1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
|
%% -*- mode: Rnw; coding: utf-8; -*-
%\VignetteIndexEntry{Interpolation}
%\VignetteDepends{scatterplot3d,MASS}
%\VignetteKeywords{nonparametric}
%\VignettePackage{interp}
\documentclass[nojss]{jss}
\usepackage[utf8]{inputenc}
%\usepackage{Sweave}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{flexisym}
\usepackage{breqn}
\usepackage{bm}
\usepackage{graphicx}
% put floats before next section:
\usepackage[section]{placeins}
% collect appendices as subsections
\usepackage[toc,page]{appendix}
% customize verbatim parts
\usepackage{listings}
\lstdefinestyle{Sstyle}{
basicstyle=\ttfamily\rsize,
columns=fixed,
breaklines=true, % sets automatic line breaking
breakatwhitespace=false,
postbreak=\raisebox{0ex}[0ex][0ex]{\ensuremath{\color{red}\hookrightarrow\space}},
fontadjust=true,
basewidth=0.5em,
inputencoding=utf8,
extendedchars=true,
literate={‘}{{'}}1 {’}{{'}}1 % Zeichencodes für Ausgabe von lm() !
{á}{{\'a}}1 {é}{{\'e}}1 {í}{{\'i}}1 {ó}{{\'o}}1 {ú}{{\'u}}1
{Á}{{\'A}}1 {É}{{\'E}}1 {Í}{{\'I}}1 {Ó}{{\'O}}1 {Ú}{{\'U}}1
{à}{{\`a}}1 {è}{{\`e}}1 {ì}{{\`i}}1 {ò}{{\`o}}1 {ù}{{\`u}}1
{À}{{\`A}}1 {È}{{\'E}}1 {Ì}{{\`I}}1 {Ò}{{\`O}}1 {Ù}{{\`U}}1
{ä}{{\"a}}1 {ë}{{\"e}}1 {ï}{{\"i}}1 {ö}{{\"o}}1 {ü}{{\"u}}1
{Ä}{{\"A}}1 {Ë}{{\"E}}1 {Ï}{{\"I}}1 {Ö}{{\"O}}1 {Ü}{{\"U}}1
{â}{{\^a}}1 {ê}{{\^e}}1 {î}{{\^i}}1 {ô}{{\^o}}1 {û}{{\^u}}1
{Â}{{\^A}}1 {Ê}{{\^E}}1 {Î}{{\^I}}1 {Ô}{{\^O}}1 {Û}{{\^U}}1
{œ}{{\oe}}1 {Œ}{{\OE}}1 {æ}{{\ae}}1 {Æ}{{\AE}}1 {ß}{{\ss}}1
{ű}{{\H{u}}}1 {Ű}{{\H{U}}}1 {ő}{{\H{o}}}1 {Ő}{{\H{O}}}1
{ç}{{\c c}}1 {Ç}{{\c C}}1 {ø}{{\o}}1 {å}{{\r a}}1 {Å}{{\r A}}1
{€}{{\euro}}1 {£}{{\pounds}}1 {«}{{\guillemotleft}}1
{»}{{\guillemotright}}1 {ñ}{{\~n}}1 {Ñ}{{\~N}}1 {¿}{{?`}}1
}
% switch to above defined style
\lstset{style=Sstyle}
% nice borders for code blocks
\usepackage{tcolorbox}
% enable boxes over several pages:
\tcbuselibrary{breakable,skins}
\tcbset{breakable,enhanced}
\definecolor{grey2}{rgb}{0.6,0.6,0.6}
\definecolor{grey1}{rgb}{0.8,0.8,0.8}
% some abbreviations:
\newcommand{\R}{\mathbb{R}}
\newcommand{\EV}{\mathbb{E}}
\newcommand{\Vect}[1]{\underline{#1}}
\newcommand{\Mat}[1]{\boldsymbol{#1}}
\newcommand{\Var}{\mbox{Var}}
\newcommand{\Cov}{\mbox{Cov}}
% lstinline can break code across lines
\def\cmd{\lstinline[basicstyle=\ttfamily,keywordstyle={},breaklines=true,breakatwhitespace=false]}
% but lstinline generates ugly sectionnames in PDF TOC, so use \texttt there
\newcommand{\cmdtxt}[1]{\texttt{#1}}
\newtheorem{definition}{Definition}[section]
\newtheorem{remark}{Remark}[section]
\newtheorem{lemma}{Lemma}[section]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% declarations for jss.cls %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% almost as usual
\author{
Albrecht Gebhardt\\ %Department of Statistics,
University Klagenfurt
\And
Roger Bivand\\ %Department of Economics,
Norwegian School of Economics}
\title{A Re-Implementation of Akima's Spline Interpolation for Scattered Data}
%% for pretty printing and a nice hypersummary also set:
\Plainauthor{Albrecht Gebhardt, Roger Bivand} %% comma-separated
\Plaintitle{A Reimplementation of Akima's Spline Interpolation for Scattered Data} %% a short title (if necessary)
%% an abstract and keywords
\Abstract{
This vignette presents the \proglang{R} package \pkg{interp}
and focuses on interpolation of irregular spaced data.
This is the second of planned three vignettes for this package (not yet finished).
}
\Keywords{interpolation, spline, \proglang{R} software}
\Plainkeywords{interpolation, spline, R software}
%% without formatting
%% at least one keyword must be supplied
%% publication information
%% NOTE: Typically, this can be left commented and will be filled out by the technical editor
% \Volume{XX}
%% \Issue{X}
%% \Month{XXXXXXX}
%% \Year{XXXX}
%% \Submitdate{XXXX-XX-XX}
%% \Acceptdate{XXXX-XX-XX}
%% The address of (at least) one author should be given
%% in the following format:
\Address{
Albrecht Gebhardt\
Institut für Statistik\\
Universität Klagenfurt\
9020 Klagenfurt, Austria\\
E-mail: \email{albrecht.gebhardt@aau.at}\
%URL: \url{http://statmath.wu-wien.ac.at/~zeileis/}
}
%% It is also possible to add a telephone and fax number
%% before the e-mail in the following format:
%% Telephone: +43/1/31336-5053
%% Fax: +43/1/31336-734
%% for those who use Sweave please include the following line (with % symbols):
%% need no \usepackage{Sweave.sty}
%% end of declarations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% for Sinput to set font size of R input code:
\newcommand\rsize{%
\fontsize{8.5pt}{9.1pt}\selectfont%
}
\begin{document}
% undefine Sinput, Soutput, Scode to be able to redefine them as
% \lstnewenvironment{Sinput}...
\makeatletter
\let\Sinput\@undefined
\let\endSinput\@undefined
\let\Soutput\@undefined
\let\endSoutput\@undefined
\let\Scode\@undefined
\let\endScode\@undefined
\makeatother
\hypersetup{pdftitle={Interpolation},pdfauthor={Albrecht Gebhardt and Roger Bivand},
pdfborder=1 1 1 1 1}
% Sweave stuff:
% graphics dimension:
\setkeys{Gin}{width=0.8\textwidth}
%\setkeys{Gin}{width=1in}
% all in- and output black:
\definecolor{Sinput}{rgb}{0,0,0}
\definecolor{Soutput}{rgb}{0,0,0}
\definecolor{Scode}{rgb}{0,0,0}
% redefine Sinput, Soutput, Scode, variant 1 use fancy verbatim
%
%\DefineVerbatimEnvironment{Sinput}{Verbatim}
% gobble=0 !!! otherwise 2 characters of S lines are hidden !!!
%{formatcom = {\color{Sinput}},fontsize=\rsize,xleftmargin=2em,gobble=0}
%\DefineVerbatimEnvironment{Soutput}{Verbatim}
%{formatcom = {\color{Soutput}},fontsize=\rsize,xleftmargin=2em,gobble=0}
%\DefineVerbatimEnvironment{Scode}{Verbatim}
%{formatcom = {\color{Scode}},fontsize=\rsize,xleftmargin=2em,gobble=0}
%\fvset{listparameters={\setlength{\topsep}{0pt}}}
%\renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}}
%
% redefine Sinput, Soutput, Scode, variant 2, use color boxes (tcb)
\lstnewenvironment{Sinput}{\lstset{style=Sstyle}}{}%
\lstnewenvironment{Soutput}{\lstset{style=Sstyle}}{}%
\lstnewenvironment{Scode}{\lstset{style=Sstyle}}{}%
\renewenvironment{Schunk}{\vspace{\topsep}\begin{tcolorbox}[breakable,colback=grey1]}{\end{tcolorbox}\vspace{\topsep}}
% see http://www.stat.auckland.ac.nz/~ihaka/downloads/Sweave-customisation.pdf
%
% all in one line!!! setting for direct PDF output !
\SweaveOpts{keep.source=TRUE,engine=R,eps=FALSE,pdf=TRUE,strip.white=all,prefix=TRUE,prefix.string=fig-,include=TRUE,concordance=FALSE,width=6,height=6.5}
% Sweave initialization:
% restrict line length of R output, no "+" for continued lines,
% set plot margins:
% initialize libraries and RNG if necessary
<<label=init, echo=FALSE, results=hide>>=
set.seed(42)
options(width=80)
options(continue=" ")
options(SweaveHooks=list(fig=function()
par(mar=c(5.1, 4.1, 1.1, 2.1))))
library(interp)
@
\section[Note]{Note}
\label{sec:note}
Notice: This is a preliminary and not yet complete version of this vignette.
Finally three vignettes will be available for this package:
\begin{enumerate}
\item a first one related to partial derivatives estimation,
\item this one describing interpolation related stuff
\item and a third one dealing with triangulations and Voronoi mosaics.
\end{enumerate}
\section[Introduction]{Introduction}
\label{sec:intro}
The main aim of this \proglang{R} package is to provide interpolation
algorithms for both regular and irregular data grids
$$
\{((x_{i},y_{i})^{\intercal},z_{i})|x_{i},y_{i},z_{i}\in\R \quad i=1,\ldots,n\}
$$
From the early days of \proglang{S} and \proglang{S-Plus} there was a
function \cmd{interp()} which solved this task. It used Akima's spline
interpolation algorithms available at
\cmd{netlib}\footnote{\url{https://netlib.org/toms/526.gz}} twice:
Once to determine a triangulation of the data which is needed for a
piecewise linear interpolation. This is the default application case
of this function and as shown in \citet{bivand:17} the most common use
of it, especially in other R packages depending on it. Second to get
the spline interpolation based an the same triangulation. These
algorithms have been available since 1998 in \proglang{R} via the
package \cmd{akima}. Unfortunately this package inherits a non-free
license from the underlying \proglang{Fortran} code. So the need to
rewrite the algorithms under a free license, encouraged by the CRAN
team, appeared convincing to the authors of this package. This is now
mostly done and package \cmd{interp} provides plugin capable
replacement functions for the interpolations delivered in package \pkg{akima}.
For both of these interpolations to work it has to be ensured that no
duplicate points $(x_{i},y_{i})$ may exist in the given point set
$\{(x_{i},y_{i})|i=1,\ldots,n\}$. This is reached via the argument
\cmd{duplicate} of \cmd{interp::interp()}. It offers three options:
\begin{itemize}
\item \cmd{"error"}: Stop with an error, this is the default.
\item \cmd{"strip"}: Completely remove points with duplicates, or
\item \cmd{"mean"},\cmd{"median"},\cmd{"user"}: apply some function
to them. The Implementation provides \cmd{mean()}, \cmd{median()} or
a user supplied function (\cmd{"dupfun"}).
\end{itemize}
\section{Bivariate Linear Interpolation}
\label{sec:linear}
The default behaviour of the \cmd{interp::interp()} function is to
produce a piecewise linear interpolation. This interpolation takes the
triangles of the Delaunay triangulation as also returned by
\cmd{tri.mesh()} and simply fits a plane to the three vertices
$(x_{i},y_{i},z_{i}), i=1,2,3$ of those triangles. As a natural
consequence it is not possible to extrapolate this interpolation
beyond the convex hull of the given point set.
First load the data set used by Akima in his initial work on irregular
gridded data \citep{akima:78}, see figure \ref{fig:akima}.
<<label=akima>>=
data(akima)
library(scatterplot3d)
scatterplot3d(akima, type="h", angle=60, asp=0.2, lab=c(4,4,0))
@
\begin{figure}[htb]
\centering
<<fig=TRUE,echo=FALSE,out.width='6in',height=3.5>>=
<<akima>>
@
\caption{Akimas test data in \cite{akima:78}}
\label{fig:akima}
\end{figure}
The next plot in figure \ref{fig:lininterp} shows the linear nature of the isolines of the
interpolation generated within all triangles:
<<label=lininterp>>=
li <- interp(akima$x, akima$y, akima$z, nx=150, ny=150)
MASS::eqscplot(akima$x, akima$y)
contour(li, nlevels=30, add=TRUE)
plot(tri.mesh(akima), add=TRUE)
@
\begin{figure}[htb]
\centering
<<fig=TRUE,echo=FALSE,out.width='6in',height=3.5>>=
<<lininterp>>
@
\caption{Piecewise linear interpolation}
\label{fig:lininterp}
\end{figure}
In case the point data set resembles a regular rectangular grid it
should be noted that no unique solution to the triangulation task
exists. For each rectangle of this grid there are two possibilities to
form triangles compatible with the main condition of a Delaunay
triangulation: The interior of the circumcircle of each triangle does
not contain any other point of the data set. Generally, as long as the
data set contains more then 3 points on a common circumcircle which is
otherwise empty of remaining points, it will lead to non uniqueness of
the triangulation. This in turn means that a piece wise linear
interpolation of rectangular gridded data is not unique. Nevertheless
\cmd{interp::interp()} will always produce the same result as long as no
jitter is applied to the data set. This can be done by explicitly via
the argument \cmd{jitter} or it is applied automatically during the
underlying triangulation, which applies this in some cases of
collinear points to avoid error conditions.
\section{Bivariate Spline Interpolation}
\label{sec:spline}
Akimas spline interpolator 'with the accuracy of a bicubic polynomial'
\citep{akima:78a} for irregular gridded data is given
by the following polynomial in $x$ and $y$:
\begin{equation}
\label{eq:akima}
p(x,y)=\sum_{i=0}^{5}\sum_{j=0}^{5-i}p_{i,j}x^{i}y^{j}
\end{equation}
with 21 coefficients $p_{i,j}$, $0\le i\le j\le 5$. This polynomial is
determined within each triangle $(v_{1},v_{2},v_{3})$ with vertexes
$v_{i}\in\R^{2}, i=1,2,3$ of the Delaunay triangulation. The solution
has to fulfill the following restrictions:
\begin{enumerate}
\item The interpolation itself (condition $(i)$ in \citep{akima:74})
results in 3 conditions.
\item First and second order partial derivatives of $p(x,y)$
have to match estimated derivatives at the triangle vertices (Akima
denotes them as condition $(ii)$). This makes up for 15 conditions.
\item Finally the last three equations (condition $(iii)$) involve the
directional derivatives along the normal vectors of the triangle
sides. As the spline polynomial is of degree 5 these derivatives
generally will be polynomials of degree 4. Now the condition demands
that they are polynomials of degree 3 in that variable that is
describing the position of that normal vector along the triangle
side (later denoted as $s$ in a $(s,t)$ coordinate system), thus
setting its highest degree coefficient to zero. This can be
expressed by setting the appropriate 4th derivative of this
directional derivative to zero.
\end{enumerate}
The same conditions are also used in an improved algorithm described
in \citep{akima:96}, but e.g. the estimation of the partial
derivatives is different to the old algorithm and a better
triangulation based on the \cmd{TRIPACK} Fortran package has been used
\citep{renka:96}.
Next we will formulate the conditions at the triangle vertices
$\Vect{v_{i}}=(x_i,y_i)^{\intercal}, i=1,2,3$ and for the normal
vectors $\Vect{n}_{ij}=
\begin{bmatrix}
0&1\\-1&0
\end{bmatrix}
\Vect{t}_{ij} $ of the triangle sides
$\Vect{t}_{ij}=(x_j,y_j)^{\intercal}-(x_i,y_i)^{\intercal}$
$(i,j)\in\{(1,3),(3,2),(2,1)\}$.
\begin{equation}
\label{eq:iiiiii}
\begin{array}{lrclrclrcl}
(i) & p(x_i,y_i)&=&z_i,&\multicolumn{6}{l}{i=1,2,3}\\
(ii)&\frac{\partial}{\partial x}p(x_i,y_i)&=&z_{x,i},&
\frac{\partial}{\partial y}p(x_i,y_i)&=&z_{y,i},&\multicolumn{3}{l}{i=1,2,3}\\
&\frac{\partial^2}{\partial x\partial y}p(x_i,y_i)&=&z_{xy,i},&
\frac{\partial^2}{\partial x^2}p(x_i,y_i)&=&z_{xx,i},&
\frac{\partial^2}{\partial y^2}p(x_i,y_i)&=&z_{yy,i}\\
(iii)&\frac{\partial^{4}}{\partial s^{4}} \Vect{n}_{ij}\nabla p(x,y)&=&0&\multicolumn{6}{l}{(i,j)\in\{(1,3),(3,2),(2,1)\}}
\end{array}
\end{equation}
where $z_{i}$ are the values to interpolate in
$\Vect{v}_{i}=(x_{i},y_{i})^{\intercal}, i=1,2,3$ and
$z_{x,i}=\frac{\partial}{\partial x}p(x_{i},y_{i})$,
$z_{y,i}=\frac{\partial}{\partial y}p(x_{i},y_{i})$,
$z_{xx,i}=\frac{\partial^{2}}{\partial x^{2}}p(x_{i},y_{i})$,
$z_{xy,i}=\frac{\partial^{2}}{\partial x\partial y}p(x_{i},y_{i})$
and $z_{yy,i}=\frac{\partial^{2}}{\partial^{2} y}p(x_{i},y_{i})$
denote the estimates for partial derivatives at $\Vect{v}_{i}$. Note
that the scalar product $\Vect{n}_{ij}\nabla p(x,y)$ represents the
directional derivative mentioned above expressed in coordinates $s$
and $t$.
All these conditions together ensure that the resulting spline
interpolates the given data and the interpolating function is
continuous and differentiable across the borders of all triangles.
We now illustrate this with the same data set as above in figure \ref{fig:splinterp}.
<<label=splinterp>>=
si <- interp(akima$x, akima$y, akima$z, method="akima", nx=150, ny=150)
MASS::eqscplot(akima$x, akima$y)
contour(si, nlevels=30, add=TRUE)
plot(tri.mesh(akima), add=TRUE)
@
\begin{figure}[htb]
\centering
<<fig=TRUE,echo=FALSE,out.width='6in',height=3.5>>=
<<splinterp>>
@
\caption{Bivariate Spline Interpolation}
\label{fig:splinterp}
\end{figure}
\section{Implementation details}
\label{sec:impl}
The call to \cmd{interp::interp()} follows this form:
\begin{Schunk}
\begin{Sinput}
interp(x, y = NULL, z, xo = seq(min(x), max(x), length = nx),
yo = seq(min(y), max(y), length = ny),
linear = (method == "linear"), extrap = FALSE,
duplicate = "error", dupfun = NULL,
nx = 40, ny = 40, input="points", output = "grid",
method = "linear", deltri = "shull", h=0,
kernel="gaussian", solver="QR", degree=3,
baryweight=TRUE, autodegree=FALSE, adtol=0.1,
smoothpde=FALSE, akimaweight=TRUE, nweight=25)
\end{Sinput}
\end{Schunk}
The arguments \cmd{duplicate} and \cmd{dupfun} have been introduced
above, as well as \cmd{method} with its currently two available options
\cmd{"linear"} and \cmd{"akima"}.
Generally the input will be given as three vectors \cmd{x}, \cmd{y}
and \cmd{z} of equal length. Omitting \cmd{y} implicates that \cmd{x}
consist of a two column matrix or dataframe containing $x$ and $y$
entries. Additionally the argument \cmd{input} has to be set to
\cmd{"points"} (which it is by default). If \cmd{input="grid"} is
given, \cmd{z} is treated as a matrix of $z$ values containing
$z_{i,j}$ for the $x$ and $y$ values given in the argument vectors
\cmd{x} and \cmd{y} both of a length matching the dimensions of
\cmd{z}. A similar scheme is applied to the output: If
\cmd{output="grid"} is set (default) a matrix with rows and columns
according to the output defining vectors \cmd{xo} and \cmd{yo} is
returned. The output grid can also be specified by setting its
dimension to \cmd{nx} times \cmd{ny}, it will then be chosen to cover the
range of the input data. With \cmd{output="points"} \cmd{xo} and
\cmd{yo} have to be of equal length and only a vector of $z$ values of
the same length is returned. Extrapolation (\cmd{extrap=TRUE}) is only
possible for spline interpolation but is disabled by default. The
remaining parameters control several aspects of the algorithm and are
at least partially explained later.
Both methods are implemented via the \cmd{Rcpp} interface
\citep{rcpp}. As mentioned before, step 1 of these interpolation
methods is the Delaunay triangulation, described in another vignette
(\cmd{vignette("tri")}) which is based on the sweep hull algorithm described in
\citep{sinclair:16}. The access to the triangulation code is done
internally via \proglang{C++}, not via the R function \cmd{interp::tri.mesh()}.
In the second step the needed estimates for the partial derivatives up
to degree 2 in all data points are determined. This is based on a
local polynomial regression approach implemented in
\proglang{C++}. These intermediate results are also available via
\cmd{interp::locpoly()} described in a separate vignette
(\cmd{vignette("partDeriv")}). All options of the related
\cmd{interp::locpoly()} function are also available in
\cmd{interp::interp()}, e.g. argument \cmd{kernel} specifies the
kernel used. In contrast to Akima's interpolation we use a gaussian
kernel by default and not a uniform one. Argument \cmd{h} contains the
bandwidth, either as a scaler, or a vector of length 2. The first
setting gives a percentage of the data set used for a local nearest
neigbour bendwidth approach. If two bandwidths as a vector are given
then two global bandwidths for $x$ and $y$ are chosen as the given
percentage of their data range. If \cmd{h=0} then a minimum local
bandwidth resulting in 10 nearest neigbours are choosen to be able to
determine the 10 parameters of a \cmd{degree=3} polynomial. It is
possible to choose different numerical solutions of the weighted least
squares method behind the local regression via the argument
\cmd{solver} (default is \cmd{"QR"}, but also \cmd{"LLT"},
\cmd{"SVD"}, \cmd{"Eigen"} and \cmd{"CPivQR"} are available) to be
used in the local regression step, compare \cmd{fastLm()} in
\citep{rcppeigen}.
The third step performs the real interpolation. First the estimated
derivatives are (optionally) smoothed according to the smoothing
scheme detailed in \citep{akima:78}. Then the system of equations
(\ref{eq:iiiiii}) is solved per triangle and the results are
determined via
\begin{dmath}
p(x,y)=y\,\left(y\,\left(y\,\left(y\,\left(p_{0,5}\,y+p_{1,4}\,x+p_{0,4}\right)+x\,\left(p_{2,3}\,x+p_{1,3}\right)+p_{0,3}\right)+x\,\left(x\,\left(p_{3,2}\,x+p_{2,2}\right)+p_{1,2}\right)+p_{0,2}\right)+x\,\left(x\,\left(x\,\left(p_{4,1}\,x+p_{3,1}\right)+p_{2,1}\right)+p_{1,1}\right)+p_{0,1}\right)+x\,\left(x\,\left(x\,\left(x\,\left(p_{5,0}\,x+p_{4,0}\right)+p_{3,0}\right)+p_{2,0}\right)+p_{1,0}\right)+p_{0,0}
\label{eq:poly}
\end{dmath}
which is equivalent to (\ref{eq:akima}) but numerically more stable.
Optionally some methods to improve the results can be applied. They
are choosen via the following arguments:
\begin{itemize}
\item \cmd{akimaweight}: As mentioned above, this sort of averaging is
also done in Akimas original algorithms. It takes by default 25
(parameter \cmd{nweight}) estimates of that specific partial
derivative and builds a weighted sum of them with the weights beeing
constructed out of normal densities with mean and standard
deviations of the according estmation errors.
\item \cmd{baryweight}: The system of equations (\ref{eq:iiiiii}) is
solved after transforming each triangle into a standardized triangle
with vertices $(0,0)^{\intercal}, (1,0)^{\intercal}, (0,1)^{\intercal}$. So one of the three
vertices of a triangle gets transformed into
$(0,0)^{\intercal}$. During the development of the code it became
apperent that the numerical errors for points near to this vertices are
minimal and increase for the two other vertices. This weighting
scheme repeats the interpolation for all three possibilities to
transform a vertex into $(0,0)^{\intercal}$ and then merges the results using
the barycentric coordinates (see \ref{sec:baryc-coord}) of the
prediction points. That way results generated from a vertex mapped to
$(0,0)^{\intercal}$ always dominate and all three vertices can benefit from
the reduced numerical errors near $(0,0)^{\intercal}$ after transformation.
Clearly this triples the computing time. But nevertheless this
option is used by default. As motivation a result with barycentric weighting
turned off is given below in figure \ref{fig:splinterpnobw}.
<<label=splinterpnobw>>=
si.nobw <- interp(akima$x, akima$y, akima$z, method="akima", nx=150, ny=150,
baryweight=FALSE)
MASS::eqscplot(akima$x, akima$y)
contour(si.nobw, nlevels=30, add=TRUE)
plot(tri.mesh(akima), add=TRUE)
@
The plot clearly shows (e.g. in the center of the upper left quadrant)
the numerical problems of disconnected isolines across the triangle
borders. Note, that these errors occur only on one triangle edge. It
turned out this is opposite to the vertex mapped internally by the algorithm to
$(0,0)^{\intercal}$. So we encourage to use this option even dispite the tripled computing time. Only if
acurracy does not really matter one could reduce the computing time by
turning it off.
\begin{figure}[htb]
\centering
<<fig=TRUE,echo=FALSE,out.width='6in',height=3.5>>=
<<splinterpnobw>>
@
\caption{Bivariate Spline Interpolation (Without barycentric weighting)}
\label{fig:splinterpnobw}
\end{figure}
\item \cmd{smoothpde}: If \cmd{TRUE} smoothing of partial derivative estimates, if
\cmd{akimaweight==TRUE} then Akimas weighting scheme is applied,
otherwise a simple arithmetic mean is returned. Note that it is
disabled by default which in turn means that also no Akima weighting
is applied. If it is enabled then Akima weighting is used by default
and a simple arithmetic mean if \cmd{akimaweight=FALSE} is given.
\item \cmd{autodegree}: If the variability of the interpolates is
above \cmd{adtol} then reduce the degree of the polynomial to get a
smoother result. This is also disabled by default.
\end{itemize}
If \cmd{interp::interp()} is called with regular gridded data as input, it
uses the same irregular grid based algorithm. This is in contrast to
the old package \cmd{akima}, this also contained Akimas code for regular
gridded data, based on \citep{akima:74} and \citep{akima:96a}. Maybe a
future version of package \cmd{interp} will also contain a
re-implementation of this old code.
This package also implements bilinear interpolation for rectangular
grids. Given a rectangle
$\{(x_{1},y_{1})^{\intercal},(x_{2},y_{2})^{\intercal},(x_{3},y_{3})^{\intercal},(x_{4},y_{4})^{\intercal}\}$
and $y_{1}=y_{2}$, $y_{3}=y_{4}$, $x_{1}=x_{4}$ and $x_{2}=x_{3}$
(this makes it axis parallel) with counter clockwise indexed vertexes
and according $z$ values $z_{1},z_{2},z_{3},z_{4},$ this algorithm can
be described as follows: For a location $(x_{0},y_{0})^{\intercal}$
contained in this rectangle the interpolation is determined via:
\begin{enumerate}
% \item Calculate intermediate vertexes
% $$(x_{12},y_{12})^{\intercal}=\frac{x_{0}-x_{1}}{x_{2}-x_{1}}((x_{2},y_{2})^{\intercal}+(x_{2},y_{2})^{\intercal})
% \quad\mbox{and}\quad
% (x_{34},y_{34})^{\intercal}=\frac{x_{0}-x_{1}}{x_{2}-x_{1}}((x_{3},y_{3})^{\intercal}+(x_{4},y_{4})^{\intercal}).$$
\item
Determine intermediate $z$ values for $(x_{0},y_{1})^{\intercal}$ and $(x_{0},y_{3})^{\intercal}$ as
$$z_{01}=\frac{x_{0}-x_{1}}{x_{2}-x_{1}}(z_{1}+z_{2})
\quad\mbox{and}\quad z_{03}=\frac{x_{0}-x_{1}}{x_{2}-x_{1}}(z_{3}+z_{4}).$$
\item Now get $$z_{0}=\frac{y_{0}-y_{1}}{y_{4}-y_{1}}(z_{01}+z_{03}).$$
\end{enumerate}
This results in a polynomial of degree 2 which is continuous but not
differentiable at the borders of the rectangle.
We use Franke function 1 \citep{franke:82} on a regular grid for the
demonstration, see figure \ref{fig:bilinear}.
<<label=bilinear>>=
nx <- 8; ny <- 8
xg<-seq(0,1,length=nx)
yg<-seq(0,1,length=ny)
xyg<-expand.grid(xg,yg)
fg <- outer(xg,yg,function(x,y)franke.fn(x,y,1))
# not yet implemented this way:
# bil <- interp(xg,yg,fg,input="grid",output="grid",method="bilinear")
bil <- bilinear.grid(xg, yg, fg, dx=0.01, dy=0.01)
MASS::eqscplot(xyg[,1], xyg[,2])
contour(bil, add=TRUE)
@
\begin{figure}[htb]
\centering
<<fig=TRUE,echo=FALSE,out.width='6in',height=3.5>>=
<<bilinear>>
@
\caption{Bilinear interpolation of regularly gridded data}
\label{fig:bilinear}
\end{figure}
% FIXME: index bug in \cmd{BiLinear}:
% <<fig=TRUE,height=4>>=
% bil <- BiLinear.grid(xg, yg, fg, dx=0.01, dy=0.01)
% MASS::eqscplot(xyg[,1], xyg[,2])
% contour(bil, add=TRUE)
% @
\section{One-Dimensional Data}
\label{sec:1d}
Akima also implemented algorithms for one-dimensional spline
interpolation, see \citep{akima:72}. So it was a natural choice to
include these algorithms also in the package \pkg{akima}. The
functions \cmd{aspline()} and \cmd{aSpline()} are freely licensed
re-implementations of this algorithm in \proglang{Fortran} and
\proglang{C++}. It comes in two versions, one as described in
\citep{akima:72} and an improved version as described in
\citep{akima:91}, the newer algorithm also allows for higher degrees
of the polynomial, not only degree 3, compare figure \ref{fig:aspline}
<<label=aspline>>=
x <- c(-3, -2, -1, 0, 1, 2, 2.5, 3)
y <- c( 0, 0, 0, 0, -1, -1, 0, 2)
MASS::eqscplot(x, y, ylim=c(-2, 3))
lines(aspline(x, y, n=200, method="original"), col="red")
lines(aspline(x, y, n=200, method="improved"), col="black", lty="dotted")
lines(aspline(x, y, n=200, method="improved", degree=10), col="green", lty="dashed")
@
\begin{figure}[htb]
\centering
<<fig=TRUE,echo=FALSE,out.width='6in',height=3.5>>=
<<aspline>>
@
\caption{Spline interpolation of onedimensional data}
\label{fig:aspline}
\end{figure}
\section{Appendix}
\label{sec:appendix}
\subsection{Barycentric Coordinates}
\label{sec:baryc-coord}
Points within a triangle can be expressed in barycentric coordinates as follows:
Given a triangle with vertices
$\Vect{v}_{i}=(x_i,y_i)^{\intercal}, i=1,2,3$ any interior point
$\Vect{v}_{0}=(x_0,y_0)^{\intercal}$ of this triangle can be expressed
as a convex linear combination
$$
\Vect{v}_{0}=a\cdot\Vect{v}_{1}+b\cdot\Vect{v}_{2}+c\cdot\Vect{v}_{3}
$$
with $a,b,c\in [0,1]$ and $a+b+c=1$ (notation: $[a:b:c]$). The
vertices itself carry the representation $[1:0:0]$ , $[0:1:0]$ and
$[0:0:1]$.
In section \ref{sec:impl} we used these coordinates to build a
weighted sum of three interpolation results. Component $a$ of the
barycentric coordinates of a point near vertex $\Vect{v_1}$ will be
close to 1 and so the interpolation result with the lowest numerical
error (where vertex $\Vect{v}_{1}$ had been transformed to
$(0,0)^{\intercal}$) will dominate the barycentric weighted sum
mentioned above. Using this approach we cherry pick the numerically
best portions of these three interpolation results.
\bibliography{lit}
%\addcontentsline{toc}{section}{Tables}
%\listoftables
\addcontentsline{toc}{section}{Figures}
\listoffigures
\end{document}
|