1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/cohesive.blocks.R
\name{cohesive_blocks}
\alias{cohesive_blocks}
\alias{cohesiveBlocks}
\alias{blocks}
\alias{hierarchy}
\alias{parent}
\alias{export_pajek}
\alias{plot.cohesiveBlocks}
\alias{summary.cohesiveBlocks}
\alias{length.cohesiveBlocks}
\alias{print.cohesiveBlocks}
\alias{graphs_from_cohesive_blocks}
\alias{cohesion.cohesiveBlocks}
\alias{plot_hierarchy}
\alias{max_cohesion}
\title{Calculate Cohesive Blocks}
\usage{
cohesive_blocks(graph, labels = TRUE)
\method{length}{cohesiveBlocks}(x)
blocks(blocks)
graphs_from_cohesive_blocks(blocks, graph)
\method{cohesion}{cohesiveBlocks}(x, ...)
hierarchy(blocks)
parent(blocks)
\method{print}{cohesiveBlocks}(x, ...)
\method{summary}{cohesiveBlocks}(object, ...)
\method{plot}{cohesiveBlocks}(
x,
y,
colbar = rainbow(max(cohesion(x)) + 1),
col = colbar[max_cohesion(x) + 1],
mark.groups = blocks(x)[-1],
...
)
plot_hierarchy(
blocks,
layout = layout_as_tree(hierarchy(blocks), root = 1),
...
)
export_pajek(blocks, graph, file, project.file = TRUE)
max_cohesion(blocks)
}
\arguments{
\item{graph}{For \code{cohesive_blocks()} a graph object of class
\code{igraph}. It must be undirected and simple. (See
\code{\link[=is_simple]{is_simple()}}.)
For \code{graphs_from_cohesive_blocks()} and \code{export_pajek()} the same graph must be
supplied whose cohesive block structure is given in the \code{blocks()}
argument.}
\item{labels}{Logical scalar, whether to add the vertex labels to the result
object. These labels can be then used when reporting and plotting the
cohesive blocks.}
\item{blocks, x, object}{A \code{cohesiveBlocks} object, created with the
\code{cohesive_blocks()} function.}
\item{\dots}{Additional arguments. \code{plot_hierarchy()} and \code{\link[=plot]{plot()}} pass
them to \code{plot.igraph()}. \code{\link[=print]{print()}} and \code{\link[=summary]{summary()}} ignore them.}
\item{y}{The graph whose cohesive blocks are supplied in the \code{x}
argument.}
\item{colbar}{Color bar for the vertex colors. Its length should be at least
\eqn{m+1}, where \eqn{m} is the maximum cohesion in the graph.
Alternatively, the vertex colors can also be directly specified via the
\code{col} argument.}
\item{col}{A vector of vertex colors, in any of the usual formats. (Symbolic
color names (e.g. \sQuote{red}, \sQuote{blue}, etc.) , RGB colors (e.g.
\sQuote{#FF9900FF}), integer numbers referring to the current palette. By
default the given \code{colbar} is used and vertices with the same maximal
cohesion will have the same color.}
\item{mark.groups}{A list of vertex sets to mark on the plot by circling
them. By default all cohesive blocks are marked, except the one
corresponding to the all vertices.}
\item{layout}{The layout of a plot, it is simply passed on to
\code{plot.igraph()}, see the possible formats there. By default the
Reingold-Tilford layout generator is used.}
\item{file}{Defines the file (or connection) the Pajek file is written to.
If the \code{project.file} argument is \code{TRUE}, then it can be a
filename (with extension), a file object, or in general any king of
connection object. The file/connection will be opened if it wasn't already.
If the \code{project.file} argument is \code{FALSE}, then several files are
created and \code{file} must be a character scalar containing the base name
of the files, without extension. (But it can contain the path to the files.)
See also details below.}
\item{project.file}{Logical scalar, whether to create a single Pajek project
file containing all the data, or to create separated files for each item.
See details below.}
}
\value{
\code{cohesive_blocks()} returns a \code{cohesiveBlocks} object.
\code{blocks()} returns a list of numeric vectors, containing vertex ids.
\code{graphs_from_cohesive_blocks()} returns a list of igraph graphs, corresponding to the
cohesive blocks.
\code{cohesion()} returns a numeric vector, the cohesion of each block.
\code{hierarchy()} returns an igraph graph, the representation of the cohesive
block hierarchy.
\code{parent()} returns a numeric vector giving the parent block of each
cohesive block, in the block hierarchy. The block at the root of the
hierarchy has no parent and \code{0} is returned for it.
\code{plot_hierarchy()}, \code{\link[=plot]{plot()}} and \code{export_pajek()} return \code{NULL},
invisibly.
\code{max_cohesion()} returns a numeric vector with one entry for each vertex,
giving the cohesion of its most cohesive block.
\code{\link[=print]{print()}} and \code{\link[=summary]{summary()}} return the \code{cohesiveBlocks} object
itself, invisibly.
\code{length} returns a numeric scalar, the number of blocks.
}
\description{
Calculates cohesive blocks for objects of class \code{igraph}.
}
\details{
Cohesive blocking is a method of determining hierarchical subsets of graph
vertices based on their structural cohesion (or vertex connectivity). For a
given graph \eqn{G}, a subset of its vertices \eqn{S\subset V(G)}{S} is said
to be maximally \eqn{k}-cohesive if there is no superset of \eqn{S} with
vertex connectivity greater than or equal to \eqn{k}. Cohesive blocking is a
process through which, given a \eqn{k}-cohesive set of vertices, maximally
\eqn{l}-cohesive subsets are recursively identified with \eqn{l>k}. Thus a
hierarchy of vertex subsets is found, with the entire graph \eqn{G} at its
root.
The function \code{cohesive_blocks()} implements cohesive blocking. It
returns a \code{cohesiveBlocks} object. \code{cohesiveBlocks} should be
handled as an opaque class, i.e. its internal structure should not be
accessed directly, but through the functions listed here.
The function \code{length} can be used on \code{cohesiveBlocks} objects and
it gives the number of blocks.
The function \code{blocks()} returns the actual blocks stored in the
\code{cohesiveBlocks} object. They are returned in a list of numeric
vectors, each containing vertex ids.
The function \code{graphs_from_cohesive_blocks()} is similar, but returns the blocks as
(induced) subgraphs of the input graph. The various (graph, vertex and edge)
attributes are kept in the subgraph.
The function \code{cohesion()} returns a numeric vector, the cohesion of the
different blocks. The order of the blocks is the same as for the
\code{blocks()} and \code{graphs_from_cohesive_blocks()} functions.
The block hierarchy can be queried using the \code{hierarchy()} function. It
returns an igraph graph, its vertex ids are ordered according the order of
the blocks in the \code{blocks()} and \code{graphs_from_cohesive_blocks()}, \code{cohesion()},
etc. functions.
\code{parent()} gives the parent vertex of each block, in the block hierarchy,
for the root vertex it gives 0.
\code{plot_hierarchy()} plots the hierarchy tree of the cohesive blocks on the
active graphics device, by calling \code{igraph.plot}.
The \code{export_pajek()} function can be used to export the graph and its
cohesive blocks in Pajek format. It can either export a single Pajek project
file with all the information, or a set of files, depending on its
\code{project.file} argument. If \code{project.file} is \code{TRUE}, then
the following information is written to the file (or connection) given in
the \code{file} argument: (1) the input graph, together with its attributes,
see \code{\link[=write_graph]{write_graph()}} for details; (2) the hierarchy graph; and (3)
one binary partition for each cohesive block. If \code{project.file} is
\code{FALSE}, then the \code{file} argument must be a character scalar and
it is used as the base name for the generated files. If \code{file} is
\sQuote{basename}, then the following files are created: (1)
\sQuote{basename.net} for the original graph; (2)
\sQuote{basename_hierarchy.net} for the hierarchy graph; (3)
\sQuote{basename_block_x.net} for each cohesive block, where \sQuote{x} is
the number of the block, starting with one.
\code{max_cohesion()} returns the maximal cohesion of each vertex, i.e. the
cohesion of the most cohesive block of the vertex.
The generic function \code{\link[=summary]{summary()}} works on \code{cohesiveBlocks} objects
and it prints a one line summary to the terminal.
The generic function \code{\link[=print]{print()}} is also defined on \code{cohesiveBlocks}
objects and it is invoked automatically if the name of the
\code{cohesiveBlocks} object is typed in. It produces an output like this:
\preformatted{ Cohesive block structure:
B-1 c 1, n 23
'- B-2 c 2, n 14 oooooooo.. .o......oo ooo
'- B-4 c 5, n 7 ooooooo... .......... ...
'- B-3 c 2, n 10 ......o.oo o.oooooo.. ...
'- B-5 c 3, n 4 ......o.oo o......... ... }
The left part shows the block structure, in this case for five
blocks. The first block always corresponds to the whole graph, even if its
cohesion is zero. Then cohesion of the block and the number of vertices in
the block are shown. The last part is only printed if the display is wide
enough and shows the vertices in the blocks, ordered by vertex ids.
\sQuote{o} means that the vertex is included, a dot means that it is not,
and the vertices are shown in groups of ten.
The generic function \code{\link[=plot]{plot()}} plots the graph, showing one or more
cohesive blocks in it.
}
\examples{
## The graph from the Moody-White paper
mw <- graph_from_literal(
1 - 2:3:4:5:6, 2 - 3:4:5:7, 3 - 4:6:7, 4 - 5:6:7,
5 - 6:7:21, 6 - 7, 7 - 8:11:14:19, 8 - 9:11:14, 9 - 10,
10 - 12:13, 11 - 12:14, 12 - 16, 13 - 16, 14 - 15, 15 - 16,
17 - 18:19:20, 18 - 20:21, 19 - 20:22:23, 20 - 21,
21 - 22:23, 22 - 23
)
mwBlocks <- cohesive_blocks(mw)
# Inspect block membership and cohesion
mwBlocks
blocks(mwBlocks)
cohesion(mwBlocks)
# Save results in a Pajek file
file <- tempfile(fileext = ".paj")
export_pajek(mwBlocks, mw, file = file)
if (!interactive()) {
unlink(file)
}
# Plot the results
plot(mwBlocks, mw)
## The science camp network
camp <- graph_from_literal(
Harry:Steve:Don:Bert - Harry:Steve:Don:Bert,
Pam:Brazey:Carol:Pat - Pam:Brazey:Carol:Pat,
Holly - Carol:Pat:Pam:Jennie:Bill,
Bill - Pauline:Michael:Lee:Holly,
Pauline - Bill:Jennie:Ann,
Jennie - Holly:Michael:Lee:Ann:Pauline,
Michael - Bill:Jennie:Ann:Lee:John,
Ann - Michael:Jennie:Pauline,
Lee - Michael:Bill:Jennie,
Gery - Pat:Steve:Russ:John,
Russ - Steve:Bert:Gery:John,
John - Gery:Russ:Michael
)
campBlocks <- cohesive_blocks(camp)
campBlocks
plot(campBlocks, camp,
vertex.label = V(camp)$name, margin = -0.2,
vertex.shape = "rectangle", vertex.size = 24, vertex.size2 = 8,
mark.border = 1, colbar = c(NA, NA, "cyan", "orange")
)
}
\references{
J. Moody and D. R. White. Structural cohesion and embeddedness:
A hierarchical concept of social groups. \emph{American Sociological
Review}, 68(1):103--127, Feb 2003, \doi{10.2307/3088904}.
}
\seealso{
\code{\link[=cohesion]{cohesion()}}
}
\author{
Gabor Csardi \email{csardi.gabor@gmail.com} for the current
implementation, Peter McMahan (\url{https://socialsciences.uchicago.edu/news/alumni-profile-peter-mcmahan-phd17-sociology})
wrote the first version in R.
}
\concept{cohesive.blocks}
\keyword{graphs}
|