File: jomo1mix.R

package info (click to toggle)
r-cran-jomo 2.7-4-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 2,388 kB
  • sloc: ansic: 11,519; makefile: 2
file content (162 lines) | stat: -rw-r--r-- 6,907 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
jomo1mix <-
  function(Y.con, Y.cat, Y.numcat, X=NULL, beta.start=NULL, l1cov.start=NULL, l1cov.prior=NULL, nburn=100, nbetween=100, nimp=5, output=1, out.iter=10) {
    if (nimp<2) {
      nimp=2
      cat("Minimum number of imputations:2. For single imputation using function jomo1mix.MCMCchain\n")
    }
    if (is.null(X)) X=matrix(1,nrow(Y.cat),1)
    if (is.null(beta.start)) beta.start=matrix(0,ncol(X),(ncol(Y.con)+(sum(Y.numcat)-length(Y.numcat))))
    if (is.null(l1cov.start)) l1cov.start=diag(1,ncol(beta.start))
    if (is.null(l1cov.prior)) l1cov.prior=diag(1,ncol(beta.start))
    if (is_tibble(Y.con)) {
      Y.con<-data.frame(Y.con)
      warning("tibbles not supported. Y.con converted to standard data.frame. ")
    }
    if (is_tibble(Y.cat)) {
      Y.cat<-data.frame(Y.cat)
      warning("tibbles not supported. Y.cat converted to standard data.frame. ")
    }
    if (is_tibble(X)) {
      X<-data.frame(X)
      warning("tibbles not supported. X converted to standard data.frame. ")
    }
    
    previous_levels<-list()
    Y.cat<-data.frame(Y.cat)
    for (i in 1:ncol(Y.cat)) {
      Y.cat[,i]<-factor(Y.cat[,i])
      previous_levels[[i]]<-levels(Y.cat[,i])
      levels(Y.cat[,i])<-1:nlevels(Y.cat[,i])
    }
    for (i in 1:ncol(X)) {
      if (is.factor(X[,i])) X[,i]<-as.numeric(X[,i])
    }
    stopifnot(nrow(Y.con)==nrow(X), nrow(beta.start)==ncol(X), ncol(beta.start)==(ncol(Y.con)+(sum(Y.numcat)-length(Y.numcat))),nrow(l1cov.start)==ncol(l1cov.start), nrow(l1cov.start)==ncol(beta.start), nrow(l1cov.prior)==ncol(l1cov.prior),nrow(l1cov.prior)==nrow(l1cov.start))
    betait=matrix(0,nrow(beta.start),ncol(beta.start))
    for (i in 1:nrow(beta.start)) {
      for (j in 1:ncol(beta.start)) betait[i,j]=beta.start[i,j]
    }
    covit=matrix(0,nrow(l1cov.start),ncol(l1cov.start))
    for (i in 1:nrow(l1cov.start)) {
      for (j in 1:ncol(l1cov.start)) covit[i,j]=l1cov.start[i,j]
    }   
    colnamycon<-colnames(Y.con)
    colnamycat<-colnames(Y.cat)
    colnamx<-colnames(X)
    Y.con<-data.matrix(Y.con)
    storage.mode(Y.con) <- "numeric"    
    Y.cat<-data.matrix(Y.cat)
    storage.mode(Y.cat) <- "numeric"    
    X<-data.matrix(X)
    storage.mode(X) <- "numeric" 
    stopifnot(!any(is.na(X)))
    Y=cbind(Y.con,Y.cat)
    
    if (any(is.na(Y))) {
      if (ncol(Y)==1) {
        miss.pat<-matrix(c(0,1),2,1)
        n.patterns<-2
      } else  {
        miss.pat<-md.pattern.mice(Y, plot=F)
        miss.pat<-miss.pat[,colnames(Y)]
        n.patterns<-nrow(miss.pat)-1
      }
    } else {
      miss.pat<-matrix(0,2,ncol(Y))
      n.patterns<-nrow(miss.pat)-1
    }
    
    miss.pat.id<-rep(0,nrow(Y))
    for (i in 1:nrow(Y)) {
      k <- 1
      flag <- 0
      while ((k <= n.patterns) & (flag == 0)) {
        if (all(!is.na(Y[i,])==miss.pat[k,1:(ncol(miss.pat))])) {
          miss.pat.id[i] <- k
          flag <- 1
        } else {
          k <- k + 1
        }
      }
    }
    
    Yi=cbind(Y.con, matrix(0,nrow(Y.con),(sum(Y.numcat)-length(Y.numcat))))
    h=1
    for (i in 1:length(Y.numcat)) {
      for (j in 1:nrow(Y)) {
        if (is.na(Y.cat[j,i])) {
          Yi[j,(ncol(Y.con)+h):(ncol(Y.con)+h+Y.numcat[i]-2)]=NA
        }
      } 
      h=h+Y.numcat[i]-1
    }
    if (output!=1) out.iter=nburn+nbetween
    imp=matrix(0,nrow(Y)*(nimp+1),ncol(Y)+ncol(X)+2)
    imp[1:nrow(Y),1:ncol(Y)]=Y
    imp[1:nrow(X), (ncol(Y)+1):(ncol(Y)+ncol(X))]=X
    imp[1:nrow(X), (ncol(Y)+ncol(X)+1)]=c(1:nrow(Y))
    Yimp=Yi
    Yimp2=matrix(Yimp, nrow(Yimp),ncol(Yimp))
    imp[(nrow(X)+1):(2*nrow(X)),(ncol(Y)+1):(ncol(Y)+ncol(X))]=X
    imp[(nrow(X)+1):(2*nrow(X)), (ncol(Y)+ncol(X)+1)]=c(1:nrow(Y))
    imp[(nrow(X)+1):(2*nrow(X)), (ncol(Y)+ncol(X)+2)]=1
    betapost<- array(0, dim=c(nrow(beta.start),ncol(beta.start),(nimp-1)))
    bpost<-matrix(0,nrow(beta.start),ncol(beta.start))
    omegapost<- array(0, dim=c(nrow(l1cov.start),ncol(l1cov.start),(nimp-1)))
    opost<-matrix(0,nrow(l1cov.start),ncol(l1cov.start))
    meanobs<-colMeans(Yi,na.rm=TRUE)
    for (i in 1:nrow(Yi)) for (j in 1:ncol(Yi)) if (is.na(Yimp[i,j])) Yimp2[i,j]=meanobs[j]
    .Call("jomo1C", Y, Yimp, Yimp2, Y.cat, X,betait,bpost,covit,opost, nburn, l1cov.prior,Y.numcat, ncol(Y.con),out.iter,0, miss.pat.id, n.patterns, PACKAGE = "jomo")
   
    #betapost[,,1]=bpost
    #omegapost[,,1]=opost
    bpost<-matrix(0,nrow(beta.start),ncol(beta.start))
    opost<-matrix(0,nrow(l1cov.start),ncol(l1cov.start))
    imp[(nrow(Y)+1):(2*nrow(Y)),1:ncol(Y.con)]=Yimp2[,1:ncol(Y.con)]
    imp[(nrow(Y)+1):(2*nrow(Y)),(ncol(Y.con)+1):ncol(Y)]=Y.cat
    if (output==1) cat("First imputation registered.", "\n")
    for (i in 2:nimp) {
      imp[(i*nrow(X)+1):((i+1)*nrow(X)),(ncol(Y)+1):(ncol(Y)+ncol(X))]=X
      imp[(i*nrow(X)+1):((i+1)*nrow(X)), (ncol(Y)+ncol(X)+1)]=c(1:nrow(Y))
      imp[(i*nrow(X)+1):((i+1)*nrow(X)), (ncol(Y)+ncol(X)+2)]=i
        .Call("jomo1C", Y, Yimp, Yimp2, Y.cat, X,betait,bpost,covit, opost, nbetween, l1cov.prior, Y.numcat, ncol(Y.con),out.iter,0, miss.pat.id, n.patterns, PACKAGE = "jomo") 
      betapost[,,(i-1)]=bpost
      omegapost[,,(i-1)]=opost
      bpost<-matrix(0,nrow(beta.start),ncol(beta.start))
      opost<-matrix(0,nrow(l1cov.start),ncol(l1cov.start))
      imp[(i*nrow(X)+1):((i+1)*nrow(X)),1:ncol(Y.con)]=Yimp2[,1:ncol(Y.con)]
      imp[(i*nrow(X)+1):((i+1)*nrow(X)),(ncol(Y.con)+1):ncol(Y)]=Y.cat
      if (output==1) cat("Imputation number ", i, "registered", "\n")
    }
    imp<-data.frame(imp)
    for (i in 1:ncol(Y.cat)) {
      imp[,(ncol(Y.con)+i)]<-as.factor(imp[,(ncol(Y.con)+i)]) 
      levels(imp[,(ncol(Y.con)+i)])<-previous_levels[[i]]
    }
    if (is.null(colnamycat)) colnamycat=paste("Ycat", 1:ncol(Y.cat), sep = "")
    if (is.null(colnamycon)) colnamycon=paste("Ycon", 1:ncol(Y.con), sep = "")
    if (is.null(colnamx)) colnamx=paste("X", 1:ncol(X), sep = "")
    cnycatcomp<-rep(NA,(sum(Y.numcat)-length(Y.numcat)))
    count=0
    for ( j in 1:ncol(Y.cat)) {
      for (k in 1:(Y.numcat[j]-1)) {
        cnycatcomp[count+k]<-paste(colnamycat[j],k,sep=".")
      }
      count=count+Y.numcat[j]-1
    }
    cnamycomp<-c(colnamycon,cnycatcomp)
    dimnames(betapost)[1] <- list(colnamx)
    dimnames(betapost)[2] <- list(cnamycomp)
    dimnames(omegapost)[1] <- list(cnamycomp)
    dimnames(omegapost)[2] <- list(cnamycomp)
    betapostmean<-data.frame(apply(betapost, c(1,2), mean))
    omegapostmean<-data.frame(apply(omegapost, c(1,2), mean))
    if (output==1) {
      cat("The posterior mean of the fixed effects estimates is:\n")
      print(t(betapostmean))
      cat("\nThe posterior covariance matrix is:\n")
      print(omegapostmean)
    }
    colnames(imp)<-c(colnamycon,colnamycat,colnamx,"id","Imputation")
    return(imp)
  }