File: hrg.predict.Rd

package info (click to toggle)
r-cran-igraph 2.1.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 27,044 kB
  • sloc: ansic: 204,981; cpp: 21,711; fortran: 4,090; yacc: 1,229; lex: 519; sh: 52; makefile: 8
file content (39 lines) | stat: -rw-r--r-- 1,270 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/hrg.R
\name{hrg.predict}
\alias{hrg.predict}
\title{Predict edges based on a hierarchical random graph model}
\usage{
hrg.predict(
  graph,
  hrg = NULL,
  start = FALSE,
  num.samples = 10000,
  num.bins = 25
)
}
\arguments{
\item{graph}{The graph to fit the model to. Edge directions are ignored in
directed graphs.}

\item{hrg}{A hierarchical random graph model, in the form of an
\code{igraphHRG} object. \code{predict_edges()} allow this to be
\code{NULL} as well, then a HRG is fitted to the graph first, from a
random starting point.}

\item{start}{Logical, whether to start the fitting/sampling from the
supplied \code{igraphHRG} object, or from a random starting point.}

\item{num.samples}{Number of samples to use for consensus generation or
missing edge prediction.}

\item{num.bins}{Number of bins for the edge probabilities. Give a higher
number for a more accurate prediction.}
}
\description{
\ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#deprecated}{\figure{lifecycle-deprecated.svg}{options: alt='[Deprecated]'}}}{\strong{[Deprecated]}}

\code{hrg.predict()} was renamed to \code{predict_edges()} to create a more
consistent API.
}
\keyword{internal}