1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/make.R
\name{make_chordal_ring}
\alias{make_chordal_ring}
\alias{chordal_ring}
\title{Create an extended chordal ring graph}
\usage{
make_chordal_ring(n, w, directed = FALSE)
chordal_ring(...)
}
\arguments{
\item{n}{The number of vertices.}
\item{w}{A matrix which specifies the extended chordal ring. See
details below.}
\item{directed}{Logical scalar, whether or not to create a directed graph.}
\item{...}{Passed to \code{make_chordal_ring()}.}
}
\value{
An igraph graph.
}
\description{
\code{make_chordal_ring()} creates an extended chordal ring.
An extended chordal ring is regular graph, each node has the same
degree. It can be obtained from a simple ring by adding some extra
edges specified by a matrix. Let p denote the number of columns in
the \sQuote{\code{W}} matrix. The extra edges of vertex \code{i}
are added according to column \verb{i mod p} in
\sQuote{\code{W}}. The number of extra edges is the number
of rows in \sQuote{\code{W}}: for each row \code{j} an edge
\code{i->i+w[ij]} is added if \code{i+w[ij]} is less than the number
of total nodes. See also Kotsis, G: Interconnection Topologies for
Parallel Processing Systems, PARS Mitteilungen 11, 1-6, 1993.
}
\examples{
chord <- make_chordal_ring(
15,
matrix(c(3, 12, 4, 7, 8, 11), nr = 2)
)
}
\seealso{
Other deterministic constructors:
\code{\link{graph_from_atlas}()},
\code{\link{graph_from_edgelist}()},
\code{\link{graph_from_literal}()},
\code{\link{make_}()},
\code{\link{make_empty_graph}()},
\code{\link{make_full_citation_graph}()},
\code{\link{make_full_graph}()},
\code{\link{make_graph}()},
\code{\link{make_lattice}()},
\code{\link{make_ring}()},
\code{\link{make_star}()},
\code{\link{make_tree}()}
}
\concept{deterministic constructors}
|