1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
jomo1mix <-
function(Y.con, Y.cat, Y.numcat, X=NULL, beta.start=NULL, l1cov.start=NULL, l1cov.prior=NULL, nburn=100, nbetween=100, nimp=5, output=1, out.iter=10) {
if (nimp<2) {
nimp=2
cat("Minimum number of imputations:2. For single imputation using function jomo1mix.MCMCchain\n")
}
if (is.null(X)) X=matrix(1,nrow(Y.cat),1)
if (is.null(beta.start)) beta.start=matrix(0,ncol(X),(ncol(Y.con)+(sum(Y.numcat)-length(Y.numcat))))
if (is.null(l1cov.start)) l1cov.start=diag(1,ncol(beta.start))
if (is.null(l1cov.prior)) l1cov.prior=diag(1,ncol(beta.start))
if (is_tibble(Y.con)) {
Y.con<-data.frame(Y.con)
warning("tibbles not supported. Y.con converted to standard data.frame. ")
}
if (is_tibble(Y.cat)) {
Y.cat<-data.frame(Y.cat)
warning("tibbles not supported. Y.cat converted to standard data.frame. ")
}
if (is_tibble(X)) {
X<-data.frame(X)
warning("tibbles not supported. X converted to standard data.frame. ")
}
previous_levels<-list()
Y.cat<-data.frame(Y.cat)
for (i in 1:ncol(Y.cat)) {
Y.cat[,i]<-factor(Y.cat[,i])
previous_levels[[i]]<-levels(Y.cat[,i])
levels(Y.cat[,i])<-1:nlevels(Y.cat[,i])
}
for (i in 1:ncol(X)) {
if (is.factor(X[,i])) X[,i]<-as.numeric(X[,i])
}
stopifnot(nrow(Y.con)==nrow(X), nrow(beta.start)==ncol(X), ncol(beta.start)==(ncol(Y.con)+(sum(Y.numcat)-length(Y.numcat))),nrow(l1cov.start)==ncol(l1cov.start), nrow(l1cov.start)==ncol(beta.start), nrow(l1cov.prior)==ncol(l1cov.prior),nrow(l1cov.prior)==nrow(l1cov.start))
betait=matrix(0,nrow(beta.start),ncol(beta.start))
for (i in 1:nrow(beta.start)) {
for (j in 1:ncol(beta.start)) betait[i,j]=beta.start[i,j]
}
covit=matrix(0,nrow(l1cov.start),ncol(l1cov.start))
for (i in 1:nrow(l1cov.start)) {
for (j in 1:ncol(l1cov.start)) covit[i,j]=l1cov.start[i,j]
}
colnamycon<-colnames(Y.con)
colnamycat<-colnames(Y.cat)
colnamx<-colnames(X)
Y.con<-data.matrix(Y.con)
storage.mode(Y.con) <- "numeric"
Y.cat<-data.matrix(Y.cat)
storage.mode(Y.cat) <- "numeric"
X<-data.matrix(X)
storage.mode(X) <- "numeric"
stopifnot(!any(is.na(X)))
Y=cbind(Y.con,Y.cat)
if (any(is.na(Y))) {
if (ncol(Y)==1) {
miss.pat<-matrix(c(0,1),2,1)
n.patterns<-2
} else {
miss.pat<-md.pattern.mice(Y, plot=F)
miss.pat<-miss.pat[,colnames(Y)]
n.patterns<-nrow(miss.pat)-1
}
} else {
miss.pat<-matrix(0,2,ncol(Y))
n.patterns<-nrow(miss.pat)-1
}
miss.pat.id<-rep(0,nrow(Y))
for (i in 1:nrow(Y)) {
k <- 1
flag <- 0
while ((k <= n.patterns) & (flag == 0)) {
if (all(!is.na(Y[i,])==miss.pat[k,1:(ncol(miss.pat))])) {
miss.pat.id[i] <- k
flag <- 1
} else {
k <- k + 1
}
}
}
Yi=cbind(Y.con, matrix(0,nrow(Y.con),(sum(Y.numcat)-length(Y.numcat))))
h=1
for (i in 1:length(Y.numcat)) {
for (j in 1:nrow(Y)) {
if (is.na(Y.cat[j,i])) {
Yi[j,(ncol(Y.con)+h):(ncol(Y.con)+h+Y.numcat[i]-2)]=NA
}
}
h=h+Y.numcat[i]-1
}
if (output!=1) out.iter=nburn+nbetween
imp=matrix(0,nrow(Y)*(nimp+1),ncol(Y)+ncol(X)+2)
imp[1:nrow(Y),1:ncol(Y)]=Y
imp[1:nrow(X), (ncol(Y)+1):(ncol(Y)+ncol(X))]=X
imp[1:nrow(X), (ncol(Y)+ncol(X)+1)]=c(1:nrow(Y))
Yimp=Yi
Yimp2=matrix(Yimp, nrow(Yimp),ncol(Yimp))
imp[(nrow(X)+1):(2*nrow(X)),(ncol(Y)+1):(ncol(Y)+ncol(X))]=X
imp[(nrow(X)+1):(2*nrow(X)), (ncol(Y)+ncol(X)+1)]=c(1:nrow(Y))
imp[(nrow(X)+1):(2*nrow(X)), (ncol(Y)+ncol(X)+2)]=1
betapost<- array(0, dim=c(nrow(beta.start),ncol(beta.start),(nimp-1)))
bpost<-matrix(0,nrow(beta.start),ncol(beta.start))
omegapost<- array(0, dim=c(nrow(l1cov.start),ncol(l1cov.start),(nimp-1)))
opost<-matrix(0,nrow(l1cov.start),ncol(l1cov.start))
meanobs<-colMeans(Yi,na.rm=TRUE)
for (i in 1:nrow(Yi)) for (j in 1:ncol(Yi)) if (is.na(Yimp[i,j])) Yimp2[i,j]=meanobs[j]
.Call("jomo1C", Y, Yimp, Yimp2, Y.cat, X,betait,bpost,covit,opost, nburn, l1cov.prior,Y.numcat, ncol(Y.con),out.iter,0, miss.pat.id, n.patterns, PACKAGE = "jomo")
#betapost[,,1]=bpost
#omegapost[,,1]=opost
bpost<-matrix(0,nrow(beta.start),ncol(beta.start))
opost<-matrix(0,nrow(l1cov.start),ncol(l1cov.start))
imp[(nrow(Y)+1):(2*nrow(Y)),1:ncol(Y.con)]=Yimp2[,1:ncol(Y.con)]
imp[(nrow(Y)+1):(2*nrow(Y)),(ncol(Y.con)+1):ncol(Y)]=Y.cat
if (output==1) cat("First imputation registered.", "\n")
for (i in 2:nimp) {
imp[(i*nrow(X)+1):((i+1)*nrow(X)),(ncol(Y)+1):(ncol(Y)+ncol(X))]=X
imp[(i*nrow(X)+1):((i+1)*nrow(X)), (ncol(Y)+ncol(X)+1)]=c(1:nrow(Y))
imp[(i*nrow(X)+1):((i+1)*nrow(X)), (ncol(Y)+ncol(X)+2)]=i
.Call("jomo1C", Y, Yimp, Yimp2, Y.cat, X,betait,bpost,covit, opost, nbetween, l1cov.prior, Y.numcat, ncol(Y.con),out.iter,0, miss.pat.id, n.patterns, PACKAGE = "jomo")
betapost[,,(i-1)]=bpost
omegapost[,,(i-1)]=opost
bpost<-matrix(0,nrow(beta.start),ncol(beta.start))
opost<-matrix(0,nrow(l1cov.start),ncol(l1cov.start))
imp[(i*nrow(X)+1):((i+1)*nrow(X)),1:ncol(Y.con)]=Yimp2[,1:ncol(Y.con)]
imp[(i*nrow(X)+1):((i+1)*nrow(X)),(ncol(Y.con)+1):ncol(Y)]=Y.cat
if (output==1) cat("Imputation number ", i, "registered", "\n")
}
imp<-data.frame(imp)
for (i in 1:ncol(Y.cat)) {
imp[,(ncol(Y.con)+i)]<-as.factor(imp[,(ncol(Y.con)+i)])
levels(imp[,(ncol(Y.con)+i)])<-previous_levels[[i]]
}
if (is.null(colnamycat)) colnamycat=paste("Ycat", 1:ncol(Y.cat), sep = "")
if (is.null(colnamycon)) colnamycon=paste("Ycon", 1:ncol(Y.con), sep = "")
if (is.null(colnamx)) colnamx=paste("X", 1:ncol(X), sep = "")
cnycatcomp<-rep(NA,(sum(Y.numcat)-length(Y.numcat)))
count=0
for ( j in 1:ncol(Y.cat)) {
for (k in 1:(Y.numcat[j]-1)) {
cnycatcomp[count+k]<-paste(colnamycat[j],k,sep=".")
}
count=count+Y.numcat[j]-1
}
cnamycomp<-c(colnamycon,cnycatcomp)
dimnames(betapost)[1] <- list(colnamx)
dimnames(betapost)[2] <- list(cnamycomp)
dimnames(omegapost)[1] <- list(cnamycomp)
dimnames(omegapost)[2] <- list(cnamycomp)
betapostmean<-data.frame(apply(betapost, c(1,2), mean))
omegapostmean<-data.frame(apply(omegapost, c(1,2), mean))
if (output==1) {
cat("The posterior mean of the fixed effects estimates is:\n")
print(t(betapostmean))
cat("\nThe posterior covariance matrix is:\n")
print(omegapostmean)
}
colnames(imp)<-c(colnamycon,colnamycat,colnamx,"id","Imputation")
return(imp)
}
|