1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/centrality.R
\name{arpack_defaults}
\alias{arpack_defaults}
\alias{arpack}
\alias{arpack-options}
\alias{arpack.unpack.complex}
\title{ARPACK eigenvector calculation}
\usage{
arpack_defaults()
arpack(
func,
extra = NULL,
sym = FALSE,
options = arpack_defaults(),
env = parent.frame(),
complex = !sym
)
}
\arguments{
\item{func}{The function to perform the matrix-vector multiplication. ARPACK
requires to perform these by the user. The function gets the vector \eqn{x}
as the first argument, and it should return \eqn{Ax}, where \eqn{A} is the
\dQuote{input matrix}. (The input matrix is never given explicitly.) The
second argument is \code{extra}.}
\item{extra}{Extra argument to supply to \code{func}.}
\item{sym}{Logical scalar, whether the input matrix is symmetric. Always
supply \code{TRUE} here if it is, since it can speed up the computation.}
\item{options}{Options to ARPACK, a named list to overwrite some of the
default option values. See details below.}
\item{env}{The environment in which \code{func} will be evaluated.}
\item{complex}{Whether to convert the eigenvectors returned by ARPACK into R
complex vectors. By default this is not done for symmetric problems (these
only have real eigenvectors/values), but only non-symmetric ones. If you
have a non-symmetric problem, but you're sure that the results will be real,
then supply \code{FALSE} here.}
}
\value{
A named list with the following members: \item{values}{Numeric
vector, the desired eigenvalues.} \item{vectors}{Numeric matrix, the desired
eigenvectors as columns. If \code{complex=TRUE} (the default for
non-symmetric problems), then the matrix is complex.} \item{options}{A named
list with the supplied \code{options} and some information about the
performed calculation, including an ARPACK exit code. See the details above.
}
}
\description{
Interface to the ARPACK library for calculating eigenvectors of sparse
matrices
}
\details{
ARPACK is a library for solving large scale eigenvalue problems. The
package is designed to compute a few eigenvalues and corresponding
eigenvectors of a general \eqn{n} by \eqn{n} matrix \eqn{A}. It is most
appropriate for large sparse or structured matrices \eqn{A} where structured
means that a matrix-vector product \code{w <- Av} requires order \eqn{n}
rather than the usual order \eqn{n^2} floating point operations.
This function is an interface to ARPACK. igraph does not contain all ARPACK
routines, only the ones dealing with symmetric and non-symmetric eigenvalue
problems using double precision real numbers.
The eigenvalue calculation in ARPACK (in the simplest case) involves the
calculation of the \eqn{Av} product where \eqn{A} is the matrix we work with
and \eqn{v} is an arbitrary vector. The function supplied in the \code{fun}
argument is expected to perform this product. If the product can be done
efficiently, e.g. if the matrix is sparse, then \code{arpack()} is usually
able to calculate the eigenvalues very quickly.
The \code{options} argument specifies what kind of calculation to perform.
It is a list with the following members, they correspond directly to ARPACK
parameters. On input it has the following fields: \describe{
\item{bmat}{Character constant, possible values: \sQuote{\code{I}}, standard
eigenvalue problem, \eqn{Ax=\lambda x}{A*x=lambda*x}; and \sQuote{\code{G}},
generalized eigenvalue problem, \eqn{Ax=\lambda B x}{A*x=lambda B*x}.
Currently only \sQuote{\code{I}} is supported.} \item{n}{Numeric scalar. The
dimension of the eigenproblem. You only need to set this if you call
\code{\link[=arpack]{arpack()}} directly. (I.e. not needed for
\code{\link[=eigen_centrality]{eigen_centrality()}}, \code{\link[=page_rank]{page_rank()}}, etc.)}
\item{which}{Specify which eigenvalues/vectors to compute, character
constant with exactly two characters.
Possible values for symmetric input matrices: \describe{
\item{"LA"}{Compute \code{nev} largest (algebraic) eigenvalues.}
\item{"SA"}{Compute \code{nev} smallest (algebraic)
eigenvalues.} \item{"LM"}{Compute \code{nev} largest (in
magnitude) eigenvalues.} \item{"SM"}{Compute \code{nev} smallest
(in magnitude) eigenvalues.} \item{"BE"}{Compute \code{nev}
eigenvalues, half from each end of the spectrum. When \code{nev} is odd,
compute one more from the high end than from the low end.} }
Possible values for non-symmetric input matrices: \describe{
\item{"LM"}{Compute \code{nev} eigenvalues of largest
magnitude.} \item{"SM"}{Compute \code{nev} eigenvalues of
smallest magnitude.} \item{"LR"}{Compute \code{nev} eigenvalues
of largest real part.} \item{"SR"}{Compute \code{nev}
eigenvalues of smallest real part.} \item{"LI"}{Compute
\code{nev} eigenvalues of largest imaginary part.}
\item{"SI"}{Compute \code{nev} eigenvalues of smallest imaginary
part.} }
This parameter is sometimes overwritten by the various functions, e.g.
\code{\link[=page_rank]{page_rank()}} always sets \sQuote{\code{LM}}. }
\item{nev}{Numeric scalar. The number of eigenvalues to be computed.}
\item{tol}{Numeric scalar. Stopping criterion: the relative accuracy of the
Ritz value is considered acceptable if its error is less than \code{tol}
times its estimated value. If this is set to zero then machine precision is
used.} \item{ncv}{Number of Lanczos vectors to be generated.}
\item{ldv}{Numberic scalar. It should be set to zero in the current
implementation.} \item{ishift}{Either zero or one. If zero then the shifts
are provided by the user via reverse communication. If one then exact shifts
with respect to the reduced tridiagonal matrix \eqn{T}. Please always set
this to one.} \item{maxiter}{Maximum number of Arnoldi update iterations
allowed. } \item{nb}{Blocksize to be used in the recurrence. Please always
leave this on the default value, one.} \item{mode}{The type of the
eigenproblem to be solved. Possible values if the input matrix is
symmetric: \describe{ \item{1}{\eqn{Ax=\lambda x}{A*x=lambda*x}, \eqn{A} is
symmetric.} \item{2}{\eqn{Ax=\lambda Mx}{A*x=lambda*M*x}, \eqn{A} is
symmetric, \eqn{M} is symmetric positive definite.} \item{3}{\eqn{Kx=\lambda
Mx}{K*x=lambda*M*x}, \eqn{K} is symmetric, \eqn{M} is symmetric positive
semi-definite.} \item{4}{\eqn{Kx=\lambda KGx}{K*x=lambda*KG*x}, \eqn{K} is
symmetric positive semi-definite, \eqn{KG} is symmetric indefinite.}
\item{5}{\eqn{Ax=\lambda Mx}{A*x=lambda*M*x}, \eqn{A} is symmetric, \eqn{M}
is symmetric positive semi-definite. (Cayley transformed mode.)} } Please
note that only \code{mode==1} was tested and other values might not work
properly.
Possible values if the input matrix is not symmetric: \describe{
\item{1}{\eqn{Ax=\lambda x}{A*x=lambda*x}.} \item{2}{\eqn{Ax=\lambda
Mx}{A*x=lambda*M*x}, \eqn{M} is symmetric positive definite.}
\item{3}{\eqn{Ax=\lambda Mx}{A*x=lambda*M*x}, \eqn{M} is symmetric
semi-definite.} \item{4}{\eqn{Ax=\lambda Mx}{A*x=lambda*M*x}, \eqn{M} is
symmetric semi-definite.} } Please note that only \code{mode==1} was tested
and other values might not work properly. } \item{start}{Not used
currently. Later it be used to set a starting vector.} \item{sigma}{Not used
currently.} \item{sigmai}{Not use currently.}
On output the following additional fields are added: \describe{
\item{info}{Error flag of ARPACK. Possible values: \describe{
\item{0}{Normal exit.} \item{1}{Maximum number of iterations taken.}
\item{3}{No shifts could be applied during a cycle of the Implicitly
restarted Arnoldi iteration. One possibility is to increase the size of
\code{ncv} relative to \code{nev}.} }
ARPACK can return more error conditions than these, but they are converted
to regular igraph errors. } \item{iter}{Number of Arnoldi iterations
taken.} \item{nconv}{Number of \dQuote{converged} Ritz values. This
represents the number of Ritz values that satisfy the convergence critetion.
} \item{numop}{Total number of matrix-vector multiplications.}
\item{numopb}{Not used currently.} \item{numreo}{Total number of steps of
re-orthogonalization.} } } Please see the ARPACK documentation for
additional details.
}
\examples{
# Identity matrix
f <- function(x, extra = NULL) x
arpack(f, options = list(n = 10, nev = 2, ncv = 4), sym = TRUE)
# Graph laplacian of a star graph (undirected), n>=2
# Note that this is a linear operation
f <- function(x, extra = NULL) {
y <- x
y[1] <- (length(x) - 1) * x[1] - sum(x[-1])
for (i in 2:length(x)) {
y[i] <- x[i] - x[1]
}
y
}
arpack(f, options = list(n = 10, nev = 1, ncv = 3), sym = TRUE)
# double check
eigen(laplacian_matrix(make_star(10, mode = "undirected")))
## First three eigenvalues of the adjacency matrix of a graph
## We need the 'Matrix' package for this
if (require(Matrix)) {
set.seed(42)
g <- sample_gnp(1000, 5 / 1000)
M <- as_adjacency_matrix(g, sparse = TRUE)
f2 <- function(x, extra = NULL) {
cat(".")
as.vector(M \%*\% x)
}
baev <- arpack(f2, sym = TRUE, options = list(
n = vcount(g), nev = 3, ncv = 8,
which = "LM", maxiter = 2000
))
}
}
\references{
D.C. Sorensen, Implicit Application of Polynomial Filters in a
k-Step Arnoldi Method. \emph{SIAM J. Matr. Anal. Apps.}, 13 (1992), pp
357-385.
R.B. Lehoucq, Analysis and Implementation of an Implicitly Restarted Arnoldi
Iteration. \emph{Rice University Technical Report} TR95-13, Department of
Computational and Applied Mathematics.
B.N. Parlett & Y. Saad, Complex Shift and Invert Strategies for Real
Matrices. \emph{Linear Algebra and its Applications}, vol 88/89, pp 575-595,
(1987).
}
\seealso{
\code{\link[=eigen_centrality]{eigen_centrality()}}, \code{\link[=page_rank]{page_rank()}},
\code{\link[=hub_score]{hub_score()}}, \code{\link[=cluster_leading_eigen]{cluster_leading_eigen()}} are some of the
functions in igraph that use ARPACK.
}
\author{
Rich Lehoucq, Kristi Maschhoff, Danny Sorensen, Chao Yang for
ARPACK, Gabor Csardi \email{csardi.gabor@gmail.com} for the R interface.
}
\concept{arpack}
\keyword{graphs}
|