1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
jomo1ranconhr <-
function(Y, X=NULL, Z=NULL, clus, beta.start=NULL, u.start=NULL, l1cov.start=NULL, l2cov.start=NULL, l1cov.prior=NULL, l2cov.prior=NULL, nburn=1000, nbetween=1000, nimp=5, a=(ncol(Y)+50),a.prior=NULL, meth="random", output=1, out.iter=10) {
if (nimp<2) {
nimp=2
cat("Minimum number of imputations:2. For single imputation using function jomo1ranconhr.MCMCchain\n")
}
if (is.null(X)) X=matrix(1,nrow(Y),1)
if (is.null(Z)) Z=matrix(1,nrow(Y),1)
if (is.null(beta.start)) beta.start=matrix(0,ncol(X),ncol(Y))
if (is.null(l1cov.prior)) l1cov.prior=diag(1,ncol(beta.start))
if (is.null(a.prior)) a.prior=ncol(beta.start)
if (is_tibble(Y)) {
Y<-data.frame(Y)
warning("tibbles not supported. Y converted to standard data.frame. ")
}
if (is_tibble(X)) {
X<-data.frame(X)
warning("tibbles not supported. X converted to standard data.frame. ")
}
if (is_tibble(Z)) {
Z<-data.frame(Z)
warning("tibbles not supported. Z converted to standard data.frame. ")
}
clus<-factor(unlist(clus))
previous_levels_clus<-levels(clus)
levels(clus)<-0:(nlevels(clus)-1)
if (is.null(u.start)) u.start = matrix(0, nlevels(clus), ncol(Z)*ncol(Y))
if (is.null(l2cov.start)) l2cov.start = diag(1, ncol(u.start))
if (is.null(l2cov.prior)) l2cov.prior = diag(1, ncol(l2cov.start))
if (is.null(l1cov.start)) l1cov.start=matrix(diag(1,ncol(beta.start)),ncol(beta.start)*nlevels(clus),ncol(beta.start),2)
if (any(is.na(Y))) {
if (ncol(Y)==1) {
miss.pat<-matrix(c(0,1),2,1)
n.patterns<-2
} else {
miss.pat<-md.pattern.mice(Y, plot=F)
miss.pat<-miss.pat[,colnames(Y)]
n.patterns<-nrow(miss.pat)-1
}
} else {
miss.pat<-matrix(0,2,ncol(Y))
n.patterns<-nrow(miss.pat)-1
}
miss.pat.id<-rep(0,nrow(Y))
for (i in 1:nrow(Y)) {
k <- 1
flag <- 0
while ((k <= n.patterns) & (flag == 0)) {
if (all(!is.na(Y[i,])==miss.pat[k,1:(ncol(miss.pat))])) {
miss.pat.id[i] <- k
flag <- 1
} else {
k <- k + 1
}
}
}
for (i in 1:ncol(X)) {
if (is.factor(X[,i])) X[,i]<-as.numeric(X[,i])
}
for (i in 1:ncol(Z)) {
if (is.factor(Z[,i])) Z[,i]<-as.numeric(Z[,i])
}
stopifnot((meth=="fixed"|meth=="random"),nrow(Y)==nrow(clus),nrow(Y)==nrow(X), nrow(beta.start)==ncol(X), ncol(beta.start)==ncol(Y),nrow(l1cov.start)==nrow(u.start)*ncol(l1cov.start), nrow(l1cov.start)==nrow(u.start)*ncol(Y), nrow(l1cov.prior)==ncol(l1cov.prior),nrow(l1cov.start)==nrow(u.start)*nrow(l1cov.prior), nrow(Z)==nrow(Y), ncol(l2cov.start)==ncol(u.start), ncol(u.start)==ncol(Z)*ncol(Y))
betait=matrix(0,nrow(beta.start),ncol(beta.start))
for (i in 1:nrow(beta.start)) {
for (j in 1:ncol(beta.start)) betait[i,j]=beta.start[i,j]
}
covit=matrix(0,nrow(l1cov.start),ncol(l1cov.start))
for (i in 1:nrow(l1cov.start)) {
for (j in 1:ncol(l1cov.start)) covit[i,j]=l1cov.start[i,j]
}
uit=matrix(0,nrow(u.start),ncol(u.start))
for (i in 1:nrow(u.start)) {
for (j in 1:ncol(u.start)) uit[i,j]=u.start[i,j]
}
covuit=matrix(0,nrow(l2cov.start),ncol(l2cov.start))
for (i in 1:nrow(l2cov.start)) {
for (j in 1:ncol(l2cov.start)) covuit[i,j]=l2cov.start[i,j]
}
ait=as.numeric(a)
colnamy<-colnames(Y)
colnamx<-colnames(X)
colnamz<-colnames(Z)
Y<-data.matrix(Y)
storage.mode(Y) <- "numeric"
X<-data.matrix(X)
storage.mode(X) <- "numeric"
stopifnot(!any(is.na(X)))
Z<-data.matrix(Z)
storage.mode(Z) <- "numeric"
stopifnot(!any(is.na(Z)))
clus <- matrix(as.integer(levels(clus))[clus], ncol=1)
if (output!=1) out.iter=nburn+nbetween
imp=matrix(0,nrow(Y)*(nimp+1),ncol(Y)+ncol(X)+ncol(Z)+3)
imp[1:nrow(Y),1:ncol(Y)]=Y
imp[1:nrow(X), (ncol(Y)+1):(ncol(Y)+ncol(X))]=X
imp[1:nrow(Z), (ncol(Y)+ncol(X)+1):(ncol(Y)+ncol(X)+ncol(Z))]=Z
imp[1:nrow(clus), (ncol(Y)+ncol(X)+ncol(Z)+1)]=clus
imp[1:nrow(X), (ncol(Y)+ncol(X)+ncol(Z)+2)]=c(1:nrow(Y))
Yimp=Y
Yimp2=matrix(Yimp, nrow(Y),ncol(Y))
imp[(nrow(X)+1):(2*nrow(X)),(ncol(Y)+1):(ncol(Y)+ncol(X))]=X
imp[(nrow(Z)+1):(2*nrow(Z)), (ncol(Y)+ncol(X)+1):(ncol(Y)+ncol(X)+ncol(Z))]=Z
imp[(nrow(clus)+1):(2*nrow(clus)), (ncol(Y)+ncol(X)+ncol(Z)+1)]=clus
imp[(nrow(X)+1):(2*nrow(X)), (ncol(Y)+ncol(X)+ncol(Z)+2)]=c(1:nrow(Y))
imp[(nrow(X)+1):(2*nrow(X)), (ncol(Y)+ncol(X)+ncol(Z)+3)]=1
betapost<- array(0, dim=c(nrow(beta.start),ncol(beta.start),(nimp-1)))
bpost<-matrix(0,nrow(beta.start),ncol(beta.start))
upost<-matrix(0,nrow(u.start),ncol(u.start))
upostall<-array(0, dim=c(nrow(u.start),ncol(u.start),(nimp-1)))
omegapost<- array(0, dim=c(nrow(l1cov.start),ncol(l1cov.start),(nimp-1)))
opost<-matrix(0,nrow(l1cov.start),ncol(l1cov.start))
covupost<- array(0, dim=c(nrow(l2cov.start),ncol(l2cov.start),(nimp-1)))
cpost<-matrix(0,nrow(l2cov.start),ncol(l2cov.start))
meanobs<-colMeans(Y,na.rm=TRUE)
for (i in 1:nrow(Y)) for (j in 1:ncol(Y)) if (is.na(Yimp[i,j])) Yimp2[i,j]=rnorm(1,meanobs[j],1)
#for (i in 1:nrow(Y)) for (j in 1:ncol(Y)) if (is.na(Yimp[i,j])) Yimp[i,j]=rnorm(1,mean=meanobs[j], sd=0.01)
Y.cat<-Y.numcat<-(-999)
if (meth=="fixed") {
fixed=1
} else {
fixed=0
}
.Call("jomo1ranhrC", Y, Yimp, Yimp2, Y.cat, X, Z, clus,betait,uit,bpost,upost,covit,opost, covuit,cpost,nburn, l1cov.prior,l2cov.prior,Y.numcat, ncol(Y),ait, a.prior, out.iter, fixed, 0, miss.pat.id, n.patterns, PACKAGE = "jomo")
#betapost[,,1]=bpost
#upostall[,,1]=upost
#omegapost[,,(1)]=opost
#covupost[,,(1)]=cpost
bpost<-matrix(0,nrow(beta.start),ncol(beta.start))
opost<-matrix(0,nrow(l1cov.start),ncol(l1cov.start))
upost<-matrix(0,nrow(u.start),ncol(u.start))
cpost<-matrix(0,nrow(l2cov.start),ncol(l2cov.start))
imp[(nrow(Y)+1):(2*nrow(Y)),1:ncol(Y)]=Yimp2
if (output==1) cat("First imputation registered.", "\n")
for (i in 2:nimp) {
imp[(i*nrow(X)+1):((i+1)*nrow(X)),(ncol(Y)+1):(ncol(Y)+ncol(X))]=X
imp[(i*nrow(Z)+1):((i+1)*nrow(Z)), (ncol(Y)+ncol(X)+1):(ncol(Y)+ncol(X)+ncol(Z))]=Z
imp[(i*nrow(clus)+1):((i+1)*nrow(clus)), (ncol(Y)+ncol(X)+ncol(Z)+1)]=clus
imp[(i*nrow(Z)+1):((i+1)*nrow(Z)), (ncol(Y)+ncol(X)+ncol(Z)+2)]=c(1:nrow(Y))
imp[(i*nrow(Z)+1):((i+1)*nrow(Z)), (ncol(Y)+ncol(X)+ncol(Z)+3)]=i
if (meth=="fixed") {
fixed=1
} else {
fixed=0
}
.Call("jomo1ranhrC", Y, Yimp, Yimp2, Y.cat, X, Z, clus,betait,uit,bpost,upost,covit,opost, covuit,cpost,nbetween, l1cov.prior,l2cov.prior,Y.numcat, ncol(Y),ait,a.prior,out.iter, fixed, 0, miss.pat.id, n.patterns, PACKAGE = "jomo")
betapost[,,(i-1)]=bpost
upostall[,,(i-1)]=upost
omegapost[,,(i-1)]=opost
covupost[,,(i-1)]=cpost
bpost<-matrix(0,nrow(beta.start),ncol(beta.start))
opost<-matrix(0,nrow(l1cov.start),ncol(l1cov.start))
upost<-matrix(0,nrow(u.start),ncol(u.start))
cpost<-matrix(0,nrow(l2cov.start),ncol(l2cov.start))
imp[(i*nrow(Y)+1):((i+1)*nrow(Y)),1:ncol(Y)]=Yimp2
if (output==1) cat("Imputation number ", i, "registered", "\n")
}
imp<-data.frame(imp)
imp[,(ncol(Y)+ncol(X)+ncol(Z)+1)]<-factor(imp[,(ncol(Y)+ncol(X)+ncol(Z)+1)])
levels(imp[,(ncol(Y)+ncol(X)+ncol(Z)+1)])<-previous_levels_clus
clus<-factor(clus)
levels(clus)<-previous_levels_clus
for (j in 1:(ncol(Y)+ncol(X)+ncol(Z))) {
imp[,j]=as.numeric(imp[,j])
}
if (is.null(colnamy)) colnamy=paste("Y", 1:ncol(Y), sep = "")
if (is.null(colnamz)) colnamz=paste("Z", 1:ncol(Z), sep = "")
if (is.null(colnamx)) colnamx=paste("X", 1:ncol(X), sep = "")
colnames(imp)<-c(colnamy,colnamx,colnamz,"clus","id","Imputation")
dimnames(betapost)[1] <- list(colnamx)
dimnames(betapost)[2] <- list(colnamy)
dimnames(omegapost)[1] <- list(paste(colnamy,rep(levels(clus),each=ncol(Y)), sep="."))
dimnames(omegapost)[2] <- list(colnamy)
colnamcovu<-paste(colnamy,rep(colnamz,each=ncol(omegapost)),sep="*")
dimnames(covupost)[1] <- list(colnamcovu)
dimnames(covupost)[2] <- list(colnamcovu)
dimnames(upostall)[1]<-list(levels(clus))
dimnames(upostall)[2]<-list(colnamcovu)
betapostmean<-data.frame(apply(betapost, c(1,2), mean))
upostmean<-data.frame(apply(upostall, c(1,2), mean))
omegapostmean<-data.frame(apply(omegapost, c(1,2), mean))
covupostmean<-data.frame(apply(covupost, c(1,2), mean))
if (output==1) {
cat("The posterior mean of the fixed effects estimates is:\n")
print(t(betapostmean))
cat("\nThe posterior mean of the random effects estimates is:\n")
print(upostmean)
cat("\nThe posterior mean of the level 1 covariance matrices is:\n")
print(omegapostmean)
cat("\nThe posterior mean of the level 2 covariance matrix is:\n")
print(covupostmean)
}
return(imp)
}
|