1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
|
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="author" content="Michał Bojanowski" />
<title>Short intergraph tutorial</title>
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
var i, h, a;
for (i = 0; i < hs.length; i++) {
h = hs[i];
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
a = h.attributes;
while (a.length > 0) h.removeAttribute(a[0].name);
}
});
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; }
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.at { color: #7d9029; }
code span.bn { color: #40a070; }
code span.bu { color: #008000; }
code span.cf { color: #007020; font-weight: bold; }
code span.ch { color: #4070a0; }
code span.cn { color: #880000; }
code span.co { color: #60a0b0; font-style: italic; }
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.do { color: #ba2121; font-style: italic; }
code span.dt { color: #902000; }
code span.dv { color: #40a070; }
code span.er { color: #ff0000; font-weight: bold; }
code span.ex { }
code span.fl { color: #40a070; }
code span.fu { color: #06287e; }
code span.im { color: #008000; font-weight: bold; }
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.kw { color: #007020; font-weight: bold; }
code span.op { color: #666666; }
code span.ot { color: #007020; }
code span.pp { color: #bc7a00; }
code span.sc { color: #4070a0; }
code span.ss { color: #bb6688; }
code span.st { color: #4070a0; }
code span.va { color: #19177c; }
code span.vs { color: #4070a0; }
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
var j = 0;
while (j < rules.length) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
j++;
continue;
}
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') {
j++;
continue;
}
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap;
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }
code > span.kw { color: #555; font-weight: bold; }
code > span.dt { color: #902000; }
code > span.dv { color: #40a070; }
code > span.bn { color: #d14; }
code > span.fl { color: #d14; }
code > span.ch { color: #d14; }
code > span.st { color: #d14; }
code > span.co { color: #888888; font-style: italic; }
code > span.ot { color: #007020; }
code > span.al { color: #ff0000; font-weight: bold; }
code > span.fu { color: #900; font-weight: bold; }
code > span.er { color: #a61717; background-color: #e3d2d2; }
</style>
</head>
<body>
<h1 class="title toc-ignore">Short <code>intergraph</code> tutorial</h1>
<h4 class="author">Michał Bojanowski</h4>
<div id="TOC">
<ul>
<li><a href="#loading-example-data" id="toc-loading-example-data"><span class="toc-section-number">1</span> Loading example data</a></li>
<li><a href="#functions-asnetwork-and-asigraph" id="toc-functions-asnetwork-and-asigraph"><span class="toc-section-number">2</span> Functions <code>asNetwork</code> and
<code>asIgraph</code></a>
<ul>
<li><a href="#network-igraph" id="toc-network-igraph"><span class="toc-section-number">2.1</span> network => igraph</a></li>
<li><a href="#igraph-network" id="toc-igraph-network"><span class="toc-section-number">2.2</span> igraph => network</a></li>
<li><a href="#handling-attributes" id="toc-handling-attributes"><span class="toc-section-number">2.3</span> Handling attributes</a></li>
</ul></li>
<li><a href="#network-objects-tofrom-data-frames" id="toc-network-objects-tofrom-data-frames"><span class="toc-section-number">3</span> Network objects to/from data
frames</a></li>
<li><a href="#appendix" id="toc-appendix"><span class="toc-section-number">4</span> Appendix</a>
<ul>
<li><a href="#example-networks" id="toc-example-networks"><span class="toc-section-number">4.1</span> Example networks</a></li>
<li><a href="#session-information" id="toc-session-information"><span class="toc-section-number">4.2</span> Session information</a></li>
</ul></li>
</ul>
</div>
<!--
vim:spell:spelllang=en_us
-->
<hr />
<p>“Intergraph” is an R package with coercion routines for netowrk data
objects. For more information, see</p>
<ul>
<li>Homepage on <a href="https://mbojan.github.io/intergraph/">https://mbojan.github.io/intergraph/</a>.</li>
<li>Package development pages on <a href="https://github.com/mbojan/intergraph">https://github.com/mbojan/intergraph</a>.</li>
</ul>
<p>This is a short tutorial showing how to use functions in package
“intergraph” using some example network data contained in the
package.</p>
<div id="loading-example-data" class="section level1" number="1">
<h1><span class="header-section-number">1</span> Loading example
data</h1>
<p>To show the data, first load the packages.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">library</span>(intergraph)</span>
<span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a><span class="fu">library</span>(network)</span></code></pre></div>
<pre><code>##
## 'network' 1.18.2 (2023-12-04), part of the Statnet Project
## * 'news(package="network")' for changes since last version
## * 'citation("network")' for citation information
## * 'https://statnet.org' for help, support, and other information</code></pre>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="fu">library</span>(igraph)</span></code></pre></div>
<pre><code>##
## Attaching package: 'igraph'</code></pre>
<pre><code>## The following objects are masked from 'package:network':
##
## %c%, %s%, add.edges, add.vertices, delete.edges, delete.vertices,
## get.edge.attribute, get.edges, get.vertex.attribute, is.bipartite,
## is.directed, list.edge.attributes, list.vertex.attributes,
## set.edge.attribute, set.vertex.attribute</code></pre>
<pre><code>## The following objects are masked from 'package:stats':
##
## decompose, spectrum</code></pre>
<pre><code>## The following object is masked from 'package:base':
##
## union</code></pre>
<p>Now, these are the summaries of the “igraph” objects:</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a><span class="fu">summary</span>(exIgraph)</span></code></pre></div>
<pre><code>## IGRAPH 258c8b4 D--- 15 11 --
## + attr: label (v/c), label (e/c)</code></pre>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" tabindex="-1"></a><span class="fu">summary</span>(exIgraph2)</span></code></pre></div>
<pre><code>## IGRAPH 66a1bae U--- 15 11 --
## + attr: label (v/c), label (e/c)</code></pre>
<p>These are the summaries of the “network” objects:</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" tabindex="-1"></a>exNetwork</span></code></pre></div>
<pre><code>## Network attributes:
## vertices = 15
## directed = TRUE
## hyper = FALSE
## loops = FALSE
## multiple = FALSE
## bipartite = FALSE
## total edges= 11
## missing edges= 0
## non-missing edges= 11
##
## Vertex attribute names:
## label vertex.names
##
## Edge attribute names:
## label</code></pre>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" tabindex="-1"></a>exNetwork2</span></code></pre></div>
<pre><code>## Network attributes:
## vertices = 15
## directed = FALSE
## hyper = FALSE
## loops = FALSE
## multiple = FALSE
## bipartite = FALSE
## total edges= 11
## missing edges= 0
## non-missing edges= 11
##
## Vertex attribute names:
## label vertex.names
##
## Edge attribute names:
## label</code></pre>
<p>More information is available in the Appendix.</p>
</div>
<div id="functions-asnetwork-and-asigraph" class="section level1" number="2">
<h1><span class="header-section-number">2</span> Functions
<code>asNetwork</code> and <code>asIgraph</code></h1>
<p>Conversion of network objects between classes “network” and “igraph”
can be performed using functions <code>asNetwork</code> and
<code>asIgraph</code>.</p>
<div id="network-igraph" class="section level2" number="2.1">
<h2><span class="header-section-number">2.1</span> network =>
igraph</h2>
<p>Converting “network” objects to “igraph” is done by calling function
<code>asIgraph</code> on a “network” object:</p>
<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" tabindex="-1"></a><span class="co"># check class of 'exNetwork'</span></span>
<span id="cb16-2"><a href="#cb16-2" tabindex="-1"></a><span class="fu">class</span>(exNetwork)</span></code></pre></div>
<pre><code>## [1] "network"</code></pre>
<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" tabindex="-1"></a><span class="co"># convert to 'igraph'</span></span>
<span id="cb18-2"><a href="#cb18-2" tabindex="-1"></a>g <span class="ot"><-</span> <span class="fu">asIgraph</span>(exNetwork)</span>
<span id="cb18-3"><a href="#cb18-3" tabindex="-1"></a><span class="co"># check class of the result</span></span>
<span id="cb18-4"><a href="#cb18-4" tabindex="-1"></a><span class="fu">class</span>(g)</span></code></pre></div>
<pre><code>## [1] "igraph"</code></pre>
<p>Check if edgelists of the objects are identical</p>
<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" tabindex="-1"></a>el.g <span class="ot"><-</span> <span class="fu">get.edgelist</span>(g)</span></code></pre></div>
<pre><code>## Warning: `get.edgelist()` was deprecated in igraph 2.0.0.
## ℹ Please use `as_edgelist()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.</code></pre>
<div class="sourceCode" id="cb22"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" tabindex="-1"></a>el.n <span class="ot"><-</span> <span class="fu">as.matrix</span>(exNetwork, <span class="st">"edgelist"</span>)</span>
<span id="cb22-2"><a href="#cb22-2" tabindex="-1"></a><span class="fu">identical</span>( <span class="fu">as.numeric</span>(el.g), <span class="fu">as.numeric</span>(el.n))</span></code></pre></div>
<pre><code>## [1] TRUE</code></pre>
</div>
<div id="igraph-network" class="section level2" number="2.2">
<h2><span class="header-section-number">2.2</span> igraph =>
network</h2>
<p>Converting “igraph” objects to “network” is done by calling function
<code>asNetwork</code> on an “igraph” object:</p>
<div class="sourceCode" id="cb24"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" tabindex="-1"></a>net <span class="ot"><-</span> <span class="fu">asNetwork</span>(exIgraph)</span></code></pre></div>
<p>Note the warning because of a “non-standard” network attribute
<code>layout</code>, which is a function. Printing “network” objects
does not handle non-standard attributes very well. However, all the data
and attributes are copied correctly.</p>
<p>Check if edgelists of the objects are identical</p>
<div class="sourceCode" id="cb25"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1" tabindex="-1"></a>el.g2 <span class="ot"><-</span> <span class="fu">get.edgelist</span>(exIgraph)</span>
<span id="cb25-2"><a href="#cb25-2" tabindex="-1"></a>el.n2 <span class="ot"><-</span> <span class="fu">as.matrix</span>(net, <span class="st">"edgelist"</span>)</span>
<span id="cb25-3"><a href="#cb25-3" tabindex="-1"></a><span class="fu">identical</span>( <span class="fu">as.numeric</span>(el.g2), <span class="fu">as.numeric</span>(el.n2))</span></code></pre></div>
<pre><code>## [1] TRUE</code></pre>
</div>
<div id="handling-attributes" class="section level2" number="2.3">
<h2><span class="header-section-number">2.3</span> Handling
attributes</h2>
<p>Objects of class “igraph” and “network”, apart from storing actual
network data (vertexes and edges), allow for adding attributes of
vertexes, edges, and attributes of the network as a whole (called
“network attributes” or “graph attributes” in the nomenclatures of
packages “network” and “igraph” respectively).</p>
<p>Vertex and edge attributes are used by “igraph” and “network” in a
largely similar fashion. However, network-level attributes are used
differently. Objects of class “network” use network-level attributes to
store various metadata, e.g., network size, whether the network is
directed, is bipartite, etc. In “igraph” this information is stored
separately.</p>
<p>The above difference affects the way the attributes are copied when
we convert “network” and “igraph” objects into one another.</p>
<p>Both functions <code>asNetwork</code> and <code>asIgraph</code> have
an additional argument <code>attrmap</code> that is used to specify how
vertex, edge, and network attributes are copied. The
<code>attrmap</code> argument requires a data frame. Rows of that data
frame specify rules of copying/renaming different attributes. The data
frame should have the following columns (all of class “character”):</p>
<ul>
<li><code>type</code>: one of “network”, “vertex” or “edge”, whether the
rule applies to network, vertex or edge attribute.</li>
<li><code>fromslc</code>: name of the which we are <em>converting
from</em></li>
<li><code>fromattr</code>: name of the attribute in the object we are
converting from</li>
<li><code>tocls</code>: name of the class of the object we are
<em>converting to</em></li>
<li><code>toattr</code>: name of the attribute in the object we are
converting to</li>
</ul>
<p>The default rules are returned by a function <code>attrmap()</code>,
these are:</p>
<div class="sourceCode" id="cb27"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1" tabindex="-1"></a><span class="fu">attrmap</span>()</span></code></pre></div>
<pre><code>## type fromcls fromattr tocls toattr
## 1 network network directed igraph <NA>
## 2 network network bipartite igraph <NA>
## 3 network network loops igraph <NA>
## 4 network network mnext igraph <NA>
## 5 network network multiple igraph <NA>
## 6 network network n igraph <NA>
## 7 network network hyper igraph <NA>
## 8 vertex igraph name network vertex.names</code></pre>
<p>For example, the last row specifies a rule that when an object of
class “igraph” is converted to class “network”, then a vertex attribute
<code>name</code> in the “igraph” object will be copied to a vertex
attribute called <code>vertex.names</code> in the resulting object of
class “network.</p>
<p>If the column <code>toattr</code> contains an <code>NA</code>, that
means that the corresponding attribute is not copied. For example, the
first row specifies a rule that when an object of class “network” is
converted to class “igraph”, then a network attribute
<code>directed</code> in the “network” object is <em>not</em> copied to
the resulting object of class “igraph”.</p>
<p>Users can customize the rules, or add new ones, by constructing
similar data frames and supplying them through argument
<code>attrmap</code> to functions <code>asIgraph</code> and
<code>asNetwork</code>.</p>
<p>As an example let us set the option to always drop the
<code>na</code> vertex attribute. First, we need to setup the rule by
adding an extra row to the data frame returned by
<code>attrmap</code>:</p>
<div class="sourceCode" id="cb29"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb29-1"><a href="#cb29-1" tabindex="-1"></a>new_rule <span class="ot"><-</span> <span class="fu">data.frame</span>(<span class="at">type=</span><span class="st">"vertex"</span>, <span class="at">fromcls=</span><span class="st">"network"</span>, <span class="at">fromattr=</span><span class="st">"na"</span>,</span>
<span id="cb29-2"><a href="#cb29-2" tabindex="-1"></a> <span class="at">tocls=</span><span class="st">"igraph"</span>, <span class="at">toattr=</span><span class="cn">NA</span>,</span>
<span id="cb29-3"><a href="#cb29-3" tabindex="-1"></a> <span class="at">stringsAsFactors=</span><span class="cn">FALSE</span>)</span>
<span id="cb29-4"><a href="#cb29-4" tabindex="-1"></a><span class="co"># combine with the default rules</span></span>
<span id="cb29-5"><a href="#cb29-5" tabindex="-1"></a>rules <span class="ot"><-</span> <span class="fu">rbind</span>( <span class="fu">attrmap</span>(), new_rule )</span>
<span id="cb29-6"><a href="#cb29-6" tabindex="-1"></a>rules</span></code></pre></div>
<pre><code>## type fromcls fromattr tocls toattr
## 1 network network directed igraph <NA>
## 2 network network bipartite igraph <NA>
## 3 network network loops igraph <NA>
## 4 network network mnext igraph <NA>
## 5 network network multiple igraph <NA>
## 6 network network n igraph <NA>
## 7 network network hyper igraph <NA>
## 8 vertex igraph name network vertex.names
## 9 vertex network na igraph <NA></code></pre>
<p>Now we can use it with <code>asIgraph</code>:</p>
<div class="sourceCode" id="cb31"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb31-1"><a href="#cb31-1" tabindex="-1"></a>(ig1 <span class="ot"><-</span> <span class="fu">asIgraph</span>(exNetwork))</span></code></pre></div>
<pre><code>## IGRAPH 8fa0936 D--- 15 11 --
## + attr: label (v/c), na (v/l), vertex.names (v/c), label (e/c), na
## | (e/l)
## + edges from 8fa0936:
## [1] 2-> 1 3-> 1 4-> 1 5-> 1 6-> 7 8-> 9 10->11 11->12 14->12 12->13
## [11] 13->14</code></pre>
<div class="sourceCode" id="cb33"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb33-1"><a href="#cb33-1" tabindex="-1"></a>(ig2 <span class="ot"><-</span> <span class="fu">asIgraph</span>(exNetwork, <span class="at">amap=</span>rules))</span></code></pre></div>
<pre><code>## IGRAPH d22eb45 D--- 15 11 --
## + attr: label (v/c), vertex.names (v/c), label (e/c), na (e/l)
## + edges from d22eb45:
## [1] 2-> 1 3-> 1 4-> 1 5-> 1 6-> 7 8-> 9 10->11 11->12 14->12 12->13
## [11] 13->14</code></pre>
<div class="sourceCode" id="cb35"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb35-1"><a href="#cb35-1" tabindex="-1"></a><span class="co"># check if "na" was dropped</span></span>
<span id="cb35-2"><a href="#cb35-2" tabindex="-1"></a><span class="st">"na"</span> <span class="sc">%in%</span> igraph<span class="sc">::</span><span class="fu">vertex_attr_names</span>(ig1)</span></code></pre></div>
<pre><code>## [1] TRUE</code></pre>
<div class="sourceCode" id="cb37"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb37-1"><a href="#cb37-1" tabindex="-1"></a><span class="st">"na"</span> <span class="sc">%in%</span> igraph<span class="sc">::</span><span class="fu">vertex_attr_names</span>(ig2)</span></code></pre></div>
<pre><code>## [1] FALSE</code></pre>
</div>
</div>
<div id="network-objects-tofrom-data-frames" class="section level1" number="3">
<h1><span class="header-section-number">3</span> Network objects to/from
data frames</h1>
<p>Function <code>asDF</code> can be used to convert network object (of
class “igraph” or “network”) to a list of two data frames:</p>
<div class="sourceCode" id="cb39"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb39-1"><a href="#cb39-1" tabindex="-1"></a>l <span class="ot"><-</span> <span class="fu">asDF</span>(exIgraph)</span>
<span id="cb39-2"><a href="#cb39-2" tabindex="-1"></a><span class="fu">str</span>(l)</span></code></pre></div>
<pre><code>## List of 2
## $ edges :'data.frame': 11 obs. of 3 variables:
## ..$ V1 : num [1:11] 2 3 4 5 6 8 10 11 12 13 ...
## ..$ V2 : num [1:11] 1 1 1 1 7 9 11 12 13 14 ...
## ..$ label: chr [1:11] "ba" "ca" "da" "ea" ...
## $ vertexes:'data.frame': 15 obs. of 2 variables:
## ..$ intergraph_id: int [1:15] 1 2 3 4 5 6 7 8 9 10 ...
## ..$ label : chr [1:15] "a" "b" "c" "d" ...</code></pre>
<p>The resulting list has two components <code>edges</code> and
<code>vertexes</code>. The <code>edges</code> component is essentially
an edge list containing ego and alter ids in the first two columns. The
remaining columns store edge attributes (if any). For our example data
it is</p>
<div class="sourceCode" id="cb41"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb41-1"><a href="#cb41-1" tabindex="-1"></a>l<span class="sc">$</span>edges</span></code></pre></div>
<pre><code>## V1 V2 label
## 1 2 1 ba
## 2 3 1 ca
## 3 4 1 da
## 4 5 1 ea
## 5 6 7 fg
## 6 8 9 hi
## 7 10 11 jk
## 8 11 12 kl
## 9 12 13 lm
## 10 13 14 mn
## 11 14 12 nl</code></pre>
<p>The <code>vertexes</code> component contains data on vertexes with
vertex id (the same that is used in the first two column of
<code>edges</code>) is stored in the first two columns. The remaining
columns store vertex attributes (if any). For our example data it
is:</p>
<div class="sourceCode" id="cb43"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb43-1"><a href="#cb43-1" tabindex="-1"></a>l<span class="sc">$</span>vertexes</span></code></pre></div>
<pre><code>## intergraph_id label
## 1 1 a
## 2 2 b
## 3 3 c
## 4 4 d
## 5 5 e
## 6 6 f
## 7 7 g
## 8 8 h
## 9 9 i
## 10 10 j
## 11 11 k
## 12 12 l
## 13 13 m
## 14 14 n
## 15 15 o</code></pre>
<p>Functions <code>asNetwork</code> and <code>asIgraph</code> can also
be used to create network objects from data frames such as those above.
The first argument should be an edge list data frame. Optional argument
<code>vertices</code> expectes data frames with vertex data (just like
<code>l$vertexes</code>). Additionally we need to specify whether the
edges should be interpreted as directed or not through the argument
<code>directed</code>.</p>
<p>For example, to create an object of class “network” from the
dataframes created above from object <code>exIgraph</code> we can:</p>
<div class="sourceCode" id="cb45"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb45-1"><a href="#cb45-1" tabindex="-1"></a>z <span class="ot"><-</span> <span class="fu">asNetwork</span>(l<span class="sc">$</span>edges, <span class="at">directed=</span><span class="cn">TRUE</span>, l<span class="sc">$</span>vertexes)</span>
<span id="cb45-2"><a href="#cb45-2" tabindex="-1"></a>z</span></code></pre></div>
<pre><code>## Network attributes:
## vertices = 15
## directed = TRUE
## hyper = FALSE
## loops = FALSE
## multiple = FALSE
## bipartite = FALSE
## total edges= 11
## missing edges= 0
## non-missing edges= 11
##
## Vertex attribute names:
## label vertex.names
##
## Edge attribute names:
## label</code></pre>
<p>This is actually what basically happens when we call
<code>asNetwork(exIgraph)</code></p>
<hr />
</div>
<div id="appendix" class="section level1" number="4">
<h1><span class="header-section-number">4</span> Appendix</h1>
<div id="example-networks" class="section level2" number="4.1">
<h2><span class="header-section-number">4.1</span> Example networks</h2>
<p>Package intergraph contains four example networks:</p>
<ul>
<li>Objects <code>exNetwork</code> and <code>exIgraph</code> contain the
same <em>directed</em> network as objects of class “network” and
“igraph” respectively.</li>
<li>Objects <code>exNetwork2</code> and <code>exIgraph2</code> contain
the same <em>undirected</em> network as objects of class “network” and
“igraph” respectively.</li>
</ul>
<p>All four datasets contain:</p>
<ul>
<li>A vertex attribute <code>label</code> with vertex labels. These are
letters from <code>a</code> to <code>o</code>.</li>
<li>An edge attribute <code>label</code> with edge labels. These are
pasted letters of the adjecent nodes.</li>
</ul>
<p>We will use them in the examples below.</p>
<p>Networks are shown below using the following code:</p>
<div class="sourceCode" id="cb47"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb47-1"><a href="#cb47-1" tabindex="-1"></a><span class="fu">layout</span>(<span class="fu">matrix</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">4</span>, <span class="dv">2</span>, <span class="dv">2</span>, <span class="at">byrow=</span><span class="cn">TRUE</span>))</span>
<span id="cb47-2"><a href="#cb47-2" tabindex="-1"></a>op <span class="ot"><-</span> <span class="fu">par</span>(<span class="at">mar=</span><span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">1</span>,<span class="dv">2</span>,<span class="dv">1</span>))</span>
<span id="cb47-3"><a href="#cb47-3" tabindex="-1"></a><span class="co"># compute layout</span></span>
<span id="cb47-4"><a href="#cb47-4" tabindex="-1"></a>coords <span class="ot"><-</span> <span class="fu">layout.fruchterman.reingold</span>(exIgraph)</span>
<span id="cb47-5"><a href="#cb47-5" tabindex="-1"></a><span class="fu">plot</span>(exIgraph, <span class="at">main=</span><span class="st">"exIgraph"</span>, <span class="at">layout=</span>coords)</span>
<span id="cb47-6"><a href="#cb47-6" tabindex="-1"></a><span class="fu">plot</span>(exIgraph2, <span class="at">main=</span><span class="st">"exIgraph2"</span>, <span class="at">layout=</span>coords)</span>
<span id="cb47-7"><a href="#cb47-7" tabindex="-1"></a><span class="fu">plot</span>(exNetwork, <span class="at">main=</span><span class="st">"exNetwork"</span>, <span class="at">displaylabels=</span><span class="cn">TRUE</span>, <span class="at">coord=</span>coords)</span>
<span id="cb47-8"><a href="#cb47-8" tabindex="-1"></a><span class="fu">plot</span>(exNetwork2, <span class="at">main=</span><span class="st">"exNetwork2"</span>, <span class="at">displaylabels=</span><span class="cn">TRUE</span>, <span class="at">coord=</span>coords)</span>
<span id="cb47-9"><a href="#cb47-9" tabindex="-1"></a><span class="fu">par</span>(op)</span></code></pre></div>
<p><img src="" /><!-- --></p>
</div>
<div id="session-information" class="section level2" number="4.2">
<h2><span class="header-section-number">4.2</span> Session
information</h2>
<div class="sourceCode" id="cb48"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb48-1"><a href="#cb48-1" tabindex="-1"></a><span class="fu">sessionInfo</span>()</span></code></pre></div>
<pre><code>## R version 4.3.2 (2023-10-31)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=pl_PL.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=pl_PL.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=pl_PL.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=pl_PL.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Europe/Warsaw
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] igraph_2.0.1.1 network_1.18.2 knitr_1.45 intergraph_2.0-4
##
## loaded via a namespace (and not attached):
## [1] crayon_1.5.2 vctrs_0.6.5 cli_3.6.2
## [4] rlang_1.1.3 xfun_0.41 highr_0.10
## [7] jsonlite_1.8.8 glue_1.7.0 htmltools_0.5.7
## [10] sass_0.4.8 fansi_1.0.6 rmarkdown_2.25
## [13] grid_4.3.2 evaluate_0.23 jquerylib_0.1.4
## [16] tibble_3.2.1 fastmap_1.1.1 yaml_2.3.8
## [19] lifecycle_1.0.4 compiler_4.3.2 coda_0.19-4
## [22] pkgconfig_2.0.3 statnet.common_4.9.0 lattice_0.22-5
## [25] digest_0.6.34 R6_2.5.1 utf8_1.2.4
## [28] pillar_1.9.0 magrittr_2.0.3 bslib_0.6.1
## [31] tools_4.3.2 cachem_1.0.8</code></pre>
</div>
</div>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>
|