File: constraint.Rd

package info (click to toggle)
r-cran-igraph 2.1.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 27,044 kB
  • sloc: ansic: 204,981; cpp: 21,711; fortran: 4,090; yacc: 1,229; lex: 519; sh: 52; makefile: 8
file content (86 lines) | stat: -rw-r--r-- 2,653 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/structural.properties.R
\name{constraint}
\alias{constraint}
\title{Burt's constraint}
\usage{
constraint(graph, nodes = V(graph), weights = NULL)
}
\arguments{
\item{graph}{A graph object, the input graph.}

\item{nodes}{The vertices for which the constraint will be calculated.
Defaults to all vertices.}

\item{weights}{The weights of the edges. If this is \code{NULL} and there is
a \code{weight} edge attribute this is used. If there is no such edge
attribute all edges will have the same weight.}
}
\value{
A numeric vector of constraint scores
}
\description{
Given a graph, \code{constraint()} calculates Burt's constraint for each
vertex.
}
\details{
Burt's constraint is higher if ego has less, or mutually
stronger related (i.e. more redundant) contacts. Burt's measure of
constraint, \eqn{C_i}{C[i]}, of vertex \eqn{i}'s ego network
\eqn{V_i}{V[i]}, is defined for directed and valued graphs,
\deqn{C_i=\sum_{j \in V_i \setminus \{i\}} (p_{ij}+\sum_{q \in V_i
    \setminus \{i,j\}} p_{iq} p_{qj})^2}{
  C[i] = sum( [sum( p[i,j] + p[i,q] p[q,j], q in V[i], q != i,j )]^2, j in
  V[i], j != i).
}
for a graph of order (i.e. number of vertices) \eqn{N}, where
proportional tie strengths are defined as
\deqn{p_{ij} = \frac{a_{ij}+a_{ji}}{\sum_{k \in V_i \setminus \{i\}}(a_{ik}+a_{ki})},}{
  p[i,j]=(a[i,j]+a[j,i]) / sum(a[i,k]+a[k,i], k in V[i], k != i),
}
\eqn{a_{ij}}{a[i,j]} are elements of \eqn{A} and the latter being the
graph adjacency matrix. For isolated vertices, constraint is undefined.
}
\examples{

g <- sample_gnp(20, 5 / 20)
constraint(g)

}
\references{
Burt, R.S. (2004). Structural holes and good ideas.
\emph{American Journal of Sociology} 110, 349-399.
}
\seealso{
Other structural.properties: 
\code{\link{bfs}()},
\code{\link{component_distribution}()},
\code{\link{connect}()},
\code{\link{coreness}()},
\code{\link{degree}()},
\code{\link{dfs}()},
\code{\link{distance_table}()},
\code{\link{edge_density}()},
\code{\link{feedback_arc_set}()},
\code{\link{girth}()},
\code{\link{is_acyclic}()},
\code{\link{is_dag}()},
\code{\link{is_matching}()},
\code{\link{k_shortest_paths}()},
\code{\link{knn}()},
\code{\link{reciprocity}()},
\code{\link{subcomponent}()},
\code{\link{subgraph}()},
\code{\link{topo_sort}()},
\code{\link{transitivity}()},
\code{\link{unfold_tree}()},
\code{\link{which_multiple}()},
\code{\link{which_mutual}()}
}
\author{
Jeroen Bruggeman
(\url{https://sites.google.com/site/jebrug/jeroen-bruggeman-social-science})
and Gabor Csardi \email{csardi.gabor@gmail.com}
}
\concept{structural.properties}
\keyword{graphs}