1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/community.R
\name{cluster_fast_greedy}
\alias{cluster_fast_greedy}
\title{Community structure via greedy optimization of modularity}
\usage{
cluster_fast_greedy(
graph,
merges = TRUE,
modularity = TRUE,
membership = TRUE,
weights = NULL
)
}
\arguments{
\item{graph}{The input graph. It must be undirected and must not have
multi-edges.}
\item{merges}{Logical scalar, whether to return the merge matrix.}
\item{modularity}{Logical scalar, whether to return a vector containing the
modularity after each merge.}
\item{membership}{Logical scalar, whether to calculate the membership vector
corresponding to the maximum modularity score, considering all possible
community structures along the merges.}
\item{weights}{The weights of the edges. It must be a positive numeric vector,
\code{NULL} or \code{NA}. If it is \code{NULL} and the input graph has a
\sQuote{weight} edge attribute, then that attribute will be used. If
\code{NULL} and no such attribute is present, then the edges will have equal
weights. Set this to \code{NA} if the graph was a \sQuote{weight} edge
attribute, but you don't want to use it for community detection. A larger
edge weight means a stronger connection for this function.}
}
\value{
\code{cluster_fast_greedy()} returns a \code{\link[=communities]{communities()}}
object, please see the \code{\link[=communities]{communities()}} manual page for details.
}
\description{
This function tries to find dense subgraph, also called communities in
graphs via directly optimizing a modularity score.
}
\details{
This function implements the fast greedy modularity optimization algorithm
for finding community structure, see A Clauset, MEJ Newman, C Moore: Finding
community structure in very large networks,
http://www.arxiv.org/abs/cond-mat/0408187 for the details.
}
\examples{
g <- make_full_graph(5) \%du\% make_full_graph(5) \%du\% make_full_graph(5)
g <- add_edges(g, c(1, 6, 1, 11, 6, 11))
fc <- cluster_fast_greedy(g)
membership(fc)
sizes(fc)
}
\references{
A Clauset, MEJ Newman, C Moore: Finding community structure in
very large networks, http://www.arxiv.org/abs/cond-mat/0408187
}
\seealso{
\code{\link[=communities]{communities()}} for extracting the results.
See also \code{\link[=cluster_walktrap]{cluster_walktrap()}},
\code{\link[=cluster_spinglass]{cluster_spinglass()}},
\code{\link[=cluster_leading_eigen]{cluster_leading_eigen()}} and
\code{\link[=cluster_edge_betweenness]{cluster_edge_betweenness()}}, \code{\link[=cluster_louvain]{cluster_louvain()}}
\code{\link[=cluster_leiden]{cluster_leiden()}} for other methods.
Community detection
\code{\link{as_membership}()},
\code{\link{cluster_edge_betweenness}()},
\code{\link{cluster_fluid_communities}()},
\code{\link{cluster_infomap}()},
\code{\link{cluster_label_prop}()},
\code{\link{cluster_leading_eigen}()},
\code{\link{cluster_leiden}()},
\code{\link{cluster_louvain}()},
\code{\link{cluster_optimal}()},
\code{\link{cluster_spinglass}()},
\code{\link{cluster_walktrap}()},
\code{\link{compare}()},
\code{\link{groups}()},
\code{\link{make_clusters}()},
\code{\link{membership}()},
\code{\link{modularity.igraph}()},
\code{\link{plot_dendrogram}()},
\code{\link{split_join_distance}()},
\code{\link{voronoi_cells}()}
}
\author{
Tamas Nepusz \email{ntamas@gmail.com} and Gabor Csardi
\email{csardi.gabor@gmail.com} for the R interface.
}
\concept{community}
\keyword{graphs}
|