File: partDeriv.Rnw

package info (click to toggle)
r-cran-interp 1.1-6-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,892 kB
  • sloc: cpp: 4,034; ansic: 63; fortran: 31; makefile: 2
file content (1077 lines) | stat: -rw-r--r-- 42,811 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
%% -*- mode: Rnw; coding: utf-8; -*-
%\VignetteIndexEntry{Local polynomial regression in two variables applied to estimating partial derivatives}
%\VignetteDepends{Deriv,Ryacas,ggplot2,gridExtra,lattice,stringi,stringr}
%\VignetteKeywords{nonparametric}
%\VignettePackage{interp}

\documentclass[nojss]{jss}
\usepackage[utf8]{inputenc}
%\usepackage{Sweave}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{flexisym}
\usepackage{breqn}
\usepackage{bm}
\usepackage{graphicx}

% put floats before next section:
\usepackage[section]{placeins}

% collect appendices as subsections
\usepackage[toc,page]{appendix}

% customize verbatim parts
\usepackage{listings}
\lstdefinestyle{Sstyle}{
  basicstyle=\ttfamily\rsize,
  columns=fixed,
  breaklines=true, % sets automatic line breaking
  breakatwhitespace=false,
  postbreak=\raisebox{0ex}[0ex][0ex]{\ensuremath{\color{red}\hookrightarrow\space}},
  fontadjust=true,
  basewidth=0.5em,
  inputencoding=utf8,
  extendedchars=true,
  literate={‘}{{'}}1 {’}{{'}}1 % Zeichencodes für Ausgabe von lm() !
  {á}{{\'a}}1 {é}{{\'e}}1 {í}{{\'i}}1 {ó}{{\'o}}1 {ú}{{\'u}}1
  {Á}{{\'A}}1 {É}{{\'E}}1 {Í}{{\'I}}1 {Ó}{{\'O}}1 {Ú}{{\'U}}1
  {à}{{\`a}}1 {è}{{\`e}}1 {ì}{{\`i}}1 {ò}{{\`o}}1 {ù}{{\`u}}1
  {À}{{\`A}}1 {È}{{\'E}}1 {Ì}{{\`I}}1 {Ò}{{\`O}}1 {Ù}{{\`U}}1
  {ä}{{\"a}}1 {ë}{{\"e}}1 {ï}{{\"i}}1 {ö}{{\"o}}1 {ü}{{\"u}}1
  {Ä}{{\"A}}1 {Ë}{{\"E}}1 {Ï}{{\"I}}1 {Ö}{{\"O}}1 {Ü}{{\"U}}1
  {â}{{\^a}}1 {ê}{{\^e}}1 {î}{{\^i}}1 {ô}{{\^o}}1 {û}{{\^u}}1
  {Â}{{\^A}}1 {Ê}{{\^E}}1 {Î}{{\^I}}1 {Ô}{{\^O}}1 {Û}{{\^U}}1
  {œ}{{\oe}}1 {Œ}{{\OE}}1 {æ}{{\ae}}1 {Æ}{{\AE}}1 {ß}{{\ss}}1
  {ű}{{\H{u}}}1 {Ű}{{\H{U}}}1 {ő}{{\H{o}}}1 {Ő}{{\H{O}}}1
  {ç}{{\c c}}1 {Ç}{{\c C}}1 {ø}{{\o}}1 {å}{{\r a}}1 {Å}{{\r A}}1
  {€}{{\euro}}1 {£}{{\pounds}}1 {«}{{\guillemotleft}}1
  {»}{{\guillemotright}}1 {ñ}{{\~n}}1 {Ñ}{{\~N}}1 {¿}{{?`}}1
}
% switch to above defined style
\lstset{style=Sstyle}

% nice borders for code blocks
\usepackage{tcolorbox}
% enable boxes over several pages:
\tcbuselibrary{breakable,skins}
\tcbset{breakable,enhanced}

\definecolor{grey2}{rgb}{0.6,0.6,0.6}
\definecolor{grey1}{rgb}{0.8,0.8,0.8}



% some abbreviations:
\newcommand{\R}{\mathbb{R}}
\newcommand{\EV}{\mathbb{E}}
\newcommand{\Vect}[1]{\underline{#1}}
\newcommand{\Mat}[1]{\boldsymbol{#1}}
\newcommand{\Var}{\mbox{Var}}
\newcommand{\Cov}{\mbox{Cov}}
% lstinline can break code across lines
\def\cmd{\lstinline[basicstyle=\ttfamily,keywordstyle={},breaklines=true,breakatwhitespace=false]}
% but lstinline generates ugly sectionnames in PDF TOC, so use \texttt there
\newcommand{\cmdtxt}[1]{\texttt{#1}}

\newtheorem{definition}{Definition}[section]
\newtheorem{remark}{Remark}[section]
\newtheorem{lemma}{Lemma}[section]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% declarations for jss.cls %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% almost as usual
\author{
  Albrecht Gebhardt\\ %Department of Statistics,
  University Klagenfurt
\And
  Roger Bivand\\ %Department of Economics,
  Norwegian School of Economics}

\title{Local Polynomial Regression used to estimate partial derivatives for later use in Spline Interpolation}

%% for pretty printing and a nice hypersummary also set:
\Plainauthor{Albrecht Gebhardt, Roger Bivand} %% comma-separated
\Plaintitle{Local Polynomial Regression used to estimate partial derivatives for} %% without formatting
\Shorttitle{Local Polynomial Regression in \proglang{R} Package \pkg{interp}} %% a short title (if necessary)

%% an abstract and keywords
\Abstract{
This vignette presents the \proglang{R} package \pkg{interp}
and focuses on local polynomial regression for estimating partial derivatives.

This is the first of planned three vignettes for this package (not yet finished).
}
\Keywords{local polynomial regression, partial derivatives, \proglang{R} software}
\Plainkeywords{local polynomial regression, partial derivatives, R software}
%% without formatting
%% at least one keyword must be supplied

%% publication information
%% NOTE: Typically, this can be left commented and will be filled out by the technical editor
% \Volume{XX}
%% \Issue{X}
%% \Month{XXXXXXX}
%% \Year{XXXX}
%% \Submitdate{XXXX-XX-XX}
%% \Acceptdate{XXXX-XX-XX}

%% The address of (at least) one author should be given
%% in the following format:
\Address{
  Albrecht Gebhardt\
  Institut für Statistik\\
  Universität Klagenfurt\
  9020 Klagenfurt, Austria\\
  E-mail: \email{albrecht.gebhardt@aau.at}\
  %URL: \url{http://statmath.wu-wien.ac.at/~zeileis/}
}
%% It is also possible to add a telephone and fax number
%% before the e-mail in the following format:
%% Telephone: +43/1/31336-5053
%% Fax: +43/1/31336-734

%% for those who use Sweave please include the following line (with % symbols):
%% need no \usepackage{Sweave.sty}

%% end of declarations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% for Sinput to set font size of R input code:
\newcommand\rsize{%
   \fontsize{8.5pt}{9.1pt}\selectfont%
}

\begin{document}
% undefine Sinput, Soutput, Scode to be able to redefine them as
% \lstnewenvironment{Sinput}...
\makeatletter
\let\Sinput\@undefined
\let\endSinput\@undefined
\let\Soutput\@undefined
\let\endSoutput\@undefined
\let\Scode\@undefined
\let\endScode\@undefined
\makeatother

\hypersetup{pdftitle={Local Polynomial Regression: How the R Package interp estimates partial derivatives for later use in Spline Interpolation},pdfauthor={Albrecht Gebhardt and Roger Bivand},
  pdfborder=1 1 1 1 1}

% Sweave stuff:
% graphics dimension:
\setkeys{Gin}{width=0.8\textwidth}
%\setkeys{Gin}{width=1in}
% all in- and output black:
\definecolor{Sinput}{rgb}{0,0,0}
\definecolor{Soutput}{rgb}{0,0,0}
\definecolor{Scode}{rgb}{0,0,0}
% redefine Sinput, Soutput, Scode, variant 1 use fancy verbatim
%
%\DefineVerbatimEnvironment{Sinput}{Verbatim}
% gobble=0 !!! otherwise 2 characters of S lines are hidden !!!
%{formatcom = {\color{Sinput}},fontsize=\rsize,xleftmargin=2em,gobble=0}
%\DefineVerbatimEnvironment{Soutput}{Verbatim}
%{formatcom = {\color{Soutput}},fontsize=\rsize,xleftmargin=2em,gobble=0}
%\DefineVerbatimEnvironment{Scode}{Verbatim}
%{formatcom = {\color{Scode}},fontsize=\rsize,xleftmargin=2em,gobble=0}
%\fvset{listparameters={\setlength{\topsep}{0pt}}}
%\renewenvironment{Schunk}{\vspace{\topsep}}{\vspace{\topsep}}
%
% redefine Sinput, Soutput, Scode, variant 2, use color boxes (tcb)
\lstnewenvironment{Sinput}{\lstset{style=Sstyle}}{}%
\lstnewenvironment{Soutput}{\lstset{style=Sstyle}}{}%
\lstnewenvironment{Scode}{\lstset{style=Sstyle}}{}%
\renewenvironment{Schunk}{\vspace{\topsep}\begin{tcolorbox}[breakable,colback=grey1]}{\end{tcolorbox}\vspace{\topsep}}
% see http://www.stat.auckland.ac.nz/~ihaka/downloads/Sweave-customisation.pdf
%

% all in one line!!! setting for direct PDF output !
\SweaveOpts{keep.source=TRUE,engine=R,eps=FALSE,pdf=TRUE,strip.white=all,prefix=TRUE,prefix.string=fig-,include=TRUE,concordance=FALSE,width=6,height=6.5}

% Sweave initialization:
% restrict line length of R output, no "+" for continued lines,
% set plot margins:
% initialize libraries and RNG if necessary
<<label=init, echo=FALSE, results=hide>>=
set.seed(42)
options(width=80)
options(continue=" ")
options(SweaveHooks=list(fig=function()
    par(mar=c(5.1, 4.1, 1.1, 2.1))))
library(interp)
library(Deriv)
library(Ryacas)
library(gridExtra)
library(grid)
library(ggplot2)
library(lattice)
@


\section[Note]{Note}
\label{sec:note}
Notice: This is a preliminary and not yet complete version of this vignette.
Finally three vignettes will be available for this package:
\begin{enumerate}
\item this one related to partial derivatives estimation,
\item a next one describing interpolation related stuff
\item and a third one dealing with triangulations and Voronoi mosaics.
\end{enumerate}


\section[Introduction]{Introduction}
\label{sec:intro}
Altough the main intention of this \proglang{R} package is
interpolation, it also contains routines for local polynomial
regression. The reason is that the spline interpolation implemented by
\cmd{interp::interp(..., method="akima")} needs estimates of the
partial derivatives of the interpolated function up to degree 2.

One approach to get such estimates is to perform a local polynomial
regression \citep[see e.g.][p. 19]{fan1996local} and get the 
partial derivatives as a side
effect, as explained later. This is also applied in Akima's original
code in a special hardcoded way (using a fixed local bandwidth and a
uniform kernel). Once this routines had been implemented and used
internally in the \cmd{interp::interp(...,method="akima")} it was an
obvious decision to make these routines also available to end users of
package \cmd{"interp"}.

\section{Kernel Functions}
\label{sec:kernel}
In the next section we will use the notion of kernel functions, so
let us start with this definition.

\begin{definition}
A one-dimensional kernel function\index{kernel function} $K(x)$ is
\begin{enumerate}
\item a density function, hence
  \begin{enumerate}
  \item $K(x)\ge 0$
  \item $\int_{\R}K(x)dx=1$
  \end{enumerate}
  Let us denote the associated stochastic variable with $X_{K}$ for
  easier notation, it otherwise carries no meaning.
\item $K$ has the property $\int_{\R}x\cdot K(x)=0$ (i.e. $\EV X_{K}=0$,
  kernel function is centered at zero) and
  
\item $K$ is assumed to be symmetric $K(-x)=K(x)$ and
\item $0<\int_{\R}x^{2}\cdot K(x)dx=\sigma^{2}_{K}<\infty$, i.e.
  $\Var X_{K}$ exists.
  \end{enumerate}
\end{definition}
The kernel functions currently implemented in this library are listed
in table \ref{tab:kernels}.
\begin{table}[htbp]
  \centering
  \begin{tabular}{l|c|l}
    name & function & support of $K$ (outside: $K(x)=0$)\\
    \hline
    gaussian      & $\frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}}$ & $x\in\R$\\
    cosine       & $\frac{1}{2}\cos(x)$ &$x\in(-\frac{\pi}{2},\frac{\pi}{2}]$\\
    epanechnikov & $\frac{3}{4}(1-x^{2})$&$x\in(-1,1]$\\
    biweight     & $\frac{15}{16}(1-x^{2})^{2}$&$x\in(-1,1]$\\
    tricube      & $\frac{70}{81}(1-|x|^{3})^{3}$ &$x\in(-1,1]$\\
    triweight    & $\frac{35}{32}(1-x^{2})^{3}$  &$x\in(-1,1]$\\
    uniform      & $\frac{1}{2}$ & $x\in(-1,1]$\\
    triangular   & $1-|x|$  &$x\in(-1,1]$
  \end{tabular}
\index{kernel functions}
  \caption{kernels}
  \label{tab:kernels}
\end{table}

A common approach to create two-dimensional kernel functions is to
derive them from one-dimensional kernels as bivariate densities with
independent components:
\begin{eqnarray*}
  K_{X,Y}(x,y)&=&K_{X}(x)K_{Y}(y)
\end{eqnarray*}
Both $K_X$ and $K_Y$ are chosen from the same kernel function type.


\section{Bivariate Local Polynomial Regression}
\label{sec:local-polyn-regr}
Let us start with a data set $\{(\Vect{x}_{i},z_{i})|i=1,\ldots,n\}$
with vectors $\Vect{x}_{i}=(x_{i},y_{i})^{\top}\in\R^{2}$ and real
numbers $z_{i}\in\R$. Assume a trend model
$$
z=m(\Vect{x})+\varepsilon
$$
with independent random errors $\varepsilon$
and a bivariate polynomial of degree $r$ as setup for $m$:
$$
m(\Vect{x})=m(x,y)=\sum_{i=0}^{r}\sum_{j=0}^{r-i}\beta_{ij}x^{i}y^{j}.
$$
Note that the sum of exponents $i$ and $j$ in each term of the sum is
bounded above by $r$.

Local regression aims to minimize a weighted sum of squares where the
weights are determined by a bivariate kernel function centered at the
actual location for prediction $\Vect{x}$ which decreases with increasing
distance from this centering point:
$$
\sum_{k=1}^{n}K_{X}\left(\frac{x-x_k}{h_{x}}\right)K_{Y}\left(\frac{y-y_k}{h_{y}}\right)
\left[z_k-\sum_{i=0}^{r}\sum_{j=0}^{r-i}\beta_{ij}x_k^{i}y_k^{j}\right]^2 \rightarrow Min
$$

A Taylor expansion of $m(x,y)$ in a location
$\Vect{x}_{0}=(x_{0},y_{0})$ can be used as a starting point to
interpret the estimated parameters:
\begin{eqnarray*}
  m(x,y) &=& \sum_{i=0}^{r-1}\sum_{j=0}^{r-1-i}  \frac{\frac{\partial^{i+j} m}{\partial x^{i}\partial y^{j}}(x_0)}{i!j!}(x-x_0)^{i}(y-y_0)^{j}\\
  &=& \sum_{i=1}^{r}\sum_{j=1}^{r-i} \underbrace{\frac{\frac{\partial^{i+j} m}{\partial x^{i-1}\partial y^{j-1}}(x_0)}{(i-1)!(j-1)!}}_{=\beta_{ij}}(x-x_0)^{i-1}(y-y_0)^{j-1}\\
  &=& \sum_{i=1}^{r}\sum_{j=1}^{r-i} \beta_{ij} (x-x_0)^{i-1}(y-y_0)^{j-1}\\
\end{eqnarray*}
With the estimates
$\widehat{\beta}_{ij}, i=1,\ldots,r, j=1,\ldots,r-i$ for a given
location $\Vect{x}$, we evaluate this Taylor expansion at
$\Vect{x}=\Vect{x}_0$, which means that all terms
$(x-x_0)^{i}(y-y_0)^{j}$ with $i>0$ or $j>0$ vanish.  Only the
estimated function and its derivatives at location $\Vect{x}=\Vect{x}_0$ remain:
\begin{eqnarray}
  \label{eq:estderivs}
  \widehat{m}(x,y)&=&\sum_{i=1}^{r}\sum_{j=1}^{r-i}\widehat{\beta}_{ij} (x-x_0)^{i-1}(y-y_0)^{j-1}\\
  &=&\widehat{\beta}_{1,1}y
\end{eqnarray}
The remaining components of $\widehat{\beta}$ can  now be used to estimate
the values of the derivatives of $m$ in
\begin{eqnarray}
  \label{eq:estderiv}
  \widehat{\frac{\partial^{i+j} m}{\partial x^{i}\partial y^{j}}(x_0)}&=&(i-1)!(j-1)!\widehat{\beta}_{ij}, 
                                                              \quad i=1,\ldots,r, j=1,\ldots,r-i
\end{eqnarray}

%FIXME: correct index shifting of $i$ and $j$

\section{Implementation details}
\label{sec:impl}

A call to function \cmd{interp::locpoly()} can be made with the following arguments:

\begin{Schunk}
  \begin{Sinput}
locpoly(x, y, z, xo = seq(min(x), max(x), length = nx), yo = seq(min(y),
 max(y), length = ny), nx = 40, ny = 40, input = "points", output = "grid",
 h = 0, kernel = "uniform", solver = "QR", degree = 3, pd = "")
  \end{Sinput}
\end{Schunk}
The first three arguments are vectors containing the data set. A future version may implement a similar scheme as used in \cmd{interp::interp()} where it is possible to use also a matrix of a rectangular data grid. Currently only the option \cmd{input="grid"} is implemented. In contrast the return value via \cmd{output="grid"} is by default a matrix of values according to a grid generated by \cmd{xo} and \cmd{yo} or automatically with dimension \cmd{nx} time \cmd{ny}. But also point wise output can be returned via \cmd{output="points"}, in this case \cmd{xo} and \cmd{yo} have to be of same length.

The \cmd{kernel} parameter takes the values \cmd{"uniform"}, \cmd{"triangle"}, \cmd{"epanechnikov"}, \cmd{"biweight"}, \cmd{"tricube"}, \cmd{"triweight"}, \cmd{"cosine"} and \cmd{"gaussian"} (default), see table \ref{tab:kernels}. The bandwidth parameter \cmd{h} is interpreted as a local nearest neighbour bandwidth iff given as a scalar. I then is a proportion between 0 and 1 of the data set to be put into a local search neighbourhood.
If it is specified as a vector with two elements, they are interpreted as proportions of the data range in $x$ and $y$ direction and are taken as a pair of fixed global two dimensional bandwiths, compare the examples below. 

The  argument
\cmd{solver} (default is \cmd{"QR"}, but also \cmd{"LLT"},
\cmd{"SVD"}, \cmd{"Eigen"} and \cmd{"CPivQR"} are available) chooses the numerical method to be
used in the local regression step for solving the normal equations generated by the weighted least squares problem, compare \cmd{fastLm()} in
\citep{rcppeigen}.

Function \cmd{interp::locpoly()} returns estimated values of the
regression function as well as estimated partial derivatives up to
order 3 (Akima splines only need derivatives up to order 2). If the input parameter \cmd{pd} is empty (\cmd{""}) only the local regression is returned. If it is set to (\cmd{"all"}) all derivatives up to order three (or less if \cmd{degree} is less then 3) including the regression result itself is returned. Otherwise using the encodings \cmd{"x"}, \cmd{"y"}, \cmd{"xx"}, $\ldots$, \cmd{"xyy"} and \cmd{"yyy"} a single partial derivative can be selected.

This access to the partial derivatives was the main intent for writing this
code as there are already many other local polynomial regression
implementations in R. Beside the univariate local estimators
\cmd{stats::ksmooth()}, \cmd{locpol::locPolSmootherC()} and
\cmd{KernSmooth::locpoly()} (the last two also return univariate
derivatives) the packages \pkg{locfit} and \pkg{sm} provide amongst
other things bivariate local regression methods. But to our knowledge
currently (winter 2023), no bivariate local regression estimators for
partial derivatives exist. Package \pkg{NNS} also provides numerical
differentiation but it uses finite difference methods. The original
code from Akima also uses a partial derivatives estimator which is
equivalent to a local regression with uniform kernels.  Anyhow, to be
used from within the \proglang{C++} implementation of
\cmd{interp::interp()} we had to implement this estimator directly
also in \proglang{C++} in package \pkg{interp} and could not rely on
any external package.

This is a short overview (to be extended in a later version of this document) 
of the steps that had to be implemented:
\begin{itemize}
\item Formulate the normal equations for the above weighted least squares 
problem. 
\item Use package \cmd{RcppEigen} to perform the numeric solution. 
\item Package \cmd{RcppEigen} provides a sample implementaion \cmd{fastLm} to 
solve ordinary (unweighted) least squares problems. We just used this and 
extended it for the weighted case.  
\item \cmd{fastLm} has the option to use different solvers provided 
in \cmd{RcppEigen}. Our implementation inherits these options.
\end{itemize}


\section[Regular Grid]{Application To A Regular Grid}
\label{sec:regular}

We will test \texttt{locpoly()} now with a bicubic polynomial on the
unit square on an \texttt{ng} by \texttt{ng} grid. Later tests using
Franke functions \citep{franke:82} will follow.

Set the $x$ - $y$ size of a square data grid to
<<>>=
ng <- 11
@
resulting in \Sexpr{ng*ng} grid points.

First let us choose a kernel
<<>>=
knl <- "gaussian"
@ 
Other Options would have been \texttt{"uniform"}, \texttt{"cosine"},
\texttt{"biweight"}, \texttt{"triweight"}, \texttt{"tricube"} and
\texttt{"epanechikov"}, compare section \ref{sec:kernels}.

Next both a fixed global and a varying local bandwidth is needed:
<<>>=
bwg <- 0.33  
bwl <- 0.11  
@ 
The global bandwidth (=\Sexpr{bwg}) is interpreted as the ratio of the
$x$ and $y$ range respective. So in this example the ``moving window''
of the kernel function covers a rectangular data region of
$1/3\times 1/3=1/9$ of the bounding box of the data set.

The local bandwidth indicates the proportion of the data set choosen
as local search neighbourhood. Its value \Sexpr{bwl} has been choosen
to match the coverage of the global bandwidth above.

Now set the degree of the local polynomial model (maximum supported
value is 3)
<<>>=
dg=3
@
and define a bicubic polynomial:
<<>>=
f <- function(x,y) (x-0.5)*(x-0.2)*(y-0.6)*y*(x-1)
@
Now we prepare symbolic derivatives of $f$ both for calculating exact
values (via package \texttt{Deriv}) and for pretty printing (using
package \texttt{Ryacas}). The helper functions used for these
preparation steps are shown in appendix~\ref{sec:appendix}:
<<helperR2Yacas,echo=FALSE>>=
# helper functions for translation between R and Yacas
fn_y  <- function(f){
    b <- toString(as.expression(body(f)))
    b <- stringr::str_replace_all(b,"cos","Cos")
    b <- stringr::str_replace_all(b,"sin","Sin")
    b <- stringr::str_replace_all(b,"exp","Exp")
    b <- stringr::str_replace_all(b,"log","Log")
    b <- stringr::str_replace_all(b,"sqrt","Sqrt")
    b
}
@
<<helperYacas2R,echo=FALSE>>=
ys_fn  <- function(f){
    f <- stringr::str_replace_all(f,"Cos","cos")
    f <- stringr::str_replace_all(f,"Sin","sin")
    f <- stringr::str_replace_all(f,"Exp","exp")
    f <- stringr::str_replace_all(f,"Log","log")
    f <- stringr::str_replace_all(f,"Sqrt","sqrt")
    f
}
@
<<helperDerivs,echo=FALSE>>=
derivs <- function(f,dg){
    ret<-list(f=f,
              f_str=ys_fn(yac(paste("Simplify(",y_fn(fn_y(f),""),")"))))

    if(dg>0){

        ret$fx <- function(x,y){
            myfx <- Deriv(f,"x");
            tmp <- myfx(x,y);
            if(length(tmp)==1)
                return(rep(tmp,length(x)))
            else
                return(tmp)
        }
        ret$fx_str  <- ys_fn(yac(paste("Simplify(",y_fn(fn_y(f),"D(x)"),")")))


        ret$fy <- function(x,y){
            myfy <- Deriv(f,"y");
            tmp <- myfy(x,y);
            if(length(tmp)==1)
                return(rep(tmp,length(x)))
            else
                return(tmp)
        }
        ret$fy_str  <- ys_fn(yac(paste("Simplify(",y_fn(fn_y(f),"D(y)"),")")))


        if(dg>1){
            ret$fxy <- function(x,y){
                myfxy <- Deriv(Deriv(f,"y"),"x");
                tmp <- myfxy(x,y);
                if(length(tmp)==1)
                    return(rep(tmp,length(x)))
                else
                    return(tmp)
            }
            ret$fxy_str  <- ys_fn(yac(paste("Simplify(",y_fn(fn_y(f),"D(x)D(y)"),")")))

            ret$fxx <- function(x,y){
                myfxx <- Deriv(Deriv(f,"x"),"x");
                tmp <- myfxx(x,y);
                if(length(tmp)==1)
                    return(rep(tmp,length(x)))
                else
                    return(tmp)
            }
            ret$fxx_str  <- ys_fn(yac(paste("Simplify(",y_fn(fn_y(f),"D(x)D(x)"),")")))

            ret$fyy <- function(x,y){
                myfyy <- Deriv(Deriv(f,"y"),"y");
                tmp <- myfyy(x,y);
                if(length(tmp)==1)
                    return(rep(tmp,length(x)))
                else
                    return(tmp)
            }
            ret$fyy_str  <- ys_fn(yac(paste("Simplify(",y_fn(fn_y(f),"D(y)D(y)"),")")))

            if(dg>2){
                ret$fxxy <- function(x,y){
                    myfxxy <- Deriv(Deriv(Deriv(f,"y"),"x"),"x");
                    tmp <- myfxxy(x,y);
                    if(length(tmp)==1)
                        return(rep(tmp,length(x)))
                    else
                        return(tmp)
                }
                ret$fxxy_str  <- ys_fn(yac(paste("Simplify(",y_fn(fn_y(f),"D(x)D(x)D(y)"),")")))

                ret$fxyy <- function(x,y){
                    myfxyy <- Deriv(Deriv(Deriv(f,"y"),"y"),"x");
                    tmp <- myfxyy(x,y);
                    if(length(tmp)==1)
                        return(rep(tmp,length(x)))
                    else
                        return(tmp)
                }
                ret$fxyy_str  <- ys_fn(yac(paste("Simplify(",y_fn(fn_y(f),"D(x)D(y)D(y)"),")")))

                ret$fxxx <- function(x,y){
                    myfxxx <- Deriv(Deriv(Deriv(f,"x"),"x"),"x");
                    tmp <- myfxxx(x,y);
                    if(length(tmp)==1)
                        return(rep(tmp,length(x)))
                    else
                        return(tmp)
                }
                ret$fxxx_str  <- ys_fn(yac(paste("Simplify(",y_fn(fn_y(f),"D(x)D(x)D(x)"),")")))

                ret$fyyy <- function(x,y){
                    myfyyy <- Deriv(Deriv(Deriv(f,"y"),"y"),"y");
                    tmp <- myfyyy(x,y);
                    if(length(tmp)==1)
                        return(rep(tmp,length(x)))
                    else
                        return(tmp)
                }
                ret$fyyy_str  <- ys_fn(yac(paste("Simplify(",y_fn(fn_y(f),"D(y)D(y)D(y)"),")")))
            }
        }
    }
    ret
}
@
<<>>=
df <- derivs(f,dg)
@
Now build and fill the grid with the theoretical values:
<<>>=
xg <- seq(0,1,length=ng)
yg <- seq(0,1,length=ng)
xyg <- expand.grid(xg,yg)
@
<<echo=false>>=
af=4
@
and prepare a finer grid for detailed plotting at a larger
resolution by increasing the grid density by factor \Sexpr{af} in both axes:
<<>>=
af <- 4
xfg <- seq(0,1,length=af*ng)
yfg <- seq(0,1,length=af*ng)
xyfg <- expand.grid(xfg,yfg)
@
Create coordinate matrices \texttt{xx} and \texttt{yy} as  matching the grid matrix \texttt{fg}
<<>>=
nx <- length(xg)
ny <- length(yg)
xx <- t(matrix(rep(xg,ny),nx,ny))
yy <- matrix(rep(yg,nx),ny,nx)
@
Now fill all exact results derived from symbolic computation into the
grid matrices, again one of the helper functions from appendix
\ref{sec:appendix} is used:
<<helperGrid,echo=FALSE>>=
# for plots of exact values
fgrid <- function(f,xg,yg,dg){
  ret <- list(f=outer(xg,yg,f))
  df <- derivs(f,dg)
  if(dg>0){
    ret$fx  <- outer(xg,yg,df$fx)
    ret$fy  <- outer(xg,yg,df$fy)
    if(dg>1){
      ret$fxy <- outer(xg,yg,df$fxy)
      ret$fxx <- outer(xg,yg,df$fxx)
      ret$fyy <- outer(xg,yg,df$fyy)
      if(dg>2){
        ret$fxxy <- outer(xg,yg,df$fxxy)
        ret$fxyy <- outer(xg,yg,df$fxyy)
        ret$fxxx <- outer(xg,yg,df$fxxx)
        ret$fyyy <- outer(xg,yg,df$fyyy)
      }
    }
  }
  ret
}
@
<<>>=
## data for local regression
fg   <- outer(xg,yg,f)
## data for exact plots on fine grid
ffg <- fgrid(f,xfg,yfg,dg)
@
Now perform the local regression estimation, get both global and local
bandwidth results:
<<>>=
## global bandwidth:
pdg <- interp::locpoly(xg,yg,fg, input="grid", pd="all", h=c(bwg,bwg), solver="QR", degree=dg,kernel=knl,nx=af*ng,ny=af*ng)
## local bandwidth:
pdl <- interp::locpoly(xg,yg,fg, input="grid", pd="all", h=bwl, solver="QR", degree=dg,kernel=knl,nx=af*ng,ny=af*ng)
@
<<helperSplit,echo=false>>=
split_str <- function(txt,l){
  start <- seq(1, nchar(txt), l)
  stop <- seq(l, nchar(txt)+l, l)[1:length(start)]
  substring(txt, start, stop)
}
@
<<helperImage,echo=false>>=
grid2df <- function(x,y,z)
    subset(data.frame(x = rep(x, nrow(z)),
                      y = rep(y, each = ncol(z)),
                      z = as.numeric(z)),
           !is.na(z))

gg1image2contours <- function(x,y,z1,z2,z3,xyg,ttl=""){
    breaks <- pretty(seq(min(z1,na.rm=T),max(z1,na.rm=T),length=11))
    griddf1 <- grid2df(x,y,z1)
    griddf2 <- grid2df(x,y,z2)
    griddf3 <- grid2df(x,y,z3)
    griddf  <- data.frame(x=griddf1$x,y=griddf1$y,z1=griddf1$z,z2=griddf2$z,z3=griddf3$z)
    ggplot(griddf, aes(x=x, y=y, z = z1)) +
        ggtitle(ttl) +
        theme(plot.title = element_text(size = 6, face = "bold"),
              axis.line=element_blank(),axis.text.x=element_blank(),
              axis.text.y=element_blank(),axis.ticks=element_blank(),
              axis.title.x=element_blank(),
              axis.title.y=element_blank(),legend.position="none",
              panel.background=element_blank(),panel.border=element_blank(),panel.grid.major=element_blank(),
              panel.grid.minor=element_blank(),plot.background=element_blank()) +
        geom_contour_filled(breaks=breaks) +
        scale_fill_brewer(palette = "YlOrRd") +
        geom_contour(aes(z=z2),breaks=breaks,color="green",lty="dashed",lwd=0.5) +
        geom_contour(aes(z=z3),breaks=breaks,color="blue",lty="dotted",lwd=0.5) +
        theme(legend.position="none") +
        geom_point(data=xyg, aes(x=Var1,y=Var2), inherit.aes = FALSE,size=1,pch="+")
}
@
<<helperPrint,echo=FALSE>>=
print_deriv <- function(txt,l,at=42){
    ret<-""
    for(t in txt){
        if(stringi::stri_length(t)<at)
            btxt <- t
        else
            btxt <- split_str(t,at)
        ftxt <- rep(paste(rep(" ",stringi::stri_length(l)),sep="",collapse=""),length(btxt))
        ftxt[1] <- l
        ret <- paste(ret,paste(ftxt,btxt,sep="",collapse = "\n"),sep="",collapse = "\n")
    }
    ret
}
print_f <- function(f,df,dg,offset=0.8){
  lns <- c(print_deriv(df$f_str,"f(x,y) ="))
  if(dg>=1)
    lns <- c(lns,
    print_deriv(df$fx_str,"f_x(x,y) ="),
    print_deriv(df$fy_str,"f_y(x,y) ="))
  if(dg>=2)
    lns <- c(lns,
    print_deriv(df$fxx_str,"f_xx(x,y) ="),
    print_deriv(df$fyy_str,"f_yy(x,y) ="),
    print_deriv(df$fxy_str,"f_xy(x,y) ="))
  if(dg>=3)
    lns <- c(lns,
    print_deriv(df$fxxx_str,"f_xxx(x,y) ="),
    print_deriv(df$fyyy_str,"f_yyy(x,y) ="),
    print_deriv(df$fxxy_str,"f_xxy(x,y) ="),
    print_deriv(df$fxyy_str,"f_xyy(x,y) ="))
  txt <- grid.text(paste(lns,
    collapse="\n"),gp=gpar(fontsize=8),
    x=0,y=offset,draw=FALSE,
    just = c("left","top"))
  txt
}
@
<<prepare1,echo=FALSE>>=
t1 <- grid.text(paste(c(paste("regular data grid",nx,"x",ny),
  "colors = exaxt values",
  "dashed green = global bw",
  "dotted blue = local bw",
  "crosses: data points"),collapse="\n"),
  gp=gpar(fontsize=8),
  x=0,y=0.8,draw=FALSE,
  just = c("left","top"))

t3 <- grid.text(paste(c(paste("kernel:",knl),
                        paste("global bandwidth",bwg*100,"%"),
                        paste("local bandwidth",bwl*100,"%")),
                      collapse="\n"),
                gp=gpar(fontsize=8),x=0,y=0.8,draw=FALSE,
                just = c("left","top"))

@
Now finally generate the plots. Again a collection of helper function
is used here to fit all 10 plots and descriptions in a single plot.
For interested users they are shown in the appendix.
<<>>=
pf <- gg1image2contours(xfg,yfg,ffg$f,pdg$z,pdl$z,xyg,"f")
pfx <- gg1image2contours(xfg,yfg,ffg$fx,pdg$zx,pdl$zx,xyg,"f_x")
pfy <- gg1image2contours(xfg,yfg,ffg$fy,pdg$zy,pdl$zy,xyg,"f_x")
pfxx <- gg1image2contours(xfg,yfg,ffg$fxx,pdg$zxx,pdl$zxx,xyg,"f_xx")
pfxy <- gg1image2contours(xfg,yfg,ffg$fxy,pdg$zxy,pdl$zxy,xyg,"f_xy")
pfyy <- gg1image2contours(xfg,yfg,ffg$fyy,pdg$zyy,pdl$zyy,xyg,"f_yy")
pfxxx <- gg1image2contours(xfg,yfg,ffg$fxxx,pdg$zxxx,pdl$zxxx,xyg,"f_xxx")
pfxxy <- gg1image2contours(xfg,yfg,ffg$fxxy,pdg$zxxy,pdl$zxxy,xyg,"f_xxy")
pfxyy <- gg1image2contours(xfg,yfg,ffg$fxyy,pdg$zxyy,pdl$zxyy,xyg,"f_xyy")
pfyyy <- gg1image2contours(xfg,yfg,ffg$fyyy,pdg$zyyy,pdl$zyyy,xyg,"f_yyy")
## t1 and t3 contain pure texts generated hidden in this Sweave file.
## t2 contains aas much of the symbolic computation output as possible:
t2 <- print_f(f,df,3)
@
Now we use features of the gridExtra package to arrange all texts and plots:
<<label=plotbicubic>>=
lay<-rbind(c( 1, 2, 3, 3),
           c( 4, 5, 3, 3),
           c( 6, 7, 8, 9),
           c(10,11,12,13))
gg <- grid.arrange(grobs=gList(ggplotGrob(pf),t1,t2,ggplotGrob(pfx),ggplotGrob(pfy),ggplotGrob(pfxx),ggplotGrob(pfxy),ggplotGrob(pfyy),t3,ggplotGrob(pfxxx),ggplotGrob(pfxxy),ggplotGrob(pfxyy),ggplotGrob(pfyyy)),layout_matrix = lay)
@
For the resulting plot see figure \ref{fig:poly}. They show a colored background image
with two (a dashed green and a dotted blue) overlay of isolines.
The colored background represents the exact function resp. its exact derivatives.
Dashed green isolines are global bandwidth estimators, dotted blue isolines are local 
nearest neighbour estimates. All three overlays (colors and isolines) share the same 
step sizes for binning the colors and isoline levels.

Due to the nature of the different used functions only a varying part of 
the symbolic derivatives can be shown as text in the picture.


\begin{figure}[htb]
\centering
<<fig=TRUE,echo=FALSE,out.width='6in'>>=
<<plotbicubic>>
@ 
\caption{A bicubic polynomial and its derivatives, exact and estimated values, regular grid}
\label{fig:poly}
\end{figure}


Now the same steps are repeated for Franke function 1:
<<>>=
f <- function(x,y) 0.75*exp(-((9*x-2)^2+(9*y-2)^2)/4)+0.75*exp(-((9*x+1)^2)/49-(9*y+1)/10)+0.5*exp(-((9*x-7)^2+(9*y-3)^2)/4)-0.2*exp(-(9*x-4)^2-(9*y-7)^2)
fg  <- outer(xg,yg,f)
ffg <- fgrid(f,xfg,yfg,dg)
df  <- derivs(f,dg)
@
Again estimate with global and local bandwidth
<<>>=
## global bw,
pdg <- interp::locpoly(xg,yg,fg, input="grid", pd="all", h=c(bwg,bwg), solver="QR", degree=dg,kernel=knl,nx=af*ng,ny=af*ng)
## local bw:
pdl <- interp::locpoly(xg,yg,fg, input="grid", pd="all", h=bwl, solver="QR", degree=dg,kernel=knl,nx=af*ng,ny=af*ng)
@ 
and repeat the plot. Technical details are now hidden and only the
plot is shown as the commands above are more or less repeated.
<<label=plotfranke1, echo=false>>=
pf <- gg1image2contours(xfg,yfg,ffg$f,pdg$z,pdl$z,xyg,"f")
pfx <- gg1image2contours(xfg,yfg,ffg$fx,pdg$zx,pdl$zx,xyg,"f_x")
pfy <- gg1image2contours(xfg,yfg,ffg$fy,pdg$zy,pdl$zy,xyg,"f_x")
pfxx <- gg1image2contours(xfg,yfg,ffg$fxx,pdg$zxx,pdl$zxx,xyg,"f_xx")
pfxy <- gg1image2contours(xfg,yfg,ffg$fxy,pdg$zxy,pdl$zxy,xyg,"f_xy")
pfyy <- gg1image2contours(xfg,yfg,ffg$fyy,pdg$zyy,pdl$zyy,xyg,"f_yy")
pfxxx <- gg1image2contours(xfg,yfg,ffg$fxxx,pdg$zxxx,pdl$zxxx,xyg,"f_xxx")
pfxxy <- gg1image2contours(xfg,yfg,ffg$fxxy,pdg$zxxy,pdl$zxxy,xyg,"f_xxy")
pfxyy <- gg1image2contours(xfg,yfg,ffg$fxyy,pdg$zxyy,pdl$zxyy,xyg,"f_xyy")
pfyyy <- gg1image2contours(xfg,yfg,ffg$fyyy,pdg$zyyy,pdl$zyyy,xyg,"f_yyy")

t2 <- print_f(f,df,1,0.9)

gg <- grid.arrange(grobs=gList(ggplotGrob(pf),t1,t2,ggplotGrob(pfx),ggplotGrob(pfy),ggplotGrob(pfxx),ggplotGrob(pfxy),ggplotGrob(pfyy),t3,ggplotGrob(pfxxx),ggplotGrob(pfxxy),ggplotGrob(pfxyy),ggplotGrob(pfyyy)),layout_matrix=lay)
@
Results are shown in figure \ref{fig:franke1}. The same interpretation for colors and isolines as in the first plot is applied.
\begin{figure}[htb]
\centering
<<fig=TRUE,echo=FALSE,out.width='6in'>>=
<<plotfranke1>>
@
\caption{Franke function 1 and its derivatives, exact and estimated values, regular grid}
\label{fig:franke1}
\end{figure}


\section[Irregular Grid]{Application To An Irregular Grid}
\label{sec:irreg}

Next we repeat the estmations with an irregular gridded data set using the
same number of $\Sexpr{ng}\times\Sexpr{ng}$=\Sexpr{ng*ng} points:
<<>>=
n <- ng*ng
@
Start with the same polynomial as in the last section:
<<>>=
f <- function(x,y) (x-0.5)*(x-0.2)*(y-0.6)*y*(x-1)
@
The kernel settings stay the same (\cmd{kernel=}"\Sexpr{knl}", global/local bandwidth \Sexpr{bwg}/\Sexpr{bwl}).
<<>>=
## random irregular data
x<-runif(n)
y<-runif(n)
xy<-data.frame(Var1=x,Var2=y)
z <- f(x,y)
@ 
Again fill the grids for plotting the exact values  
<<>>=
ffg <- fgrid(f,xfg,yfg,dg)
df <- derivs(f,dg)
@ 
and perform the estmation steps:
<<>>=
## global bandwidth
pdg <- interp::locpoly(x,y,z, xfg,yfg, pd="all", h=c(bwg,bwg), solver="QR", degree=dg,kernel=knl)
## local bandwidth:
pdl <- interp::locpoly(x,y,z, xfg,yfg, pd="all", h=bwl, solver="QR", degree=dg,kernel=knl)
@ 
The remaining steps to generate the plots are again similar to the
first plot and therefore hidden. The output for the bicubic polynomial is shown in figure
\ref{fig:poly2}, results for Franke function 1 in figure \ref{fig:franke12}.
<<echo=false>>=
pf <- gg1image2contours(xfg,yfg,ffg$f,pdg$z,pdl$z,xy,"f")
pfx <- gg1image2contours(xfg,yfg,ffg$fx,pdg$zx,pdl$zx,xy,"f_x")
pfy <- gg1image2contours(xfg,yfg,ffg$fy,pdg$zy,pdl$zy,xy,"f_x")
pfxx <- gg1image2contours(xfg,yfg,ffg$fxx,pdg$zxx,pdl$zxx,xy,"f_xx")
pfxy <- gg1image2contours(xfg,yfg,ffg$fxy,pdg$zxy,pdl$zxy,xy,"f_xy")
pfyy <- gg1image2contours(xfg,yfg,ffg$fyy,pdg$zyy,pdl$zyy,xy,"f_yy")
pfxxx <- gg1image2contours(xfg,yfg,ffg$fxxx,pdg$zxxx,pdl$zxxx,xy,"f_xxx")
pfxxy <- gg1image2contours(xfg,yfg,ffg$fxxy,pdg$zxxy,pdl$zxxy,xy,"f_xxy")
pfxyy <- gg1image2contours(xfg,yfg,ffg$fxyy,pdg$zxyy,pdl$zxyy,xy,"f_xyy")
pfyyy <- gg1image2contours(xfg,yfg,ffg$fyyy,pdg$zyyy,pdl$zyyy,xy,"f_yyy")

t1 <- grid.text(paste(c(paste("irregular data grid",n,"pts"),
  "colors = exaxt values",
  "dashed green = global bw",
  "dotted blue = local bw",
  "crosses: data points"),collapse="\n"),
  gp=gpar(fontsize=8),
  x=0,y=0.8,draw=FALSE,
  just = c("left","top"))

t2 <- print_f(f,df,3)
@
<<label=plotbicubic2,echo=false>>=
gg <- grid.arrange(grobs=gList(ggplotGrob(pf),t1,t2,ggplotGrob(pfx),ggplotGrob(pfy),ggplotGrob(pfxx),ggplotGrob(pfxy),ggplotGrob(pfyy),t3,ggplotGrob(pfxxx),ggplotGrob(pfxxy),ggplotGrob(pfxyy),ggplotGrob(pfyyy)),layout_matrix = lay)
@
\begin{figure}[htb]
\centering
<<fig=TRUE,echo=FALSE,out.width='6in'>>=
<<plotbicubic2>>
@
\caption{A bicubic polynomial and its derivatives, exact and estimated, irregular data set}
\label{fig:poly2}
\end{figure}
The results for Franke function 1 are shown in figure \ref{fig:franke12}. 
<<echo=false>>=
f <- function(x,y) 0.75*exp(-((9*x-2)^2+(9*y-2)^2)/4)+0.75*exp(-((9*x+1)^2)/49-(9*y+1)/10)+0.5*exp(-((9*x-7)^2+(9*y-3)^2)/4)-0.2*exp(-(9*x-4)^2-(9*y-7)^2)
@
<<echo=false>>=
z <- f(x,y)
fg  <- outer(xg,yg,f)
ffg <- fgrid(f,xfg,yfg,dg)
df <- derivs(f,dg)
@ 
<<echo=false>>=
## global bandwidth:
ttg <- system.time(pdg <- interp::locpoly(x,y,z, xfg,yfg, pd="all", h=c(bwg,bwg), solver="QR", degree=dg,kernel=knl))

## local bandwidth:
ttl <- system.time(pdl <- interp::locpoly(x,y,z, xfg,yfg, pd="all", h=bwl, solver="QR", degree=dg,kernel=knl))
@ 
<<echo=false>>=
pf <- gg1image2contours(xfg,yfg,ffg$f,pdg$z,pdl$z,xy,"f")
pfx <- gg1image2contours(xfg,yfg,ffg$fx,pdg$zx,pdl$zx,xy,"f_x")
pfy <- gg1image2contours(xfg,yfg,ffg$fy,pdg$zy,pdl$zy,xy,"f_x")
pfxx <- gg1image2contours(xfg,yfg,ffg$fxx,pdg$zxx,pdl$zxx,xy,"f_xx")
pfxy <- gg1image2contours(xfg,yfg,ffg$fxy,pdg$zxy,pdl$zxy,xy,"f_xy")
pfyy <- gg1image2contours(xfg,yfg,ffg$fyy,pdg$zyy,pdl$zyy,xy,"f_yy")
pfxxx <- gg1image2contours(xfg,yfg,ffg$fxxx,pdg$zxxx,pdl$zxxx,xy,"f_xxx")
pfxxy <- gg1image2contours(xfg,yfg,ffg$fxxy,pdg$zxxy,pdl$zxxy,xy,"f_xxy")
pfxyy <- gg1image2contours(xfg,yfg,ffg$fxyy,pdg$zxyy,pdl$zxyy,xy,"f_xyy")
pfyyy <- gg1image2contours(xfg,yfg,ffg$fyyy,pdg$zyyy,pdl$zyyy,xy,"f_yyy")

t2 <- print_f(f,df,1,0.9)
@
<<label=plotfranke12,echo=false>>=
gg <- grid.arrange(grobs=gList(ggplotGrob(pf),t1,t2,ggplotGrob(pfx),ggplotGrob(pfy),ggplotGrob(pfxx),ggplotGrob(pfxy),ggplotGrob(pfyy),t3,ggplotGrob(pfxxx),ggplotGrob(pfxxy),ggplotGrob(pfxyy),ggplotGrob(pfyyy)),layout_matrix = lay)
@
\begin{figure}[htb]
\centering
<<fig=TRUE,echo=FALSE,out.width='6in'>>=
<<plotfranke12>>
@
\caption{Franke function 1 and its derivatives, exact and estimated, irregular data set}
\label{fig:franke12}
\end{figure}

\section{Different Kernels}
\label{sec:kernels}
Now we try different kernels. We just continue with Franke function 1 and
the irregular gridded data from last section. We show the results of \cmd{kernel="uniform"} and 
\cmd{kernel="epanechnikov"} in figures \ref{fig:franke12unif} and \ref{fig:franke12epa}.
<<>>=
## global bandwidth:
pdg <- interp::locpoly(x,y,z, xfg,yfg, pd="all", h=c(bwg,bwg), solver="QR", degree=dg,kernel="uniform")
## local bandwidth:
pdl <- interp::locpoly(x,y,z, xfg,yfg, pd="all", h=bwl, solver="QR", degree=dg,kernel="uniform")
@ 
<<echo=false>>=
pf <- gg1image2contours(xfg,yfg,ffg$f,pdg$z,pdl$z,xy,"f")
pfx <- gg1image2contours(xfg,yfg,ffg$fx,pdg$zx,pdl$zx,xy,"f_x")
pfy <- gg1image2contours(xfg,yfg,ffg$fy,pdg$zy,pdl$zy,xy,"f_x")
pfxx <- gg1image2contours(xfg,yfg,ffg$fxx,pdg$zxx,pdl$zxx,xy,"f_xx")
pfxy <- gg1image2contours(xfg,yfg,ffg$fxy,pdg$zxy,pdl$zxy,xy,"f_xy")
pfyy <- gg1image2contours(xfg,yfg,ffg$fyy,pdg$zyy,pdl$zyy,xy,"f_yy")
pfxxx <- gg1image2contours(xfg,yfg,ffg$fxxx,pdg$zxxx,pdl$zxxx,xy,"f_xxx")
pfxxy <- gg1image2contours(xfg,yfg,ffg$fxxy,pdg$zxxy,pdl$zxxy,xy,"f_xxy")
pfxyy <- gg1image2contours(xfg,yfg,ffg$fxyy,pdg$zxyy,pdl$zxyy,xy,"f_xyy")
pfyyy <- gg1image2contours(xfg,yfg,ffg$fyyy,pdg$zyyy,pdl$zyyy,xy,"f_yyy")

t2 <- print_f(f,df,1,0.9)
t3 <- grid.text(paste(c(paste("kernel:","uniform"),
                        paste("global bandwidth",bwg*100,"%"),
                        paste("local bandwidth",bwl*100,"%")),
                      collapse="\n"),
                gp=gpar(fontsize=8),x=0,y=0.8,draw=FALSE,
                just = c("left","top"))

@
<<label=plotfranke12unif,echo=false>>=
gg <- grid.arrange(grobs=gList(ggplotGrob(pf),t1,t2,ggplotGrob(pfx),ggplotGrob(pfy),ggplotGrob(pfxx),ggplotGrob(pfxy),ggplotGrob(pfyy),t3,ggplotGrob(pfxxx),ggplotGrob(pfxxy),ggplotGrob(pfxyy),ggplotGrob(pfyyy)),layout_matrix = lay)
@
\begin{figure}[htb]
\centering
<<fig=TRUE,echo=FALSE,out.width='6in'>>=
<<plotfranke12unif>>
@
\caption{Franke function 1 and its derivatives, uniform kernel}
\label{fig:franke12unif}
\end{figure}
<<>>=
## global bandwidth:
pdg <- interp::locpoly(x,y,z, xfg,yfg, pd="all", h=c(bwg,bwg), solver="QR", degree=dg,kernel="epanechnikov")
## local bandwidth:
pdl <- interp::locpoly(x,y,z, xfg,yfg, pd="all", h=bwl, solver="QR", degree=dg,kernel="epanechnikov")
@ 
<<echo=false>>=
pf <- gg1image2contours(xfg,yfg,ffg$f,pdg$z,pdl$z,xy,"f")
pfx <- gg1image2contours(xfg,yfg,ffg$fx,pdg$zx,pdl$zx,xy,"f_x")
pfy <- gg1image2contours(xfg,yfg,ffg$fy,pdg$zy,pdl$zy,xy,"f_x")
pfxx <- gg1image2contours(xfg,yfg,ffg$fxx,pdg$zxx,pdl$zxx,xy,"f_xx")
pfxy <- gg1image2contours(xfg,yfg,ffg$fxy,pdg$zxy,pdl$zxy,xy,"f_xy")
pfyy <- gg1image2contours(xfg,yfg,ffg$fyy,pdg$zyy,pdl$zyy,xy,"f_yy")
pfxxx <- gg1image2contours(xfg,yfg,ffg$fxxx,pdg$zxxx,pdl$zxxx,xy,"f_xxx")
pfxxy <- gg1image2contours(xfg,yfg,ffg$fxxy,pdg$zxxy,pdl$zxxy,xy,"f_xxy")
pfxyy <- gg1image2contours(xfg,yfg,ffg$fxyy,pdg$zxyy,pdl$zxyy,xy,"f_xyy")
pfyyy <- gg1image2contours(xfg,yfg,ffg$fyyy,pdg$zyyy,pdl$zyyy,xy,"f_yyy")

t2 <- print_f(f,df,1,0.9)
t3 <- grid.text(paste(c(paste("kernel:","epanechnikov"),
                        paste("global bandwidth",bwg*100,"%"),
                        paste("local bandwidth",bwl*100,"%")),
                      collapse="\n"),
                gp=gpar(fontsize=8),x=0,y=0.8,draw=FALSE,
                just = c("left","top"))
@
<<label=plotfranke12epa,echo=false>>=
gg <- grid.arrange(grobs=gList(ggplotGrob(pf),t1,t2,ggplotGrob(pfx),ggplotGrob(pfy),ggplotGrob(pfxx),ggplotGrob(pfxy),ggplotGrob(pfyy),t3,ggplotGrob(pfxxx),ggplotGrob(pfxxy),ggplotGrob(pfxyy),ggplotGrob(pfyyy)),layout_matrix = lay)
@
\begin{figure}[htb]
\centering
<<fig=TRUE,echo=FALSE,out.width='6in'>>=
<<plotfranke12epa>>
@
\caption{Franke function 1 and its derivatives, epanechnikov kernel}
\label{fig:franke12epa}
\end{figure}
Especially the performance of the uniform kernel with its
discontinuous behavior at the borders of its support drops visibly. 
Considered globally, the local bandwidth estimators capture more details, across all
kernels. But combined with a kernel with bounded support (uniform or
epanechnikov in the test) they show problems at the border of the
region. So the default setting of a gaussian kernel is well founded.
\section{Appendix}
\label{sec:appendix}

These helper functions are needed to convert between \proglang{R}  and  \proglang{Yacas}:
<<>>=
<<helperR2Yacas>>
<<helperYacas2R>>
@

This function applies symbolic derivatives to a \proglang{R} function,
both for later use as \proglang{R} function (via \pkg{Deriv}) and for
printing (via \pkg{Ryacas}).

<<>>=
<<helperDerivs>>
@

The next function calculates exact values of the given function on a
grid and fills it with partial derivatives up to degree \proglang{dg}.

<<>>=
<<helperGrid>>
@

Another helper function for formatting function expressions in the plots:
<<>>=
<<helperSplit>>
@

The combination of image and contour plots are generated by these functions:
<<>>=
<<helperImage>>
@

The expressions for the functions and their derivatives are printed via:
<<>>=
<<helperPrint>>
@

\bibliography{lit}

\addcontentsline{toc}{section}{Tables}
\listoftables
\addcontentsline{toc}{section}{Figures}
\listoffigures

\end{document}