File: howto.html

package info (click to toggle)
r-cran-intergraph 2.0-4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 392 kB
  • sloc: sh: 13; makefile: 2
file content (774 lines) | stat: -rw-r--r-- 118,115 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />

<meta name="viewport" content="width=device-width, initial-scale=1" />

<meta name="author" content="Michał Bojanowski" />


<title>Short intergraph tutorial</title>

<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
  var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
  var i, h, a;
  for (i = 0; i < hs.length; i++) {
    h = hs[i];
    if (!/^h[1-6]$/i.test(h.tagName)) continue;  // it should be a header h1-h6
    a = h.attributes;
    while (a.length > 0) h.removeAttribute(a[0].name);
  }
});
</script>

<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>



<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } 
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.at { color: #7d9029; } 
code span.bn { color: #40a070; } 
code span.bu { color: #008000; } 
code span.cf { color: #007020; font-weight: bold; } 
code span.ch { color: #4070a0; } 
code span.cn { color: #880000; } 
code span.co { color: #60a0b0; font-style: italic; } 
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.do { color: #ba2121; font-style: italic; } 
code span.dt { color: #902000; } 
code span.dv { color: #40a070; } 
code span.er { color: #ff0000; font-weight: bold; } 
code span.ex { } 
code span.fl { color: #40a070; } 
code span.fu { color: #06287e; } 
code span.im { color: #008000; font-weight: bold; } 
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.kw { color: #007020; font-weight: bold; } 
code span.op { color: #666666; } 
code span.ot { color: #007020; } 
code span.pp { color: #bc7a00; } 
code span.sc { color: #4070a0; } 
code span.ss { color: #bb6688; } 
code span.st { color: #4070a0; } 
code span.va { color: #19177c; } 
code span.vs { color: #4070a0; } 
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } 
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
  var sheets = document.styleSheets;
  for (var i = 0; i < sheets.length; i++) {
    if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
    try { var rules = sheets[i].cssRules; } catch (e) { continue; }
    var j = 0;
    while (j < rules.length) {
      var rule = rules[j];
      // check if there is a div.sourceCode rule
      if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
        j++;
        continue;
      }
      var style = rule.style.cssText;
      // check if color or background-color is set
      if (rule.style.color === '' && rule.style.backgroundColor === '') {
        j++;
        continue;
      }
      // replace div.sourceCode by a pre.sourceCode rule
      sheets[i].deleteRule(j);
      sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
    }
  }
})();
</script>




<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap; 
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }

code > span.kw { color: #555; font-weight: bold; } 
code > span.dt { color: #902000; } 
code > span.dv { color: #40a070; } 
code > span.bn { color: #d14; } 
code > span.fl { color: #d14; } 
code > span.ch { color: #d14; } 
code > span.st { color: #d14; } 
code > span.co { color: #888888; font-style: italic; } 
code > span.ot { color: #007020; } 
code > span.al { color: #ff0000; font-weight: bold; } 
code > span.fu { color: #900; font-weight: bold; } 
code > span.er { color: #a61717; background-color: #e3d2d2; } 
</style>




</head>

<body>




<h1 class="title toc-ignore">Short <code>intergraph</code> tutorial</h1>
<h4 class="author">Michał Bojanowski</h4>


<div id="TOC">
<ul>
<li><a href="#loading-example-data" id="toc-loading-example-data"><span class="toc-section-number">1</span> Loading example data</a></li>
<li><a href="#functions-asnetwork-and-asigraph" id="toc-functions-asnetwork-and-asigraph"><span class="toc-section-number">2</span> Functions <code>asNetwork</code> and
<code>asIgraph</code></a>
<ul>
<li><a href="#network-igraph" id="toc-network-igraph"><span class="toc-section-number">2.1</span> network =&gt; igraph</a></li>
<li><a href="#igraph-network" id="toc-igraph-network"><span class="toc-section-number">2.2</span> igraph =&gt; network</a></li>
<li><a href="#handling-attributes" id="toc-handling-attributes"><span class="toc-section-number">2.3</span> Handling attributes</a></li>
</ul></li>
<li><a href="#network-objects-tofrom-data-frames" id="toc-network-objects-tofrom-data-frames"><span class="toc-section-number">3</span> Network objects to/from data
frames</a></li>
<li><a href="#appendix" id="toc-appendix"><span class="toc-section-number">4</span> Appendix</a>
<ul>
<li><a href="#example-networks" id="toc-example-networks"><span class="toc-section-number">4.1</span> Example networks</a></li>
<li><a href="#session-information" id="toc-session-information"><span class="toc-section-number">4.2</span> Session information</a></li>
</ul></li>
</ul>
</div>

<!--
vim:spell:spelllang=en_us
-->
<hr />
<p>“Intergraph” is an R package with coercion routines for netowrk data
objects. For more information, see</p>
<ul>
<li>Homepage on <a href="https://mbojan.github.io/intergraph/">https://mbojan.github.io/intergraph/</a>.</li>
<li>Package development pages on <a href="https://github.com/mbojan/intergraph">https://github.com/mbojan/intergraph</a>.</li>
</ul>
<p>This is a short tutorial showing how to use functions in package
“intergraph” using some example network data contained in the
package.</p>
<div id="loading-example-data" class="section level1" number="1">
<h1><span class="header-section-number">1</span> Loading example
data</h1>
<p>To show the data, first load the packages.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">library</span>(intergraph)</span>
<span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a><span class="fu">library</span>(network)</span></code></pre></div>
<pre><code>## 
## &#39;network&#39; 1.18.2 (2023-12-04), part of the Statnet Project
## * &#39;news(package=&quot;network&quot;)&#39; for changes since last version
## * &#39;citation(&quot;network&quot;)&#39; for citation information
## * &#39;https://statnet.org&#39; for help, support, and other information</code></pre>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="fu">library</span>(igraph)</span></code></pre></div>
<pre><code>## 
## Attaching package: &#39;igraph&#39;</code></pre>
<pre><code>## The following objects are masked from &#39;package:network&#39;:
## 
##     %c%, %s%, add.edges, add.vertices, delete.edges, delete.vertices,
##     get.edge.attribute, get.edges, get.vertex.attribute, is.bipartite,
##     is.directed, list.edge.attributes, list.vertex.attributes,
##     set.edge.attribute, set.vertex.attribute</code></pre>
<pre><code>## The following objects are masked from &#39;package:stats&#39;:
## 
##     decompose, spectrum</code></pre>
<pre><code>## The following object is masked from &#39;package:base&#39;:
## 
##     union</code></pre>
<p>Now, these are the summaries of the “igraph” objects:</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a><span class="fu">summary</span>(exIgraph)</span></code></pre></div>
<pre><code>## IGRAPH 258c8b4 D--- 15 11 -- 
## + attr: label (v/c), label (e/c)</code></pre>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" tabindex="-1"></a><span class="fu">summary</span>(exIgraph2)</span></code></pre></div>
<pre><code>## IGRAPH 66a1bae U--- 15 11 -- 
## + attr: label (v/c), label (e/c)</code></pre>
<p>These are the summaries of the “network” objects:</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" tabindex="-1"></a>exNetwork</span></code></pre></div>
<pre><code>##  Network attributes:
##   vertices = 15 
##   directed = TRUE 
##   hyper = FALSE 
##   loops = FALSE 
##   multiple = FALSE 
##   bipartite = FALSE 
##   total edges= 11 
##     missing edges= 0 
##     non-missing edges= 11 
## 
##  Vertex attribute names: 
##     label vertex.names 
## 
##  Edge attribute names: 
##     label</code></pre>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" tabindex="-1"></a>exNetwork2</span></code></pre></div>
<pre><code>##  Network attributes:
##   vertices = 15 
##   directed = FALSE 
##   hyper = FALSE 
##   loops = FALSE 
##   multiple = FALSE 
##   bipartite = FALSE 
##   total edges= 11 
##     missing edges= 0 
##     non-missing edges= 11 
## 
##  Vertex attribute names: 
##     label vertex.names 
## 
##  Edge attribute names: 
##     label</code></pre>
<p>More information is available in the Appendix.</p>
</div>
<div id="functions-asnetwork-and-asigraph" class="section level1" number="2">
<h1><span class="header-section-number">2</span> Functions
<code>asNetwork</code> and <code>asIgraph</code></h1>
<p>Conversion of network objects between classes “network” and “igraph”
can be performed using functions <code>asNetwork</code> and
<code>asIgraph</code>.</p>
<div id="network-igraph" class="section level2" number="2.1">
<h2><span class="header-section-number">2.1</span> network =&gt;
igraph</h2>
<p>Converting “network” objects to “igraph” is done by calling function
<code>asIgraph</code> on a “network” object:</p>
<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" tabindex="-1"></a><span class="co"># check class of &#39;exNetwork&#39;</span></span>
<span id="cb16-2"><a href="#cb16-2" tabindex="-1"></a><span class="fu">class</span>(exNetwork)</span></code></pre></div>
<pre><code>## [1] &quot;network&quot;</code></pre>
<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" tabindex="-1"></a><span class="co"># convert to &#39;igraph&#39;</span></span>
<span id="cb18-2"><a href="#cb18-2" tabindex="-1"></a>g <span class="ot">&lt;-</span> <span class="fu">asIgraph</span>(exNetwork)</span>
<span id="cb18-3"><a href="#cb18-3" tabindex="-1"></a><span class="co"># check class of the result</span></span>
<span id="cb18-4"><a href="#cb18-4" tabindex="-1"></a><span class="fu">class</span>(g)</span></code></pre></div>
<pre><code>## [1] &quot;igraph&quot;</code></pre>
<p>Check if edgelists of the objects are identical</p>
<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" tabindex="-1"></a>el.g <span class="ot">&lt;-</span> <span class="fu">get.edgelist</span>(g)</span></code></pre></div>
<pre><code>## Warning: `get.edgelist()` was deprecated in igraph 2.0.0.
## ℹ Please use `as_edgelist()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.</code></pre>
<div class="sourceCode" id="cb22"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" tabindex="-1"></a>el.n <span class="ot">&lt;-</span> <span class="fu">as.matrix</span>(exNetwork, <span class="st">&quot;edgelist&quot;</span>)</span>
<span id="cb22-2"><a href="#cb22-2" tabindex="-1"></a><span class="fu">identical</span>( <span class="fu">as.numeric</span>(el.g), <span class="fu">as.numeric</span>(el.n))</span></code></pre></div>
<pre><code>## [1] TRUE</code></pre>
</div>
<div id="igraph-network" class="section level2" number="2.2">
<h2><span class="header-section-number">2.2</span> igraph =&gt;
network</h2>
<p>Converting “igraph” objects to “network” is done by calling function
<code>asNetwork</code> on an “igraph” object:</p>
<div class="sourceCode" id="cb24"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" tabindex="-1"></a>net <span class="ot">&lt;-</span> <span class="fu">asNetwork</span>(exIgraph)</span></code></pre></div>
<p>Note the warning because of a “non-standard” network attribute
<code>layout</code>, which is a function. Printing “network” objects
does not handle non-standard attributes very well. However, all the data
and attributes are copied correctly.</p>
<p>Check if edgelists of the objects are identical</p>
<div class="sourceCode" id="cb25"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1" tabindex="-1"></a>el.g2 <span class="ot">&lt;-</span> <span class="fu">get.edgelist</span>(exIgraph)</span>
<span id="cb25-2"><a href="#cb25-2" tabindex="-1"></a>el.n2 <span class="ot">&lt;-</span> <span class="fu">as.matrix</span>(net, <span class="st">&quot;edgelist&quot;</span>)</span>
<span id="cb25-3"><a href="#cb25-3" tabindex="-1"></a><span class="fu">identical</span>( <span class="fu">as.numeric</span>(el.g2), <span class="fu">as.numeric</span>(el.n2))</span></code></pre></div>
<pre><code>## [1] TRUE</code></pre>
</div>
<div id="handling-attributes" class="section level2" number="2.3">
<h2><span class="header-section-number">2.3</span> Handling
attributes</h2>
<p>Objects of class “igraph” and “network”, apart from storing actual
network data (vertexes and edges), allow for adding attributes of
vertexes, edges, and attributes of the network as a whole (called
“network attributes” or “graph attributes” in the nomenclatures of
packages “network” and “igraph” respectively).</p>
<p>Vertex and edge attributes are used by “igraph” and “network” in a
largely similar fashion. However, network-level attributes are used
differently. Objects of class “network” use network-level attributes to
store various metadata, e.g., network size, whether the network is
directed, is bipartite, etc. In “igraph” this information is stored
separately.</p>
<p>The above difference affects the way the attributes are copied when
we convert “network” and “igraph” objects into one another.</p>
<p>Both functions <code>asNetwork</code> and <code>asIgraph</code> have
an additional argument <code>attrmap</code> that is used to specify how
vertex, edge, and network attributes are copied. The
<code>attrmap</code> argument requires a data frame. Rows of that data
frame specify rules of copying/renaming different attributes. The data
frame should have the following columns (all of class “character”):</p>
<ul>
<li><code>type</code>: one of “network”, “vertex” or “edge”, whether the
rule applies to network, vertex or edge attribute.</li>
<li><code>fromslc</code>: name of the which we are <em>converting
from</em></li>
<li><code>fromattr</code>: name of the attribute in the object we are
converting from</li>
<li><code>tocls</code>: name of the class of the object we are
<em>converting to</em></li>
<li><code>toattr</code>: name of the attribute in the object we are
converting to</li>
</ul>
<p>The default rules are returned by a function <code>attrmap()</code>,
these are:</p>
<div class="sourceCode" id="cb27"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1" tabindex="-1"></a><span class="fu">attrmap</span>()</span></code></pre></div>
<pre><code>##      type fromcls  fromattr   tocls       toattr
## 1 network network  directed  igraph         &lt;NA&gt;
## 2 network network bipartite  igraph         &lt;NA&gt;
## 3 network network     loops  igraph         &lt;NA&gt;
## 4 network network     mnext  igraph         &lt;NA&gt;
## 5 network network  multiple  igraph         &lt;NA&gt;
## 6 network network         n  igraph         &lt;NA&gt;
## 7 network network     hyper  igraph         &lt;NA&gt;
## 8  vertex  igraph      name network vertex.names</code></pre>
<p>For example, the last row specifies a rule that when an object of
class “igraph” is converted to class “network”, then a vertex attribute
<code>name</code> in the “igraph” object will be copied to a vertex
attribute called <code>vertex.names</code> in the resulting object of
class “network.</p>
<p>If the column <code>toattr</code> contains an <code>NA</code>, that
means that the corresponding attribute is not copied. For example, the
first row specifies a rule that when an object of class “network” is
converted to class “igraph”, then a network attribute
<code>directed</code> in the “network” object is <em>not</em> copied to
the resulting object of class “igraph”.</p>
<p>Users can customize the rules, or add new ones, by constructing
similar data frames and supplying them through argument
<code>attrmap</code> to functions <code>asIgraph</code> and
<code>asNetwork</code>.</p>
<p>As an example let us set the option to always drop the
<code>na</code> vertex attribute. First, we need to setup the rule by
adding an extra row to the data frame returned by
<code>attrmap</code>:</p>
<div class="sourceCode" id="cb29"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb29-1"><a href="#cb29-1" tabindex="-1"></a>new_rule <span class="ot">&lt;-</span> <span class="fu">data.frame</span>(<span class="at">type=</span><span class="st">&quot;vertex&quot;</span>, <span class="at">fromcls=</span><span class="st">&quot;network&quot;</span>, <span class="at">fromattr=</span><span class="st">&quot;na&quot;</span>,</span>
<span id="cb29-2"><a href="#cb29-2" tabindex="-1"></a>                       <span class="at">tocls=</span><span class="st">&quot;igraph&quot;</span>, <span class="at">toattr=</span><span class="cn">NA</span>,</span>
<span id="cb29-3"><a href="#cb29-3" tabindex="-1"></a>                       <span class="at">stringsAsFactors=</span><span class="cn">FALSE</span>)</span>
<span id="cb29-4"><a href="#cb29-4" tabindex="-1"></a><span class="co"># combine with the default rules</span></span>
<span id="cb29-5"><a href="#cb29-5" tabindex="-1"></a>rules <span class="ot">&lt;-</span> <span class="fu">rbind</span>( <span class="fu">attrmap</span>(), new_rule )</span>
<span id="cb29-6"><a href="#cb29-6" tabindex="-1"></a>rules</span></code></pre></div>
<pre><code>##      type fromcls  fromattr   tocls       toattr
## 1 network network  directed  igraph         &lt;NA&gt;
## 2 network network bipartite  igraph         &lt;NA&gt;
## 3 network network     loops  igraph         &lt;NA&gt;
## 4 network network     mnext  igraph         &lt;NA&gt;
## 5 network network  multiple  igraph         &lt;NA&gt;
## 6 network network         n  igraph         &lt;NA&gt;
## 7 network network     hyper  igraph         &lt;NA&gt;
## 8  vertex  igraph      name network vertex.names
## 9  vertex network        na  igraph         &lt;NA&gt;</code></pre>
<p>Now we can use it with <code>asIgraph</code>:</p>
<div class="sourceCode" id="cb31"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb31-1"><a href="#cb31-1" tabindex="-1"></a>(ig1 <span class="ot">&lt;-</span> <span class="fu">asIgraph</span>(exNetwork))</span></code></pre></div>
<pre><code>## IGRAPH 8fa0936 D--- 15 11 -- 
## + attr: label (v/c), na (v/l), vertex.names (v/c), label (e/c), na
## | (e/l)
## + edges from 8fa0936:
##  [1]  2-&gt; 1  3-&gt; 1  4-&gt; 1  5-&gt; 1  6-&gt; 7  8-&gt; 9 10-&gt;11 11-&gt;12 14-&gt;12 12-&gt;13
## [11] 13-&gt;14</code></pre>
<div class="sourceCode" id="cb33"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb33-1"><a href="#cb33-1" tabindex="-1"></a>(ig2 <span class="ot">&lt;-</span> <span class="fu">asIgraph</span>(exNetwork, <span class="at">amap=</span>rules))</span></code></pre></div>
<pre><code>## IGRAPH d22eb45 D--- 15 11 -- 
## + attr: label (v/c), vertex.names (v/c), label (e/c), na (e/l)
## + edges from d22eb45:
##  [1]  2-&gt; 1  3-&gt; 1  4-&gt; 1  5-&gt; 1  6-&gt; 7  8-&gt; 9 10-&gt;11 11-&gt;12 14-&gt;12 12-&gt;13
## [11] 13-&gt;14</code></pre>
<div class="sourceCode" id="cb35"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb35-1"><a href="#cb35-1" tabindex="-1"></a><span class="co"># check if &quot;na&quot; was dropped</span></span>
<span id="cb35-2"><a href="#cb35-2" tabindex="-1"></a><span class="st">&quot;na&quot;</span> <span class="sc">%in%</span> igraph<span class="sc">::</span><span class="fu">vertex_attr_names</span>(ig1)</span></code></pre></div>
<pre><code>## [1] TRUE</code></pre>
<div class="sourceCode" id="cb37"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb37-1"><a href="#cb37-1" tabindex="-1"></a><span class="st">&quot;na&quot;</span> <span class="sc">%in%</span> igraph<span class="sc">::</span><span class="fu">vertex_attr_names</span>(ig2)</span></code></pre></div>
<pre><code>## [1] FALSE</code></pre>
</div>
</div>
<div id="network-objects-tofrom-data-frames" class="section level1" number="3">
<h1><span class="header-section-number">3</span> Network objects to/from
data frames</h1>
<p>Function <code>asDF</code> can be used to convert network object (of
class “igraph” or “network”) to a list of two data frames:</p>
<div class="sourceCode" id="cb39"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb39-1"><a href="#cb39-1" tabindex="-1"></a>l <span class="ot">&lt;-</span> <span class="fu">asDF</span>(exIgraph)</span>
<span id="cb39-2"><a href="#cb39-2" tabindex="-1"></a><span class="fu">str</span>(l)</span></code></pre></div>
<pre><code>## List of 2
##  $ edges   :&#39;data.frame&#39;:    11 obs. of  3 variables:
##   ..$ V1   : num [1:11] 2 3 4 5 6 8 10 11 12 13 ...
##   ..$ V2   : num [1:11] 1 1 1 1 7 9 11 12 13 14 ...
##   ..$ label: chr [1:11] &quot;ba&quot; &quot;ca&quot; &quot;da&quot; &quot;ea&quot; ...
##  $ vertexes:&#39;data.frame&#39;:    15 obs. of  2 variables:
##   ..$ intergraph_id: int [1:15] 1 2 3 4 5 6 7 8 9 10 ...
##   ..$ label        : chr [1:15] &quot;a&quot; &quot;b&quot; &quot;c&quot; &quot;d&quot; ...</code></pre>
<p>The resulting list has two components <code>edges</code> and
<code>vertexes</code>. The <code>edges</code> component is essentially
an edge list containing ego and alter ids in the first two columns. The
remaining columns store edge attributes (if any). For our example data
it is</p>
<div class="sourceCode" id="cb41"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb41-1"><a href="#cb41-1" tabindex="-1"></a>l<span class="sc">$</span>edges</span></code></pre></div>
<pre><code>##    V1 V2 label
## 1   2  1    ba
## 2   3  1    ca
## 3   4  1    da
## 4   5  1    ea
## 5   6  7    fg
## 6   8  9    hi
## 7  10 11    jk
## 8  11 12    kl
## 9  12 13    lm
## 10 13 14    mn
## 11 14 12    nl</code></pre>
<p>The <code>vertexes</code> component contains data on vertexes with
vertex id (the same that is used in the first two column of
<code>edges</code>) is stored in the first two columns. The remaining
columns store vertex attributes (if any). For our example data it
is:</p>
<div class="sourceCode" id="cb43"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb43-1"><a href="#cb43-1" tabindex="-1"></a>l<span class="sc">$</span>vertexes</span></code></pre></div>
<pre><code>##    intergraph_id label
## 1              1     a
## 2              2     b
## 3              3     c
## 4              4     d
## 5              5     e
## 6              6     f
## 7              7     g
## 8              8     h
## 9              9     i
## 10            10     j
## 11            11     k
## 12            12     l
## 13            13     m
## 14            14     n
## 15            15     o</code></pre>
<p>Functions <code>asNetwork</code> and <code>asIgraph</code> can also
be used to create network objects from data frames such as those above.
The first argument should be an edge list data frame. Optional argument
<code>vertices</code> expectes data frames with vertex data (just like
<code>l$vertexes</code>). Additionally we need to specify whether the
edges should be interpreted as directed or not through the argument
<code>directed</code>.</p>
<p>For example, to create an object of class “network” from the
dataframes created above from object <code>exIgraph</code> we can:</p>
<div class="sourceCode" id="cb45"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb45-1"><a href="#cb45-1" tabindex="-1"></a>z <span class="ot">&lt;-</span> <span class="fu">asNetwork</span>(l<span class="sc">$</span>edges, <span class="at">directed=</span><span class="cn">TRUE</span>, l<span class="sc">$</span>vertexes)</span>
<span id="cb45-2"><a href="#cb45-2" tabindex="-1"></a>z</span></code></pre></div>
<pre><code>##  Network attributes:
##   vertices = 15 
##   directed = TRUE 
##   hyper = FALSE 
##   loops = FALSE 
##   multiple = FALSE 
##   bipartite = FALSE 
##   total edges= 11 
##     missing edges= 0 
##     non-missing edges= 11 
## 
##  Vertex attribute names: 
##     label vertex.names 
## 
##  Edge attribute names: 
##     label</code></pre>
<p>This is actually what basically happens when we call
<code>asNetwork(exIgraph)</code></p>
<hr />
</div>
<div id="appendix" class="section level1" number="4">
<h1><span class="header-section-number">4</span> Appendix</h1>
<div id="example-networks" class="section level2" number="4.1">
<h2><span class="header-section-number">4.1</span> Example networks</h2>
<p>Package intergraph contains four example networks:</p>
<ul>
<li>Objects <code>exNetwork</code> and <code>exIgraph</code> contain the
same <em>directed</em> network as objects of class “network” and
“igraph” respectively.</li>
<li>Objects <code>exNetwork2</code> and <code>exIgraph2</code> contain
the same <em>undirected</em> network as objects of class “network” and
“igraph” respectively.</li>
</ul>
<p>All four datasets contain:</p>
<ul>
<li>A vertex attribute <code>label</code> with vertex labels. These are
letters from <code>a</code> to <code>o</code>.</li>
<li>An edge attribute <code>label</code> with edge labels. These are
pasted letters of the adjecent nodes.</li>
</ul>
<p>We will use them in the examples below.</p>
<p>Networks are shown below using the following code:</p>
<div class="sourceCode" id="cb47"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb47-1"><a href="#cb47-1" tabindex="-1"></a><span class="fu">layout</span>(<span class="fu">matrix</span>(<span class="dv">1</span><span class="sc">:</span><span class="dv">4</span>, <span class="dv">2</span>, <span class="dv">2</span>, <span class="at">byrow=</span><span class="cn">TRUE</span>))</span>
<span id="cb47-2"><a href="#cb47-2" tabindex="-1"></a>op <span class="ot">&lt;-</span> <span class="fu">par</span>(<span class="at">mar=</span><span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">1</span>,<span class="dv">2</span>,<span class="dv">1</span>))</span>
<span id="cb47-3"><a href="#cb47-3" tabindex="-1"></a><span class="co"># compute layout</span></span>
<span id="cb47-4"><a href="#cb47-4" tabindex="-1"></a>coords <span class="ot">&lt;-</span> <span class="fu">layout.fruchterman.reingold</span>(exIgraph)</span>
<span id="cb47-5"><a href="#cb47-5" tabindex="-1"></a><span class="fu">plot</span>(exIgraph, <span class="at">main=</span><span class="st">&quot;exIgraph&quot;</span>, <span class="at">layout=</span>coords)</span>
<span id="cb47-6"><a href="#cb47-6" tabindex="-1"></a><span class="fu">plot</span>(exIgraph2, <span class="at">main=</span><span class="st">&quot;exIgraph2&quot;</span>, <span class="at">layout=</span>coords)</span>
<span id="cb47-7"><a href="#cb47-7" tabindex="-1"></a><span class="fu">plot</span>(exNetwork, <span class="at">main=</span><span class="st">&quot;exNetwork&quot;</span>, <span class="at">displaylabels=</span><span class="cn">TRUE</span>, <span class="at">coord=</span>coords)</span>
<span id="cb47-8"><a href="#cb47-8" tabindex="-1"></a><span class="fu">plot</span>(exNetwork2, <span class="at">main=</span><span class="st">&quot;exNetwork2&quot;</span>, <span class="at">displaylabels=</span><span class="cn">TRUE</span>, <span class="at">coord=</span>coords)</span>
<span id="cb47-9"><a href="#cb47-9" tabindex="-1"></a><span class="fu">par</span>(op)</span></code></pre></div>
<p><img src="" /><!-- --></p>
</div>
<div id="session-information" class="section level2" number="4.2">
<h2><span class="header-section-number">4.2</span> Session
information</h2>
<div class="sourceCode" id="cb48"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb48-1"><a href="#cb48-1" tabindex="-1"></a><span class="fu">sessionInfo</span>()</span></code></pre></div>
<pre><code>## R version 4.3.2 (2023-10-31)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=pl_PL.UTF-8        LC_COLLATE=C              
##  [5] LC_MONETARY=pl_PL.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=pl_PL.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=pl_PL.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: Europe/Warsaw
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] igraph_2.0.1.1   network_1.18.2   knitr_1.45       intergraph_2.0-4
## 
## loaded via a namespace (and not attached):
##  [1] crayon_1.5.2         vctrs_0.6.5          cli_3.6.2           
##  [4] rlang_1.1.3          xfun_0.41            highr_0.10          
##  [7] jsonlite_1.8.8       glue_1.7.0           htmltools_0.5.7     
## [10] sass_0.4.8           fansi_1.0.6          rmarkdown_2.25      
## [13] grid_4.3.2           evaluate_0.23        jquerylib_0.1.4     
## [16] tibble_3.2.1         fastmap_1.1.1        yaml_2.3.8          
## [19] lifecycle_1.0.4      compiler_4.3.2       coda_0.19-4         
## [22] pkgconfig_2.0.3      statnet.common_4.9.0 lattice_0.22-5      
## [25] digest_0.6.34        R6_2.5.1             utf8_1.2.4          
## [28] pillar_1.9.0         magrittr_2.0.3       bslib_0.6.1         
## [31] tools_4.3.2          cachem_1.0.8</code></pre>
</div>
</div>



<!-- code folding -->


<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>