<h2>Installation</h2>
<p>To install the library from CRAN, use:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"igraph"</span>)</span></code></pre></div>
<p>More details on dependencies, requirements, and troubleshooting on
installation are found on the main <a href="https://r.igraph.org/">documentation page</a>.</p>
</div>
<div id="usage" class="section level2">
<h2>Usage</h2>
<p>To use <code>igraph</code> in your R code, you must first load the
library:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a><span class="fu">library</span>(<span class="st">"igraph"</span>)</span></code></pre></div>
<pre><code>##
## Attaching package: 'igraph'</code></pre>
<pre><code>## The following objects are masked from 'package:stats':
##
## decompose, spectrum</code></pre>
<pre><code>## The following object is masked from 'package:base':
##
## union</code></pre>
<p>Now you have all <code>igraph</code> functions available.</p>
</div>
<div id="creating-a-graph" class="section level2">
<h2>Creating a graph</h2>
<p><code>igraph</code> offers many ways to create a graph. The simplest
one is the function <code>make_empty_graph()</code>:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a>g <span class="ot"><-</span> <span class="fu">make_empty_graph</span>()</span></code></pre></div>
<p>The most common way to create a graph is <code>make_graph()</code>,
which constructs a network based on specified edges. For example, to
make a graph with 10 nodes (numbered <code>1</code> to <code>10</code>)
and two edges connecting nodes <code>1-2</code> and
<code>1-5</code>:</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a>g <span class="ot"><-</span> <span class="fu">make_graph</span>(<span class="at">edges =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">1</span>, <span class="dv">5</span>), <span class="at">n =</span> <span class="dv">10</span>, <span class="at">directed =</span> <span class="cn">FALSE</span>)</span></code></pre></div>
<p>Starting from igraph 0.8.0, you can also include literal here, via
igraph’s formula notation. In this case, the first term of the formula
has to start with a <code>~</code> character, just like regular formulae
in R. The expressions consist of vertex names and edge operators. An
edge operator is a sequence of <code>-</code> and <code>+</code>
characters, the former is for the edges and the latter is used for arrow
heads. The edges can be arbitrarily long, that is to say, you may use as
many <code>-</code> characters to “draw” them as you like. If all edge
operators consist of only <code>-</code> characters then the graph will
be undirected, whereas a single <code>+</code> character implies a
directed graph: that is to say to create the same graph as above:</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a>g <span class="ot"><-</span> <span class="fu">make_graph</span>(<span class="sc">~</span> <span class="dv">1</span><span class="sc">--</span><span class="dv">2</span>, <span class="dv">1</span><span class="sc">--</span><span class="dv">5</span>, <span class="dv">3</span>, <span class="dv">4</span>, <span class="dv">5</span>, <span class="dv">6</span>, <span class="dv">7</span>, <span class="dv">8</span>, <span class="dv">9</span>, <span class="dv">10</span>)</span></code></pre></div>
<p>We can print the graph to get a summary of its nodes and edges:</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a>g</span></code></pre></div>
<pre><code>## IGRAPH a256a25 UN-- 10 2 --
## + attr: name (v/c)
## + edges from a256a25 (vertex names):
## [1] 1--2 1--5</code></pre>
<p>This means: <strong>U</strong>ndirected <strong>N</strong>amed graph
with <strong>10</strong> vertices and <strong>2</strong> edges, with the
exact edges listed out. If the graph has a <code>[name]</code>
attribute, it is printed as well.</p>
<hr />
<p><strong>NOTE</strong>: <code>summary()</code> does not list the
edges, which is convenient for large graphs with millions of edges:</p>
<hr />
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" tabindex="-1"></a><span class="fu">summary</span>(g)</span></code></pre></div>
<pre><code>## IGRAPH a256a25 UN-- 10 2 --
## + attr: name (v/c)</code></pre>
<p>The same function <code>make_graph()</code> can create some notable
graphs by just specifying their name. For example you can create the
graph that represents the social network of Zachary’s karate club, that
shows the friendship between 34 members of a karate club at a US
university in the 1970s:</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" tabindex="-1"></a>g <span class="ot"><-</span> <span class="fu">make_graph</span>(<span class="st">"Zachary"</span>)</span></code></pre></div>
<p>To visualize a graph you can use <code>plot()</code>:</p>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" tabindex="-1"></a><span class="fu">plot</span>(g)</span></code></pre></div>
<p><img role="img" src="" /><!-- --></p>
<p>A more detailed description of plotting options is provided later on
in this tutorial.</p>
</div>
<div id="vertex-and-edge-ids" class="section level2">
<h2>Vertex and edge IDs</h2>
<p>Vertices and edges have numerical vertex IDs in igraph. Vertex IDs
are always consecutive and they start with 1. For a graph with n
vertices the vertex IDs are always between 1 and n. If some operation
changes the number of vertices in the graphs, for instance a subgraph is
created via <code>induced_subgraph()</code>, then the vertices are
renumbered to satisfy this criterion.</p>
<p>The same is true for the edges as well: edge IDs are always between 1
and m, the total number of edges in the graph.</p>
<hr />
<p><strong>NOTE</strong>: If you are familiar with the C core or the <a href="https://python.igraph.org/en/stable/">Python</a> interface of
<code>igraph</code>, you might have noticed that in those languages
vertex and edge IDs start from 0. In the R interface, both start from 1
instead, to keep consistent with the convention in each language.</p>
<hr />
<p>In addition to IDs, vertices and edges can be assigned a name and
other attributes. That makes it easier to track them whenever the graph
is altered. Examples of this pattern are shown later on in this
tutorial.</p>
</div>
<div id="addingdeleting-vertices-and-edges" class="section level2">
<h2>Adding/deleting vertices and edges</h2>
<p>Let’s continue working with the Karate club graph. To add one or more
vertices to an existing graph, use <code>add_vertices()</code>:</p>
<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" tabindex="-1"></a>g <span class="ot"><-</span> <span class="fu">add_vertices</span>(g, <span class="dv">3</span>)</span></code></pre></div>
<p>Similarly, to add edges you can use <code>add_edges()</code>:</p>
<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" tabindex="-1"></a>g <span class="ot"><-</span> <span class="fu">add_edges</span>(g, <span class="at">edges =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">35</span>, <span class="dv">1</span>, <span class="dv">36</span>, <span class="dv">34</span>, <span class="dv">37</span>))</span></code></pre></div>
<p>Edges are added by specifying the source and target vertex IDs for
each edge. This call added three edges, one connecting vertices
<code>1</code> and <code>35</code>, one connecting vertices
<code>1</code> and <code>36</code>, and one connecting vertices
<code>34</code> and <code>37</code>.</p>
<p>In addition to the <code>add_vertices()</code> and
<code>add_edges()</code> functions, the plus operator can be used to add
vertices or edges to graph. The actual operation that is performed
depends on the type of the right hand side argument:</p>
<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" tabindex="-1"></a>g <span class="ot"><-</span> g <span class="sc">+</span> <span class="fu">edges</span>(<span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">35</span>, <span class="dv">1</span>, <span class="dv">36</span>, <span class="dv">34</span>, <span class="dv">37</span>))</span></code></pre></div>
<p>You can add a single vertex/edge at a time using
<code>add_vertex()</code> and <code>add_edge()</code> (singular).</p>
<p><strong>Warning</strong>: If you need to add multiple edges to a
graph, it is much more efficient to call <code>add_edges()</code> once
rather than repeatedly calling <code>add_edge()</code> with a single new
edge. The same applies when deleting edges and vertices.</p>
<p>If you try to add edges to vertices with invalid IDs (i.e., you try
to add an edge to vertex <code>38</code> when the graph has only 37
vertices), <code>igraph</code> shows an error:</p>
<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" tabindex="-1"></a>g <span class="ot"><-</span> <span class="fu">add_edges</span>(g, <span class="at">edges =</span> <span class="fu">c</span>(<span class="dv">38</span>, <span class="dv">37</span>))</span></code></pre></div>
<pre><code>## Error in add_edges(g, edges = c(38, 37)): At vendor/cigraph/src/graph/type_indexededgelist.c:261 : Out-of-range vertex IDs when adding edges. Invalid vertex ID</code></pre>
<p>Let us add some more vertices and edges to our graph. In
<code>igraph</code> we can use the <code>magrittr</code> package, which
provides a mechanism for chaining commands with the operator
<code>%>%</code>:</p>
<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" tabindex="-1"></a>g <span class="ot"><-</span> g <span class="sc">%>%</span></span>
<span id="cb20-2"><a href="#cb20-2" tabindex="-1"></a> <span class="fu">add_edges</span>(<span class="at">edges =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">34</span>)) <span class="sc">%>%</span></span>
<span id="cb20-3"><a href="#cb20-3" tabindex="-1"></a> <span class="fu">add_vertices</span>(<span class="dv">3</span>) <span class="sc">%>%</span></span>
<span id="cb20-4"><a href="#cb20-4" tabindex="-1"></a> <span class="fu">add_edges</span>(<span class="at">edges =</span> <span class="fu">c</span>(<span class="dv">38</span>, <span class="dv">39</span>, <span class="dv">39</span>, <span class="dv">40</span>, <span class="dv">40</span>, <span class="dv">38</span>, <span class="dv">40</span>, <span class="dv">37</span>))</span>
<span id="cb20-5"><a href="#cb20-5" tabindex="-1"></a>g</span></code></pre></div>
<pre><code>## IGRAPH 650f453 U--- 40 86 -- Zachary
## + attr: name (g/c)
## + edges from 650f453:
## [1] 1-- 2 1-- 3 1-- 4 1-- 5 1-- 6 1-- 7 1-- 8 1-- 9 1--11 1--12
## [11] 1--13 1--14 1--18 1--20 1--22 1--32 2-- 3 2-- 4 2-- 8 2--14
## [21] 2--18 2--20 2--22 2--31 3-- 4 3-- 8 3--28 3--29 3--33 3--10
## [31] 3-- 9 3--14 4-- 8 4--13 4--14 5-- 7 5--11 6-- 7 6--11 6--17
## [41] 7--17 9--31 9--33 9--34 10--34 14--34 15--33 15--34 16--33 16--34
## [51] 19--33 19--34 20--34 21--33 21--34 23--33 23--34 24--26 24--28 24--33
## [61] 24--34 24--30 25--26 25--28 25--32 26--32 27--30 27--34 28--34 29--32
## [71] 29--34 30--33 30--34 31--33 31--34 32--33 32--34 33--34 1--35 1--36
## + ... omitted several edges</code></pre>
<p>We now have an undirected graph with 40 vertices and 86 edges. Vertex
and edge IDs are always <em>contiguous</em>, so if you delete a vertex
all subsequent vertices will be renumbered. When a vertex is renumbered,
edges are <strong>not</strong> renumbered, but their source and target
vertices will be. Use <code>delete_vertices()</code> and
<code>delete_edges()</code> to perform these operations. For instance,
to delete the edge connecting vertices <code>1-34</code>, get its ID and
then delete it:</p>
<div class="sourceCode" id="cb22"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" tabindex="-1"></a>edge_id_to_delete <span class="ot"><-</span> <span class="fu">get_edge_ids</span>(g, <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">34</span>))</span>
<span id="cb22-2"><a href="#cb22-2" tabindex="-1"></a>edge_id_to_delete</span></code></pre></div>
<pre><code>## [1] 82</code></pre>
<div class="sourceCode" id="cb24"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" tabindex="-1"></a>g <span class="ot"><-</span> <span class="fu">delete_edges</span>(g, edge_id_to_delete)</span></code></pre></div>
<p>As an example, to create a broken ring:</p>
<div class="sourceCode" id="cb25"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1" tabindex="-1"></a>g <span class="ot"><-</span> <span class="fu">make_ring</span>(<span class="dv">10</span>) <span class="sc">%>%</span> <span class="fu">delete_edges</span>(<span class="st">"10|1"</span>)</span>
<span id="cb25-2"><a href="#cb25-2" tabindex="-1"></a><span class="fu">plot</span>(g)</span></code></pre></div>
<p><img role="img" src="" /><!-- --></p>
<p>The example above shows that you can also refer to edges with strings
containing the IDs of the source and target vertices, connected by a
pipe symbol <code>|</code>. <code>"10|1"</code> in the above example
means the edge that connects vertex 10 to vertex 1. Of course you can
also use the edge IDs directly, or retrieve them with the
<code>get_edge_ids()</code> function:</p>
<div class="sourceCode" id="cb26"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1" tabindex="-1"></a>g <span class="ot"><-</span> <span class="fu">make_ring</span>(<span class="dv">5</span>)</span>
<span id="cb26-2"><a href="#cb26-2" tabindex="-1"></a>g <span class="ot"><-</span> <span class="fu">delete_edges</span>(g, <span class="fu">get_edge_ids</span>(g, <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">5</span>, <span class="dv">4</span>, <span class="dv">5</span>)))</span>
<span id="cb26-3"><a href="#cb26-3" tabindex="-1"></a><span class="fu">plot</span>(g)</span></code></pre></div>
<p><img role="img" src="" /><!-- --></p>
<p>As another example, let’s make a chordal graph. Remember that a graph
is chordal (or triangulated) if each of its cycles of four or more nodes
has a chord, which is an edge joining two nodes that are not adjacent in
the cycle. First, let’s create the initial graph using
<code>graph_from_literal()</code>:</p>
<div class="sourceCode" id="cb27"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1" tabindex="-1"></a>g1 <span class="ot"><-</span> <span class="fu">graph_from_literal</span>(</span>
<span id="cb27-2"><a href="#cb27-2" tabindex="-1"></a> A <span class="sc">-</span> B<span class="sc">:</span>C<span class="sc">:</span>I, B <span class="sc">-</span> A<span class="sc">:</span>C<span class="sc">:</span>D, </span>
<span id="cb27-3"><a href="#cb27-3" tabindex="-1"></a> C <span class="sc">-</span> A<span class="sc">:</span>B<span class="sc">:</span>E<span class="sc">:</span>H, </span>
<span id="cb27-4"><a href="#cb27-4" tabindex="-1"></a> D <span class="sc">-</span> B<span class="sc">:</span>E<span class="sc">:</span>F,</span>
<span id="cb27-5"><a href="#cb27-5" tabindex="-1"></a> E <span class="sc">-</span> C<span class="sc">:</span>D<span class="sc">:</span>F<span class="sc">:</span>H, </span>
<span id="cb27-6"><a href="#cb27-6" tabindex="-1"></a> F <span class="sc">-</span> D<span class="sc">:</span>E<span class="sc">:</span>G, </span>
<span id="cb27-7"><a href="#cb27-7" tabindex="-1"></a> G <span class="sc">-</span> F<span class="sc">:</span>H, </span>
<span id="cb27-8"><a href="#cb27-8" tabindex="-1"></a> H <span class="sc">-</span> C<span class="sc">:</span>E<span class="sc">:</span>G<span class="sc">:</span>I,</span>
<span id="cb27-9"><a href="#cb27-9" tabindex="-1"></a> I <span class="sc">-</span> A<span class="sc">:</span>H</span>
<span id="cb27-10"><a href="#cb27-10" tabindex="-1"></a>)</span>
<span id="cb27-11"><a href="#cb27-11" tabindex="-1"></a><span class="fu">plot</span>(g1)</span></code></pre></div>
<p><img role="img" src="" /><!-- --></p>
<p>In the example above, the <code>:</code> operator was used to define
vertex sets. If an edge operator connects two vertex sets, then every
vertex from the first set will be connected to every vertex in the
second set. Then we use <code>is_chordal()</code> to evaluate if our
graph is chordal and to search what edges are missing to fill-in the
graph:</p>
<div class="sourceCode" id="cb28"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb28-1"><a href="#cb28-1" tabindex="-1"></a><span class="fu">is_chordal</span>(g1, <span class="at">fillin =</span> <span class="cn">TRUE</span>)</span></code></pre></div>
<pre><code>## $chordal
## [1] FALSE
##
## $fillin
## [1] 2 6 8 7 5 7 2 7 6 1 7 1
##
## $newgraph
## NULL</code></pre>
<p>We can then add the edges required to make the initial graph chordal
in a single line:</p>
<div class="sourceCode" id="cb30"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb30-1"><a href="#cb30-1" tabindex="-1"></a>chordal_graph <span class="ot"><-</span> <span class="fu">add_edges</span>(g1, <span class="fu">is_chordal</span>(g1, <span class="at">fillin =</span> <span class="cn">TRUE</span>)<span class="sc">$</span>fillin)</span>
<span id="cb30-2"><a href="#cb30-2" tabindex="-1"></a><span class="fu">plot</span>(chordal_graph)</span></code></pre></div>
<p><img role="img" src="" /><!-- --></p>
</div>
<div id="constructing-graphs" class="section level2">
<h2>Constructing graphs</h2>
<p>In addition to <code>make_empty_graph()</code>,
<code>make_graph()</code>, and <code>make_graph_from_literal()</code>,
<code>igraph</code> includes many other function to construct a graph.
Some are <em>deterministic</em>, that is to say they produce the same
graph each single time, for instance <code>make_tree()</code>:</p>
<div class="sourceCode" id="cb31"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb31-1"><a href="#cb31-1" tabindex="-1"></a>graph1 <span class="ot"><-</span> <span class="fu">make_tree</span>(<span class="dv">127</span>, <span class="dv">2</span>, <span class="at">mode =</span> <span class="st">"undirected"</span>)</span>
<span id="cb31-2"><a href="#cb31-2" tabindex="-1"></a><span class="fu">summary</span>(graph1)</span></code></pre></div>
<pre><code>## IGRAPH e16d000 U--- 127 126 -- Tree
## + attr: name (g/c), children (g/n), mode (g/c)</code></pre>
<p>This generates a regular tree graph with 127 vertices, each vertex
having two children. No matter how many times you call
<code>make_tree()</code>, the generated graph will always be the same if
you use the same parameters:</p>
<div class="sourceCode" id="cb33"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb33-1"><a href="#cb33-1" tabindex="-1"></a>graph2 <span class="ot"><-</span> <span class="fu">make_tree</span>(<span class="dv">127</span>, <span class="dv">2</span>, <span class="at">mode =</span> <span class="st">"undirected"</span>)</span></code></pre></div>
<div class="sourceCode" id="cb34"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb34-1"><a href="#cb34-1" tabindex="-1"></a><span class="fu">identical_graphs</span>(graph1, graph2)</span></code></pre></div>
<pre><code>## [1] TRUE</code></pre>
<p>Other functions generate graphs <em>stochastically</em>, which means
they produce a different graph each time. For instance
<code>sample_grg()</code>:</p>
<div class="sourceCode" id="cb36"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb36-1"><a href="#cb36-1" tabindex="-1"></a>graph1 <span class="ot"><-</span> <span class="fu">sample_grg</span>(<span class="dv">100</span>, <span class="fl">0.2</span>)</span>
<span id="cb36-2"><a href="#cb36-2" tabindex="-1"></a><span class="fu">summary</span>(graph1)</span></code></pre></div>
<pre><code>## IGRAPH 9712d42 U--- 100 522 -- Geometric random graph
## + attr: name (g/c), radius (g/n), torus (g/l)</code></pre>
<p>This generates a geometric random graph: <em>n</em> points are chosen
randomly and uniformly inside the unit square and pairs of points closer
to each other than a predefined distance <em>d</em> are connected by an
edge. If you generate GRGs with the same parameters, they will be
different:</p>
<div class="sourceCode" id="cb38"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb38-1"><a href="#cb38-1" tabindex="-1"></a>graph2 <span class="ot"><-</span> <span class="fu">sample_grg</span>(<span class="dv">100</span>, <span class="fl">0.2</span>)</span>
<span id="cb38-2"><a href="#cb38-2" tabindex="-1"></a><span class="fu">identical_graphs</span>(graph1, graph2)</span></code></pre></div>
<pre><code>## [1] FALSE</code></pre>
<p>A slightly looser way to check if the graphs are equivalent is via
<code>isomorphic</code>. Two graphs are said to be isomorphic if they
have the same number of components (vertices and edges) and maintain a
one-to-one correspondence between vertices and edges, that is to say,
they are connected in the same way.</p>
<div class="sourceCode" id="cb40"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb40-1"><a href="#cb40-1" tabindex="-1"></a><span class="fu">isomorphic</span>(graph1, graph2)</span></code></pre></div>
<pre><code>## [1] FALSE</code></pre>
<p>Checking for isomorphism can take a while for large graphs (in this
case, the answer can quickly be given by checking the degree sequence of
the two graphs). <code>identical_graph()</code> is a stricter criterion
than <code>isomorphic()</code>: the two graphs must have the same list
of vertices and edges, in exactly the same order, with same
directedness, and the two graphs must also have identical graph, vertex
and edge attributes.</p>
</div>
<div id="setting-and-retrieving-attributes" class="section level2">
<h2>Setting and retrieving attributes</h2>
<p>In addition to IDs, vertex and edges can have <em>attributes</em>
such as a name, coordinates for plotting, metadata, and weights. The
graph itself can have such attributes too (for instance a name, which
will show in <code>summary()</code>). In a sense, every graph, vertex
and edge can be used as an R namespace to store and retrieve these
attributes.</p>
<p>To demonstrate the use of attributes, let us create a simple social
network:</p>
<div class="sourceCode" id="cb42"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb42-1"><a href="#cb42-1" tabindex="-1"></a>g <span class="ot"><-</span> <span class="fu">make_graph</span>(</span>
<span id="cb42-2"><a href="#cb42-2" tabindex="-1"></a> <span class="sc">~</span> Alice <span class="sc">-</span> Boris<span class="sc">:</span>Himari<span class="sc">:</span>Moshe, Himari <span class="sc">-</span> Alice<span class="sc">:</span>Nang<span class="sc">:</span>Moshe<span class="sc">:</span>Samira,</span>
<span id="cb42-3"><a href="#cb42-3" tabindex="-1"></a> Ibrahim <span class="sc">-</span> Nang<span class="sc">:</span>Moshe, Nang <span class="sc">-</span> Samira</span>
<span id="cb42-4"><a href="#cb42-4" tabindex="-1"></a>)</span></code></pre></div>
<p>Each vertex represents a person, so we want to store ages, genders
and types of connection between two people (<code>is_formal()</code>
refers to whether a connection between one person or another is formal
or informal, respectively colleagues or friends). The <code>$</code>
operator is a shortcut to get and set graph attributes. It is shorter
and just as readable as <code>graph_attr()</code> and
<code>set_graph_attr()</code>.</p>
<div class="sourceCode" id="cb43"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb43-1"><a href="#cb43-1" tabindex="-1"></a><span class="fu">V</span>(g)<span class="sc">$</span>age <span class="ot"><-</span> <span class="fu">c</span>(<span class="dv">25</span>, <span class="dv">31</span>, <span class="dv">18</span>, <span class="dv">23</span>, <span class="dv">47</span>, <span class="dv">22</span>, <span class="dv">50</span>)</span>
<span id="cb43-2"><a href="#cb43-2" tabindex="-1"></a><span class="fu">V</span>(g)<span class="sc">$</span>gender <span class="ot"><-</span> <span class="fu">c</span>(<span class="st">"f"</span>, <span class="st">"m"</span>, <span class="st">"f"</span>, <span class="st">"m"</span>, <span class="st">"m"</span>, <span class="st">"f"</span>, <span class="st">"m"</span>)</span>
<span id="cb43-3"><a href="#cb43-3" tabindex="-1"></a><span class="fu">E</span>(g)<span class="sc">$</span>is_formal <span class="ot"><-</span> <span class="fu">c</span>(<span class="cn">FALSE</span>, <span class="cn">FALSE</span>, <span class="cn">TRUE</span>, <span class="cn">TRUE</span>, <span class="cn">TRUE</span>, <span class="cn">FALSE</span>, <span class="cn">TRUE</span>, <span class="cn">FALSE</span>, <span class="cn">FALSE</span>)</span>
<span id="cb43-4"><a href="#cb43-4" tabindex="-1"></a><span class="fu">summary</span>(g)</span></code></pre></div>
<pre><code>## IGRAPH 036c866 UN-- 7 9 --
## + attr: name (v/c), age (v/n), gender (v/c), is_formal (e/l)</code></pre>
<p><code>V()</code> and <code>E()</code> are the standard way to obtain
a sequence of all vertices and edges, respectively. This assigns an
attribute to <em>all</em> vertices/edges at once. Another way to
generate our social network is with the use of
<code>set_vertex_attr()</code> and <code>set_edge_attr()</code> and the
operator <code>%>%</code>:</p>
<div class="sourceCode" id="cb45"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb45-1"><a href="#cb45-1" tabindex="-1"></a>g <span class="ot"><-</span> <span class="fu">make_graph</span>(</span>
<span id="cb45-2"><a href="#cb45-2" tabindex="-1"></a> <span class="sc">~</span> Alice <span class="sc">-</span> Boris<span class="sc">:</span>Himari<span class="sc">:</span>Moshe, Himari <span class="sc">-</span> Alice<span class="sc">:</span>Nang<span class="sc">:</span>Moshe<span class="sc">:</span>Samira,</span>
<span id="cb45-3"><a href="#cb45-3" tabindex="-1"></a> Ibrahim <span class="sc">-</span> Nang<span class="sc">:</span>Moshe, Nang <span class="sc">-</span> Samira</span>
<span id="cb45-4"><a href="#cb45-4" tabindex="-1"></a>) <span class="sc">%>%</span></span>
<span id="cb45-5"><a href="#cb45-5" tabindex="-1"></a> <span class="fu">set_vertex_attr</span>(<span class="st">"age"</span>, <span class="at">value =</span> <span class="fu">c</span>(<span class="dv">25</span>, <span class="dv">31</span>, <span class="dv">18</span>, <span class="dv">23</span>, <span class="dv">47</span>, <span class="dv">22</span>, <span class="dv">50</span>)) <span class="sc">%>%</span></span>
<span id="cb45-6"><a href="#cb45-6" tabindex="-1"></a> <span class="fu">set_vertex_attr</span>(<span class="st">"gender"</span>, <span class="at">value =</span> <span class="fu">c</span>(<span class="st">"f"</span>, <span class="st">"m"</span>, <span class="st">"f"</span>, <span class="st">"m"</span>, <span class="st">"m"</span>, <span class="st">"f"</span>, <span class="st">"m"</span>)) <span class="sc">%>%</span></span>
<span id="cb45-7"><a href="#cb45-7" tabindex="-1"></a> <span class="fu">set_edge_attr</span>(<span class="st">"is_formal"</span>, <span class="at">value =</span> <span class="fu">c</span>(<span class="cn">FALSE</span>, <span class="cn">FALSE</span>, <span class="cn">TRUE</span>, <span class="cn">TRUE</span>, <span class="cn">TRUE</span>, <span class="cn">FALSE</span>, <span class="cn">TRUE</span>, <span class="cn">FALSE</span>, <span class="cn">FALSE</span>))</span>
<span id="cb45-8"><a href="#cb45-8" tabindex="-1"></a><span class="fu">summary</span>(g)</span></code></pre></div>
<p>To assign or modify an attribute for a single vertex/edge:</p>
<div class="sourceCode" id="cb46"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb46-1"><a href="#cb46-1" tabindex="-1"></a><span class="fu">E</span>(g)<span class="sc">$</span>is_formal</span></code></pre></div>
<pre><code>## [1] FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE</code></pre>
<div class="sourceCode" id="cb48"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb48-1"><a href="#cb48-1" tabindex="-1"></a><span class="fu">E</span>(g)<span class="sc">$</span>is_formal[<span class="dv">1</span>] <span class="ot"><-</span> <span class="cn">TRUE</span></span>
<span id="cb48-2"><a href="#cb48-2" tabindex="-1"></a><span class="fu">E</span>(g)<span class="sc">$</span>is_formal</span></code></pre></div>
<pre><code>## [1] TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE</code></pre>
<p>Attribute values can be set to any R object, but note that storing
the graph in some file formats might result in the loss of complex
attribute values. Vertices, edges and the graph itself can all be used
to set attributes, for instance to add a date to the graph:</p>
<div class="sourceCode" id="cb50"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb50-1"><a href="#cb50-1" tabindex="-1"></a>g<span class="sc">$</span>date <span class="ot"><-</span> <span class="fu">c</span>(<span class="st">"2022-02-11"</span>)</span>
<span id="cb50-2"><a href="#cb50-2" tabindex="-1"></a><span class="fu">graph_attr</span>(g, <span class="st">"date"</span>)</span></code></pre></div>
<pre><code>## [1] "2022-02-11"</code></pre>
<p>To retrieve attributes, you can also use <code>graph_attr()</code>,
<code>vertex_attr()</code>, and <code>edge_attr()</code>. To find the ID
of a vertex you can use the function <code>match()</code>:</p>
<div class="sourceCode" id="cb52"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb52-1"><a href="#cb52-1" tabindex="-1"></a><span class="fu">match</span>(<span class="fu">c</span>(<span class="st">"Ibrahim"</span>), <span class="fu">V</span>(g)<span class="sc">$</span>name)</span></code></pre></div>
<pre><code>## [1] 7</code></pre>
<p>To assign attributes to a subset of vertices or edges, you can
use:</p>
<div class="sourceCode" id="cb54"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb54-1"><a href="#cb54-1" tabindex="-1"></a><span class="fu">V</span>(g)<span class="sc">$</span>name[<span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>] <span class="ot"><-</span> <span class="fu">c</span>(<span class="st">"Alejandra"</span>, <span class="st">"Bruno"</span>, <span class="st">"Carmina"</span>)</span>
<span id="cb54-2"><a href="#cb54-2" tabindex="-1"></a><span class="fu">V</span>(g)</span></code></pre></div>
<pre><code>## + 7/7 vertices, named, from 036c866:
## [1] Alejandra Bruno Carmina Moshe Nang Samira Ibrahim</code></pre>
<p>To delete attributes:</p>
<div class="sourceCode" id="cb56"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb56-1"><a href="#cb56-1" tabindex="-1"></a>g <span class="ot"><-</span> <span class="fu">delete_vertex_attr</span>(g, <span class="st">"gender"</span>)</span>
<span id="cb56-2"><a href="#cb56-2" tabindex="-1"></a><span class="fu">V</span>(g)<span class="sc">$</span>gender</span></code></pre></div>
<pre><code>## NULL</code></pre>
<p>If you want to save a graph in R with all the attributes use the R’s
standard function <code>dput()</code> function and retrieve it later
with <code>dget()</code>. You can also just save the R workspace and
restore it later.</p>
</div>
<div id="structural-properties-of-graphs" class="section level2">
<h2>Structural properties of graphs</h2>
<p><code>igraph</code> provides a large set of functions to calculate
various structural properties of graphs. It is beyond the scope of this
tutorial to document all of them, hence this section will only introduce
a few of them for illustrative purposes. We will work on the small
social network constructed in the previous section.</p>
<p>Perhaps the simplest property one can think of is the
<em>degree</em>. The degree of a vertex equals the number of edges
adjacent to it. In case of directed networks, we can also define
<em>in-degree</em> (the number of edges pointing towards the vertex) and
<em>out-degree</em> (the number of edges originating from the vertex).
<code>igraph</code> is able to calculate all of them using a simple
syntax:</p>
<div class="sourceCode" id="cb58"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb58-1"><a href="#cb58-1" tabindex="-1"></a><span class="fu">degree</span>(g)</span></code></pre></div>
<pre><code>## Alejandra Bruno Carmina Moshe Nang Samira Ibrahim
## 3 1 4 3 3 2 2</code></pre>
<p>If the graph was directed, we would have been able to calculate the
in- and out-degrees separately using <code>degree(mode = "in")</code>
and <code>degree(mode = "out")</code>. You can also pass a single vertex
ID or a list of vertex IDs to <code>degree()</code> if you want to
calculate the degrees for only a subset of vertices:</p>
<div class="sourceCode" id="cb60"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb60-1"><a href="#cb60-1" tabindex="-1"></a><span class="fu">degree</span>(g, <span class="dv">7</span>)</span></code></pre></div>
<pre><code>## Ibrahim
## 2</code></pre>
<div class="sourceCode" id="cb62"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb62-1"><a href="#cb62-1" tabindex="-1"></a><span class="fu">degree</span>(g, <span class="at">v =</span> <span class="fu">c</span>(<span class="dv">3</span>, <span class="dv">4</span>, <span class="dv">5</span>))</span></code></pre></div>
<pre><code>## Carmina Moshe Nang
## 4 3 3</code></pre>
<p>Most functions that accept vertex IDs also accept vertex
<em>names</em> (the values of the <code>name</code> vertex attribute) as
long as the names are unique:</p>
<div class="sourceCode" id="cb64"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb64-1"><a href="#cb64-1" tabindex="-1"></a><span class="fu">degree</span>(g, <span class="at">v =</span> <span class="fu">c</span>(<span class="st">"Carmina"</span>, <span class="st">"Moshe"</span>, <span class="st">"Nang"</span>))</span></code></pre></div>
<pre><code>## Carmina Moshe Nang
## 4 3 3</code></pre>
<p>It also works for single vertices:</p>
<div class="sourceCode" id="cb66"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb66-1"><a href="#cb66-1" tabindex="-1"></a><span class="fu">degree</span>(g, <span class="st">"Bruno"</span>)</span></code></pre></div>
<pre><code>## Bruno
## 1</code></pre>
<p>A similar syntax is used for most of the structural properties
<code>igraph</code> can calculate. For vertex properties, the functions
accept a vertex ID, a vertex name, or a list of vertex IDs or names (and
if they are omitted, the default is the set of all vertices). For edge
properties, the functions accept a single edge ID or a list of edge
IDs.</p>
<hr />
<p><strong>NOTE:</strong> For some measures, it does not make sense to
calculate them only for a few vertices or edges instead of the whole
graph, as it would take the same time anyway. In this case, the
functions won’t accept vertex or edge IDs, but you can still restrict
the resulting list later using standard operations. One such example is
eigenvector centrality (<code>evcent()</code>).</p>
<hr />
<p>Besides degree, igraph includes built-in routines to calculate many
other centrality properties, including vertex and edge betweenness
(<code>edge_betweenness()</code>) or Google’s PageRank
(<code>page_rank()</code>) just to name a few. Here we just illustrate
edge betweenness:</p>
<div class="sourceCode" id="cb68"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb68-1"><a href="#cb68-1" tabindex="-1"></a><span class="fu">edge_betweenness</span>(g)</span></code></pre></div>
<pre><code>## [1] 6 6 4 3 4 4 4 2 3</code></pre>
<p>Now we can also figure out which connections have the highest
betweenness centrality:</p>
<div class="sourceCode" id="cb70"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb70-1"><a href="#cb70-1" tabindex="-1"></a>ebs <span class="ot"><-</span> <span class="fu">edge_betweenness</span>(g)</span>
<span id="cb70-2"><a href="#cb70-2" tabindex="-1"></a><span class="fu">as_edgelist</span>(g)[ebs <span class="sc">==</span> <span class="fu">max</span>(ebs), ]</span></code></pre></div>
<pre><code>## [,1] [,2]
## [1,] "Alejandra" "Bruno"
## [2,] "Alejandra" "Carmina"</code></pre>
</div>
<div id="querying-vertices-and-edges-based-on-attributes" class="section level2">
<h2>Querying vertices and edges based on attributes</h2>
<div id="selecting-vertices" class="section level3">
<h3>Selecting vertices</h3>
<p>Imagine that in a given social network, you want to find out who has
the largest degree. You can do that with the tools presented so far and
the <code>which.max()</code> function:</p>
<div class="sourceCode" id="cb72"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb72-1"><a href="#cb72-1" tabindex="-1"></a><span class="fu">which.max</span>(<span class="fu">degree</span>(g))</span></code></pre></div>
<pre><code>## Carmina
## 3</code></pre>
<p>Another example would be to select only vertices that have only odd
IDs but not even ones, using the <code>V()</code> function:</p>
<div class="sourceCode" id="cb74"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb74-1"><a href="#cb74-1" tabindex="-1"></a>graph <span class="ot"><-</span> <span class="fu">graph.full</span>(<span class="at">n =</span> <span class="dv">10</span>)</span></code></pre></div>
<pre><code>## Warning: `graph.full()` was deprecated in igraph 2.1.0.
## ℹ Please use `make_full_graph()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.</code></pre>
<div class="sourceCode" id="cb76"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb76-1"><a href="#cb76-1" tabindex="-1"></a>only_odd_vertices <span class="ot"><-</span> <span class="fu">which</span>(<span class="fu">V</span>(graph) <span class="sc">%%</span> <span class="dv">2</span> <span class="sc">==</span> <span class="dv">1</span>)</span>
<span id="cb76-2"><a href="#cb76-2" tabindex="-1"></a><span class="fu">length</span>(only_odd_vertices)</span></code></pre></div>
<pre><code>## [1] 5</code></pre>
<p>Of course, it is possible to select vertices or edges by positional
indices:</p>
<div class="sourceCode" id="cb78"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb78-1"><a href="#cb78-1" tabindex="-1"></a>seq <span class="ot"><-</span> <span class="fu">V</span>(graph)[<span class="dv">2</span>, <span class="dv">3</span>, <span class="dv">7</span>]</span>
<span id="cb78-2"><a href="#cb78-2" tabindex="-1"></a>seq</span></code></pre></div>
<pre><code>## + 3/10 vertices, from 2b1e940:
## [1] 2 3 7</code></pre>
<div class="sourceCode" id="cb80"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb80-1"><a href="#cb80-1" tabindex="-1"></a>seq <span class="ot"><-</span> seq[<span class="dv">1</span>, <span class="dv">3</span>] <span class="co"># filtering an existing vertex set</span></span>
<span id="cb80-2"><a href="#cb80-2" tabindex="-1"></a>seq</span></code></pre></div>
<pre><code>## + 2/10 vertices, from 2b1e940:
## [1] 2 7</code></pre>
<p>Selecting a vertex that does not exist results in an error:</p>
<div class="sourceCode" id="cb82"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb82-1"><a href="#cb82-1" tabindex="-1"></a>seq <span class="ot"><-</span> <span class="fu">V</span>(graph)[<span class="dv">2</span>, <span class="dv">3</span>, <span class="dv">7</span>, <span class="st">"foo"</span>, <span class="fl">3.5</span>]</span>
<span id="cb82-2"><a href="#cb82-2" tabindex="-1"></a><span class="do">## Error in simple_vs_index(x, ii, na_ok) : Unknown vertex selected</span></span></code></pre></div>
<p>Attribute names can also be used as-is within the indexing brackets
of <code>V()</code> and <code>E()</code>. This can be combined with R’s
ability to use Boolean vectors for indexing to obtain very concise and
readable expressions to retrieve a subset of the vertex or edge set of a
graph. For instance, the following command gives you the names of the
individuals younger than 30 years in our social network:</p>
<div class="sourceCode" id="cb83"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb83-1"><a href="#cb83-1" tabindex="-1"></a><span class="fu">V</span>(g)[age <span class="sc"><</span> <span class="dv">30</span>]<span class="sc">$</span>name</span></code></pre></div>
<pre><code>## [1] "Alejandra" "Carmina" "Moshe" "Samira"</code></pre>
<p>Of course, <code><</code> is not the only boolean operator that
can be used for this. Other possibilities include the following:</p>
<table>
<colgroup>
<col width="29%" />
<col width="70%" />
</colgroup>
<thead>
<tr class="header">
<th>Operator</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>==</code></td>
<td>The attribute/property value must be <em>equal to</em></td>
</tr>
<tr class="even">
<td><code>!=</code></td>
<td>The attribute/property value must <em>not be equal to</em></td>
</tr>
<tr class="odd">
<td><code><</code></td>
<td>The attribute/property value must be <em>less than</em></td>
</tr>
<tr class="even">
<td><code><=</code></td>
<td>The attribute/property value must be <em>less than or equal
to</em></td>
</tr>
<tr class="odd">
<td><code>></code></td>
<td>The attribute/property value must be <em>greater than</em></td>
</tr>
<tr class="even">
<td><code>>=</code></td>
<td>The attribute/property value must be <em>greater than or equal
to</em></td>
</tr>
<tr class="odd">
<td><code>%in%</code></td>
<td>The attribute/property value must be <em>included in</em></td>
</tr>
</tbody>
</table>
<p>You can also create a “not in” operator from <code>%in%</code> using
the <code>Negate()</code> function:</p>
<div class="sourceCode" id="cb85"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb85-1"><a href="#cb85-1" tabindex="-1"></a><span class="st">`</span><span class="at">%notin%</span><span class="st">`</span> <span class="ot"><-</span> <span class="fu">Negate</span>(<span class="st">`</span><span class="at">%in%</span><span class="st">`</span>)</span></code></pre></div>
<p>If an attribute has the same name as an <code>igraph</code> function,
you should be careful as the syntax can become a little confusing. For
instance, if there is an attribute named <code>degree</code> that
represents the grades of an exam for each person, that should not be
confused with the <code>igraph</code> function that computes the degrees
of vertices in a network sense:</p>
<div class="sourceCode" id="cb86"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb86-1"><a href="#cb86-1" tabindex="-1"></a><span class="fu">V</span>(g)<span class="sc">$</span>degree <span class="ot"><-</span> <span class="fu">c</span>(<span class="st">"A"</span>, <span class="st">"B"</span>, <span class="st">"B+"</span>, <span class="st">"A+"</span>, <span class="st">"C"</span>, <span class="st">"A"</span>, <span class="st">"B"</span>)</span>
<span id="cb86-2"><a href="#cb86-2" tabindex="-1"></a><span class="fu">V</span>(g)<span class="sc">$</span>degree[<span class="fu">degree</span>(g) <span class="sc">==</span> <span class="dv">3</span>]</span></code></pre></div>
<pre><code>## [1] "A" "A+" "C"</code></pre>
<div class="sourceCode" id="cb88"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb88-1"><a href="#cb88-1" tabindex="-1"></a><span class="fu">V</span>(g)<span class="sc">$</span>name[<span class="fu">degree</span>(g) <span class="sc">==</span> <span class="dv">3</span>]</span></code></pre></div>
<pre><code>## [1] "Alejandra" "Moshe" "Nang"</code></pre>
</div>
<div id="selecting-edges" class="section level3">
<h3>Selecting edges</h3>
<p>Edges can be selected based on attributes just like vertices. As
mentioned above, the standard way to get edges is <code>E</code>.
Moreover, there are a few special structural properties for selecting
edges.</p>
<p>Using <code>.from()</code> allows you to filter the edge sequence
based on the source vertices of the edges. For instance, to select all
the edges originating from Carmina (who has vertex index 3):</p>
<div class="sourceCode" id="cb90"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb90-1"><a href="#cb90-1" tabindex="-1"></a><span class="fu">E</span>(g)[<span class="fu">.from</span>(<span class="dv">3</span>)]</span></code></pre></div>
<pre><code>## + 4/9 edges from 036c866 (vertex names):
## [1] Alejandra--Carmina Carmina --Moshe Carmina --Nang Carmina --Samira</code></pre>
<p>Of course it also works with vertex names:</p>
<div class="sourceCode" id="cb92"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb92-1"><a href="#cb92-1" tabindex="-1"></a><span class="fu">E</span>(g)[<span class="fu">.from</span>(<span class="st">"Carmina"</span>)]</span></code></pre></div>
<pre><code>## + 4/9 edges from 036c866 (vertex names):
## [1] Alejandra--Carmina Carmina --Moshe Carmina --Nang Carmina --Samira</code></pre>
<p>Using <code>.to()</code> filters edge sequences based on the target
vertices. This is different from <code>.from()</code> if the graph is
directed, while it gives the same answer for undirected graphs. Using
<code>.inc()</code> selects only those edges that are incident on a
single vertex or at least one of the vertices, irrespective of the edge
directions.</p>
<p>The <code>%--%</code> operator can be used to select edges between
specific groups of vertices, ignoring edge directions in directed
graphs. For instance, the following expression selects all the edges
between Carmina (vertex index 3), Nang (vertex index 5) and Samira
(vertex index 6):</p>
<div class="sourceCode" id="cb94"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb94-1"><a href="#cb94-1" tabindex="-1"></a><span class="fu">E</span>(g)[<span class="dv">3</span><span class="sc">:</span><span class="dv">5</span> <span class="sc">%--%</span> <span class="dv">5</span><span class="sc">:</span><span class="dv">6</span>]</span></code></pre></div>
<pre><code>## + 3/9 edges from 036c866 (vertex names):
## [1] Carmina--Nang Carmina--Samira Nang --Samira</code></pre>
<p>To make the <code>%--%</code> operator work with names, you can build
string vectors containing the names and then use these vectors as
operands. For instance, to select all the edges that connect men to
women, we can do the following after re-adding the gender attribute that
we deleted earlier:</p>
<div class="sourceCode" id="cb96"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb96-1"><a href="#cb96-1" tabindex="-1"></a><span class="fu">V</span>(g)<span class="sc">$</span>gender <span class="ot"><-</span> <span class="fu">c</span>(<span class="st">"f"</span>, <span class="st">"m"</span>, <span class="st">"f"</span>, <span class="st">"m"</span>, <span class="st">"m"</span>, <span class="st">"f"</span>, <span class="st">"m"</span>)</span></code></pre></div>
<div class="sourceCode" id="cb97"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb97-1"><a href="#cb97-1" tabindex="-1"></a>men <span class="ot"><-</span> <span class="fu">V</span>(g)[gender <span class="sc">==</span> <span class="st">"m"</span>]<span class="sc">$</span>name</span>
<span id="cb97-2"><a href="#cb97-2" tabindex="-1"></a>men</span></code></pre></div>
<pre><code>## [1] "Bruno" "Moshe" "Nang" "Ibrahim"</code></pre>
<div class="sourceCode" id="cb99"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb99-1"><a href="#cb99-1" tabindex="-1"></a>women <span class="ot"><-</span> <span class="fu">V</span>(g)[gender <span class="sc">==</span> <span class="st">"f"</span>]<span class="sc">$</span>name</span>
<span id="cb99-2"><a href="#cb99-2" tabindex="-1"></a>women</span></code></pre></div>
<pre><code>## [1] "Alejandra" "Carmina" "Samira"</code></pre>
<div class="sourceCode" id="cb101"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb101-1"><a href="#cb101-1" tabindex="-1"></a><span class="fu">E</span>(g)[men <span class="sc">%--%</span> women]</span></code></pre></div>
<pre><code>## + 5/9 edges from 036c866 (vertex names):
## [1] Alejandra--Bruno Alejandra--Moshe Carmina --Moshe Carmina --Nang
## [5] Nang --Samira</code></pre>
</div>
</div>
<div id="treating-a-graph-as-an-adjacency-matrix" class="section level2">
<h2>Treating a graph as an adjacency matrix</h2>
<p>The adjacency matrix is another way to represent a graph. In an
adjacency matrix, rows and columns are labeled by graph vertices, and
the elements of the matrix indicate the number of edges between vertices
<em>i</em> and <em>j</em>. The adjacency matrix for the example graph
is:</p>
<div class="sourceCode" id="cb103"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb103-1"><a href="#cb103-1" tabindex="-1"></a><span class="fu">as_adjacency_matrix</span>(g)</span></code></pre></div>
<pre><code>## 7 x 7 sparse Matrix of class "dgCMatrix"
## Alejandra Bruno Carmina Moshe Nang Samira Ibrahim
## Alejandra . 1 1 1 . . .
## Bruno 1 . . . . . .
## Carmina 1 . . 1 1 1 .
## Moshe 1 . 1 . . . 1
## Nang . . 1 . . 1 1
## Samira . . 1 . 1 . .
## Ibrahim . . . 1 1 . .</code></pre>
<p>For example, Carmina (<code>1, 0, 0, 1, 1, 1, 0</code>) is directly
connected to Alejandra (who has vertex index 1), Moshe (index 4), Nang
(index 5) and Samira (index 6), but not to Bruno (index 2) or to Ibrahim
(index 7).</p>
</div>
<div id="layouts-and-plotting" class="section level2">
<h2>Layouts and plotting</h2>
<p>A graph is an abstract mathematical object without a specific
representation in 2D, 3D or any other geometric space. This means that
whenever we want to visualise a graph, we have to find a mapping from
vertices to coordinates in two- or three-dimensional space first,
preferably in a way that is useful and/or pleasing for the eye. A
separate branch of graph theory, namely graph drawing, tries to solve
this problem via several graph layout algorithms. igraph implements
quite a few layout algorithms and is also able to draw them onto the
screen or to any output format that R itself supports.</p>
<div id="layout-algorithms" class="section level3">
<h3>Layout algorithms</h3>
<p>The layout functions in igraph always start with <code>layout</code>.
The following table summarises them:</p>
<table>
<colgroup>
<col width="20%" />
<col width="79%" />
</colgroup>
<thead>
<tr class="header">
<th>Method name</th>
<th>Algorithm description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>layout_randomly</code></td>
<td>Places the vertices completely randomly</td>
</tr>
<tr class="even">
<td><code>layout_in_circle</code></td>
<td>Deterministic layout that places the vertices on a circle</td>
</tr>
<tr class="odd">
<td><code>layout_on_sphere</code></td>
<td>Deterministic layout that places the vertices evenly on the surface
of a sphere</td>
</tr>
<tr class="even">
<td><code>layout_with_drl</code></td>
<td>The Drl (Distributed Recursive Layout) algorithm for large
graphs</td>
</tr>
<tr class="odd">
<td><code>layout_with_fr</code></td>
<td>Fruchterman-Reingold force-directed algorithm</td>
</tr>
<tr class="even">
<td><code>layout_with_kk</code></td>
<td>Kamada-Kawai force-directed algorithm</td>
</tr>
<tr class="odd">
<td><code>layout_with_lgl</code></td>
<td>The LGL (Large Graph Layout) algorithm for large graphs</td>
</tr>
<tr class="even">
<td><code>layout_as_tree</code></td>
<td>Reingold-Tilford tree layout, useful for (almost) tree-like
graphs</td>
</tr>
<tr class="odd">
<td><code>layout_nicely</code></td>
<td>Layout algorithm that automatically picks one of the other
algorithms based on certain properties of the graph</td>
</tr>
</tbody>
</table>
<p>Layout algorithms can be called directly with a graph as its first
argument. They will return a matrix with two columns and as many rows as
the number of vertices in the graph; each row will correspond to the
position of a single vertex, ordered by vertex IDs. Some algorithms have
a 3D variant; in this case they return 3 columns instead of 2.</p>
<div class="sourceCode" id="cb105"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb105-1"><a href="#cb105-1" tabindex="-1"></a>layout <span class="ot"><-</span> <span class="fu">layout_with_kk</span>(g)</span></code></pre></div>
<p>Some layout algorithms take additional arguments; for instance, when
laying out a graph as a tree, it might make sense to specify which
vertex is to be placed at the root of the layout:</p>
<div class="sourceCode" id="cb106"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb106-1"><a href="#cb106-1" tabindex="-1"></a>layout <span class="ot"><-</span> <span class="fu">layout_as_tree</span>(g, <span class="at">root =</span> <span class="dv">2</span>)</span></code></pre></div>
</div>
<div id="drawing-a-graph-using-a-layout" class="section level3">
<h3>Drawing a graph using a layout</h3>
<p>We can plot our imaginary social network with the Kamada-Kawai layout
algorithm as follows:</p>
<div class="sourceCode" id="cb107"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb107-1"><a href="#cb107-1" tabindex="-1"></a>layout <span class="ot"><-</span> <span class="fu">layout_with_kk</span>(g)</span></code></pre></div>
<div class="sourceCode" id="cb108"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb108-1"><a href="#cb108-1" tabindex="-1"></a><span class="fu">plot</span>(g, <span class="at">layout =</span> layout, <span class="at">main =</span> <span class="st">"Social network with the Kamada-Kawai layout algorithm"</span>)</span></code></pre></div>
<p><img role="img" src="" /><!-- --></p>
<p>This should open a new window showing a visual representation of the
network. Remember that the exact placement of nodes may be different on
your machine since the layout is not deterministic.</p>
<p>The <code>layout</code> argument also accepts functions; in this
case, the function will be called with the graph as its first argument.
This makes it possible to just pass the name of a layout function
directly, without creating a layout variable:</p>
<div class="sourceCode" id="cb109"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb109-1"><a href="#cb109-1" tabindex="-1"></a><span class="fu">plot</span>(</span>
<span id="cb109-2"><a href="#cb109-2" tabindex="-1"></a> g,</span>
<span id="cb109-3"><a href="#cb109-3" tabindex="-1"></a> <span class="at">layout =</span> layout_with_fr,</span>
<span id="cb109-4"><a href="#cb109-4" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Social network with the Fruchterman-Reingold layout algorithm"</span></span>
<span id="cb109-5"><a href="#cb109-5" tabindex="-1"></a>)</span></code></pre></div>
<p><img role="img" src="" /><!-- --></p>
<p>To improve the visuals, a trivial addition would be to color the
vertices according to the gender. We should also try to place the labels
slightly outside the vertices to improve readability:</p>
<div class="sourceCode" id="cb110"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb110-1"><a href="#cb110-1" tabindex="-1"></a><span class="fu">V</span>(g)<span class="sc">$</span>color <span class="ot"><-</span> <span class="fu">ifelse</span>(<span class="fu">V</span>(g)<span class="sc">$</span>gender <span class="sc">==</span> <span class="st">"m"</span>, <span class="st">"yellow"</span>, <span class="st">"red"</span>)</span>
<span id="cb110-2"><a href="#cb110-2" tabindex="-1"></a><span class="fu">plot</span>(</span>
<span id="cb110-3"><a href="#cb110-3" tabindex="-1"></a> g,</span>
<span id="cb110-4"><a href="#cb110-4" tabindex="-1"></a> <span class="at">layout =</span> layout, <span class="at">vertex.label.dist =</span> <span class="fl">3.5</span>,</span>
<span id="cb110-5"><a href="#cb110-5" tabindex="-1"></a> <span class="at">main =</span> <span class="st">"Social network - with genders as colors"</span></span>
<span id="cb110-6"><a href="#cb110-6" tabindex="-1"></a>)</span></code></pre></div>
<p><img role="img" src="" /><!-- --></p>
<p>You can also treat the <code>gender</code> attribute as a factor and
provide the colors with an argument to <code>plot()</code>, which takes
precedence over the <code>color</code> vertex attribute. Colors will be
assigned automatically to levels of a factor:</p>
<div class="sourceCode" id="cb111"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb111-1"><a href="#cb111-1" tabindex="-1"></a><span class="fu">plot</span>(g, <span class="at">layout =</span> layout, <span class="at">vertex.label.dist =</span> <span class="fl">3.5</span>, <span class="at">vertex.color =</span> <span class="fu">as.factor</span>(<span class="fu">V</span>(g)<span class="sc">$</span>gender))</span></code></pre></div>
<p><img role="img" src="" /><!-- --></p>
<p>As seen above with the <code>vertex.color</code> argument, you can
specify visual properties as arguments to <code>plot</code> instead of
using vertex or edge attributes. The following plot shows the formal
ties with thick lines while informal ones with thin lines:</p>
<div class="sourceCode" id="cb112"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb112-1"><a href="#cb112-1" tabindex="-1"></a><span class="fu">plot</span>(g,</span>
<span id="cb112-2"><a href="#cb112-2" tabindex="-1"></a> <span class="at">layout =</span> layout, <span class="at">vertex.label.dist =</span> <span class="fl">3.5</span>, <span class="at">vertex.size =</span> <span class="dv">20</span>,</span>
<span id="cb112-3"><a href="#cb112-3" tabindex="-1"></a> <span class="at">vertex.color =</span> <span class="fu">ifelse</span>(<span class="fu">V</span>(g)<span class="sc">$</span>gender <span class="sc">==</span> <span class="st">"m"</span>, <span class="st">"yellow"</span>, <span class="st">"red"</span>),</span>
<span id="cb112-4"><a href="#cb112-4" tabindex="-1"></a> <span class="at">edge.width =</span> <span class="fu">ifelse</span>(<span class="fu">E</span>(g)<span class="sc">$</span>is_formal, <span class="dv">5</span>, <span class="dv">1</span>)</span>
<span id="cb112-5"><a href="#cb112-5" tabindex="-1"></a>)</span></code></pre></div>
<p><img role="img" src="" /><!-- --></p>
<p>This latter approach is preferred if you want to keep the properties
of the visual representation of your graph separate from the graph
itself.</p>
<p>In summary, there are special vertex and edge properties that
correspond to the visual representation of the graph. These attributes
override the default settings of igraph (i.e color, weight, name, shape,
layout, etc.). The following two tables summarise the most frequently
used visual attributes for vertices and edges, respectively:</p>
</div>
<div id="vertex-attributes-controlling-graph-plots" class="section level3">
<h3>Vertex attributes controlling graph plots</h3>
<table>
<colgroup>
<col width="30%" />
<col width="30%" />
<col width="39%" />
</colgroup>
<thead>
<tr class="header">
<th>Attribute name</th>
<th>Keyword argument</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>color</code></td>
<td><code>vertex.color</code></td>
<td>Color of the vertex</td>
</tr>
<tr class="even">
<td><code>label</code></td>
<td><code>vertex.label</code></td>
<td>Label of the vertex. They will be converted to character. Specify NA
to omit vertex labels. The default vertex labels are the vertex
ids.</td>
</tr>
<tr class="odd">
<td><code>label.cex</code></td>
<td><code>vertex.label.cex</code></td>
<td>Font size of the vertex label, interpreted as a multiplicative
factor, similarly to R’s <code>text</code> function</td>
</tr>
<tr class="even">
<td><code>label.color</code></td>
<td><code>vertex.label.color</code></td>
<td>Color of the vertex label</td>
</tr>
<tr class="odd">
<td><code>label.degree</code></td>
<td><code>vertex.label.degree</code></td>
<td>It defines the position of the vertex labels, relative to the center
of the vertices. It is interpreted as an angle in radian, zero means ‘to
the right’, and ‘pi’ means to the left, up is -pi/2 and down is pi/2.
The default value is -pi/4</td>
</tr>
<tr class="even">
<td><code>label.dist</code></td>
<td><code>vertex.label.dist</code></td>
<td>Distance of the vertex label from the vertex itself, relative to the
vertex size</td>
</tr>
<tr class="odd">
<td><code>label.family</code></td>
<td><code>vertex.label.family</code></td>
<td>Font family of the vertex, similarly to R’s <code>text</code>
function</td>
</tr>
<tr class="even">
<td><code>label.font</code></td>
<td><code>vertex.label.font</code></td>
<td>Font within the font family of the vertex, similarly to R’s
<code>text</code> function</td>
</tr>
<tr class="odd">
<td><code>shape</code></td>
<td><code>vertex.shape</code></td>
<td>The shape of the vertex, currently “circle”, “square”, “csquare”,
“rectangle”, “crectangle”, “vrectangle”, “pie” (see vertex.shape.pie),
‘sphere’, and “none” are supported, and only by the plot.igraph
command.</td>
</tr>
<tr class="even">
<td><code>size</code></td>
<td><code>vertex.size</code></td>
<td>The size of the vertex, a numeric scalar or vector, in the latter
case each vertex sizes may differ</td>
</tr>
</tbody>
</table>
</div>
<div id="edge-attributes-controlling-graph-plots" class="section level3">
<h3>Edge attributes controlling graph plots</h3>
<table>
<colgroup>
<col width="34%" />
<col width="40%" />
<col width="25%" />
</colgroup>
<thead>
<tr class="header">
<th>Attribute name</th>
<th>Keyword argument</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>color</code></td>
<td><code>edge.color</code></td>
<td>Color of the edge</td>
</tr>
<tr class="even">
<td><code>curved</code></td>
<td><code>edge.curved</code></td>
<td>A numeric value specifies the curvature of the edge; zero curvature
means straight edges, negative values means the edge bends clockwise,
positive values the opposite. TRUE means curvature 0.5, FALSE means
curvature zero</td>
</tr>
<tr class="odd">
<td><code>arrow.size</code></td>
<td><code>edge.arrow.size</code></td>
<td>Currently this is a constant, so it is the same for every edge. If a
vector is submitted then only the first element is used, that is to say
if this is taken from an edge attribute then only the attribute of the
first edge is used for all arrows.</td>
</tr>
<tr class="even">
<td><code>arrow.width</code></td>
<td><code>edge.arrow.width</code></td>
<td>The width of the arrows. Currently this is a constant, so it is the
same for every edge</td>
</tr>
<tr class="odd">
<td><code>width</code></td>
<td><code>edge.width</code></td>
<td>Width of the edge in pixels</td>
</tr>
<tr class="even">
<td><code>label</code></td>
<td><code>edge.label</code></td>
<td>If specified, it adds a label to the edge.</td>
</tr>
<tr class="odd">
<td><code>label.cex</code></td>
<td><code>edge.label.cex</code></td>
<td>Font size of the edge label, interpreted as a multiplicative factor,
similarly to R’s <code>text</code> function</td>
</tr>
<tr class="even">
<td><code>label.color</code></td>
<td><code>edge.label.color</code></td>
<td>Color of the edge label</td>
</tr>
<tr class="odd">
<td><code>label.family</code></td>
<td><code>edge.label.family</code></td>
<td>Font family of the edge, similarly to R’s <code>text</code>
function</td>
</tr>
<tr class="even">
<td><code>label.font</code></td>
<td><code>edge.label.font</code></td>
<td>Font within the font family of the edge, similarly to R’s
<code>text</code> function</td>
</tr>
</tbody>
</table>
</div>
<div id="generic-arguments-of-plot" class="section level3">
<h3>Generic arguments of <code>plot()</code></h3>
<p>These settings can be specified as arguments to the <code>plot</code>
function to control the overall appearance of the plot.</p>
<table>
<colgroup>
<col width="44%" />
<col width="55%" />
</colgroup>
<thead>
<tr class="header">
<th>Keyword argument</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>layout</code></td>
<td>The layout to be used. It can be an instance of <code>Layout</code>,
a list of tuples containing X-Y coordinates, or the name of a layout
algorithm. The default is <code>auto</code>, which selects a layout
algorithm automatically based on the size and connectedness of the
graph.</td>
</tr>
<tr class="even">
<td><code>margin</code></td>
<td>The amount of empty space below, over, at the left and right of the
plot, it is a numeric vector of length four.</td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="igraph-and-the-outside-world" class="section level2">
<h2>igraph and the outside world</h2>
<p>No graph module would be complete without some kind of import/export
functionality that enables the package to communicate with external
programs and toolkits. <code>igraph</code> is no exception: it provides
functions to read the most common graph formats and to save graphs into
files obeying these format specifications. The main functions for
reading and writing from/to file are <code>read_graph()</code> and
<code>write_graph()</code>, respectively. The following table summarises
the formats igraph can read or write:</p>
<table>
<colgroup>
<col width="25%" />
<col width="25%" />
<col width="25%" />
<col width="25%" />
</colgroup>
<thead>
<tr class="header">
<th>Format</th>
<th>Short name</th>
<th>Read function</th>
<th>Write function</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>Adjacency list (a.k.a. <a href="https://lgl.sourceforge.net/#FileFormat">LGL</a>)</td>
<td><code>lgl</code></td>
<td><code>read_graph(file, format = c("lgl"))</code></td>
<td><code>write_graph(graph, file, format = c("lgl"))</code></td>
</tr>
<tr class="even">
<td>Adjacency matrix</td>
<td><code>adjacency</code></td>
<td><code>graph_from_adjacency_matrix(adjmatrix, mode = c("directed", "undirected", "max", "min", "upper","lower", "plus"), weighted = NULL, diag = TRUE, add.colnames = NULL, add.rownames = NA)</code></td>
<td><code>as.matrix(graph, "adjacency")</code></td>
</tr>
<tr class="odd">
<td>DIMACS</td>
<td><code>dimacs</code></td>
<td><code>read_graph(file, format = c("dimacs"))</code></td>
<td><code>write_graph(graph, file, format = c("dimacs"))</code></td>
</tr>
<tr class="even">
<td>Edge list</td>
<td><code>edgelist</code></td>
<td><code>read_graph(file, format = c("edgelist"))</code></td>
<td><code>write_graph(graph, file, format = c("edgelist"))</code></td>
</tr>
<tr class="odd">
<td><a href="https://www.graphviz.org">GraphViz</a></td>
<td><code>dot</code></td>
<td>not supported yet</td>
<td><code>write_graph(graph, file, format = c("dot"))</code></td>
</tr>
<tr class="even">
<td>GML</td>
<td><code>gml</code></td>
<td><code>read_graph(file, format = c("gml"))</code></td>
<td><code>write_graph(graph, file, format = c("gml"))</code></td>
</tr>
<tr class="odd">
<td>GraphML</td>
<td><code>graphml</code></td>
<td><code>read_graph(file, format = c("graphml"))</code></td>
<td><code>write_graph(graph, file, format = c("graphml"))</code></td>
</tr>
<tr class="even">
<td>LEDA</td>
<td><code>leda</code></td>
<td>not supported yet</td>
<td><code>write_graph(graph, file, format = c("leda"))</code></td>
</tr>
<tr class="odd">
<td>Labeled edgelist (a.k.a. <a href="https://lgl.sourceforge.net/#FileFormat">NCOL</a>)</td>
<td><code>ncol</code></td>
<td><code>read_graph(file, format = c("ncol"))</code></td>
<td><code>write_graph(graph, file, format = c("ncol"))</code></td>
</tr>
<tr class="even">
<td><a href="http://mrvar.fdv.uni-lj.si/pajek/">Pajek</a> format</td>
<td><code>pajek</code></td>
<td><code>read_graph(file, format = c("pajek"))</code></td>
<td><code>write_graph(graph, file, format = c("pajek"))</code></td>
</tr>
</tbody>
</table>
<hr />
<p><strong>NOTE:</strong> Each file format has its own limitations. For
instance, not all of them can store attributes. Your best bet is
probably GraphML or GML if you want to save igraph graphs in a format
that can be read from an external package and you want to preserve
numeric and string attributes. Edge list and NCOL is also fine if you
don’t have attributes (NCOL supports vertex names and edge weights,
though).</p>
<hr />
</div>
<div id="where-to-go-next" class="section level2">
<h2>Where to go next</h2>
<p>This tutorial is a brief introduction to <code>igraph</code> in R. We
sincerely hope you enjoyed reading it and that it will be useful for
your own network analyses.</p>
<p>For a detailed description of specific functions, see <a href="https://r.igraph.org/reference/" class="uri">https://r.igraph.org/reference/</a>. For questions on how to
use <code>igraph</code>, please visit our <a href="https://igraph.discourse.group">Forum</a>. To report a bug, open a
<a href="https://github.com/igraph/rigraph/issues">Github issue</a>.
Please do not ask usage questions on Github directly as it’s meant for
developers rather than users.</p>
</div>
<div id="session-info" class="section level2">
<h2>Session info</h2>
<p>For the sake of reproducibility, the session information for the code
above is the following:</p>
<div class="sourceCode" id="cb113"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb113-1"><a href="#cb113-1" tabindex="-1"></a><span class="fu">sessionInfo</span>()</span></code></pre></div>
<pre><code>## R version 4.4.2 (2024-10-31)
## Platform: aarch64-apple-darwin20
## Running under: macOS Sequoia 15.2
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
##
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: Europe/Zurich
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] igraph_2.1.4
##
## loaded via a namespace (and not attached):
## [1] digest_0.6.37 R6_2.5.1 fastmap_1.2.0 Matrix_1.5-4.1
## [5] xfun_0.50 lattice_0.22-6 magrittr_2.0.3 glue_1.8.0
## [9] cachem_1.1.0 knitr_1.49 pkgconfig_2.0.3 htmltools_0.5.8.1
## [13] rmarkdown_2.29 lifecycle_1.0.4 cli_3.6.3 grid_4.4.2
## [17] vctrs_0.6.5 sass_0.4.9 jquerylib_0.1.4 compiler_4.4.2
## [21] rstudioapi_0.17.1 tools_4.4.2 pillar_1.10.1 evaluate_1.0.3
## [25] bslib_0.8.0 yaml_2.3.10 crayon_1.5.3 rlang_1.1.5
## [29] jsonlite_1.8.9</code></pre>
</div>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>
|