1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/hrg.R
\name{print.igraphHRG}
\alias{print.igraphHRG}
\title{Print a hierarchical random graph model to the screen}
\usage{
\method{print}{igraphHRG}(x, type = c("auto", "tree", "plain"), level = 3, ...)
}
\arguments{
\item{x}{\code{igraphHRG} object to print.}
\item{type}{How to print the dendrogram, see details below.}
\item{level}{The number of top levels to print from the dendrogram.}
\item{...}{Additional arguments, not used currently.}
}
\value{
The hierarchical random graph model itself, invisibly.
}
\description{
\code{igraphHRG} objects can be printed to the screen in two forms: as
a tree or as a list, depending on the \code{type} argument of the
print function. By default the \code{auto} type is used, which selects
\code{tree} for small graphs and \code{simple} (=list) for bigger
ones. The \code{tree} format looks like
this: \preformatted{Hierarchical random graph, at level 3:
g1 p= 0
'- g15 p=0.33 1
'- g13 p=0.88 6 3 9 4 2 10 7 5 8
'- g8 p= 0.5
'- g16 p= 0.2 20 14 17 19 11 15 16 13
'- g5 p= 0 12 18 }
This is a graph with 20 vertices, and the
top three levels of the fitted hierarchical random graph are
printed. The root node of the HRG is always vertex group #1
(\sQuote{\code{g1}} in the the printout). Vertex pairs in the left
subtree of \code{g1} connect to vertices in the right subtree with
probability zero, according to the fitted model. \code{g1} has two
subgroups, \code{g15} and \code{g8}. \code{g15} has a subgroup of a
single vertex (vertex 1), and another larger subgroup that contains
vertices 6, 3, etc. on lower levels, etc.
The \code{plain} printing is simpler and faster to produce, but less
visual: \preformatted{Hierarchical random graph:
g1 p=0.0 -> g12 g10 g2 p=1.0 -> 7 10 g3 p=1.0 -> g18 14
g4 p=1.0 -> g17 15 g5 p=0.4 -> g15 17 g6 p=0.0 -> 1 4
g7 p=1.0 -> 11 16 g8 p=0.1 -> g9 3 g9 p=0.3 -> g11 g16
g10 p=0.2 -> g4 g5 g11 p=1.0 -> g6 5 g12 p=0.8 -> g8 8
g13 p=0.0 -> g14 9 g14 p=1.0 -> 2 6 g15 p=0.2 -> g19 18
g16 p=1.0 -> g13 g2 g17 p=0.5 -> g7 13 g18 p=1.0 -> 12 19
g19 p=0.7 -> g3 20}
It lists the two subgroups of each internal node, in
as many columns as the screen width allows.
}
\seealso{
Other hierarchical random graph functions:
\code{\link{consensus_tree}()},
\code{\link{fit_hrg}()},
\code{\link{hrg}()},
\code{\link{hrg-methods}},
\code{\link{hrg_tree}()},
\code{\link{predict_edges}()},
\code{\link{print.igraphHRGConsensus}()},
\code{\link{sample_hrg}()}
}
\concept{hierarchical random graph functions}
|