File: weighted_cliques.Rd

package info (click to toggle)
r-cran-igraph 2.1.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 27,044 kB
  • sloc: ansic: 204,981; cpp: 21,711; fortran: 4,090; yacc: 1,229; lex: 519; sh: 52; makefile: 8
file content (79 lines) | stat: -rw-r--r-- 2,749 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/cliques.R
\name{weighted_cliques}
\alias{weighted_cliques}
\title{Functions to find weighted cliques, i.e. vertex-weighted complete subgraphs in a graph}
\usage{
weighted_cliques(
  graph,
  vertex.weights = NULL,
  min.weight = 0,
  max.weight = 0,
  maximal = FALSE
)
}
\arguments{
\item{graph}{The input graph, directed graphs will be considered as
undirected ones, multiple edges and loops are ignored.}

\item{vertex.weights}{Vertex weight vector. If the graph has a \code{weight}
vertex attribute, then this is used by default. If the graph does not have a
\code{weight} vertex attribute and this argument is \code{NULL}, then every
vertex is assumed to have a weight of 1. Note that the current implementation
of the weighted clique finder supports positive integer weights only.}

\item{min.weight}{Numeric constant, lower limit on the weight of the cliques to find.
\code{NULL} means no limit, i.e. it is the same as 0.}

\item{max.weight}{Numeric constant, upper limit on the weight of the cliques to find.
\code{NULL} means no limit.}

\item{maximal}{Specifies whether to look for all weighted cliques (\code{FALSE})
or only the maximal ones (\code{TRUE}).}
}
\value{
\code{weighted_cliques()} and \code{largest_weighted_cliques()} return a
list containing numeric vectors of vertex IDs. Each list element is a weighted
clique, i.e. a vertex sequence of class \code{\link[=V]{igraph.vs()}}.

\code{weighted_clique_num()} returns an integer scalar.
}
\description{
These functions find all, the largest or all the maximal weighted cliques in
an undirected graph. The weight of a clique is the sum of the weights of its
vertices.
}
\details{
\code{weighted_cliques()} finds all complete subgraphs in the input graph,
obeying the weight limitations given in the \code{min} and \code{max}
arguments.

\code{largest_weighted_cliques()} finds all largest weighted cliques in the
input graph. A clique is largest if there is no other clique whose total
weight is larger than the weight of this clique.

\code{weighted_clique_num()} calculates the weight of the largest weighted clique(s).
}
\examples{

g <- make_graph("zachary")
V(g)$weight <- 1
V(g)[c(1, 2, 3, 4, 14)]$weight <- 3
weighted_cliques(g)
weighted_cliques(g, maximal = TRUE)
largest_weighted_cliques(g)
weighted_clique_num(g)
}
\seealso{
Other cliques: 
\code{\link{cliques}()},
\code{\link{ivs}()}
}
\author{
Tamas Nepusz \email{ntamas@gmail.com} and Gabor Csardi
\email{csardi.gabor@gmail.com}
}
\concept{cliques}
\keyword{graphs}
\section{Related documentation in the C library}{\href{https://igraph.org/c/html/latest/igraph-Cliques.html#igraph_weighted_cliques}{\code{igraph_weighted_cliques()}}.}