File: kha.R

package info (click to toggle)
r-cran-kernlab 0.9-33-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,216 kB
  • sloc: cpp: 6,011; ansic: 935; makefile: 2
file content (170 lines) | stat: -rw-r--r-- 4,374 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170


#Kernel Hebbian Algorithm function

setGeneric("kha",function(x, ...) standardGeneric("kha"))
setMethod("kha", signature(x = "formula"),
function(x, data = NULL, na.action = na.omit, ...)
{
    mt <- terms(x, data = data)
    if(attr(mt, "response") > 0) stop("response not allowed in formula")
    attr(mt, "intercept") <- 0
    cl <- match.call()
    mf <- match.call(expand.dots = FALSE)
    mf$formula <- mf$x
    mf$... <- NULL
    mf[[1L]] <- quote(stats::model.frame)
    mf <- eval(mf, parent.frame())
    na.act <- attr(mf, "na.action")
    Terms <- attr(mf, "terms")
    x <- model.matrix(mt, mf)
    res <- kha(x, ...)
    ## fix up call to refer to the generic, but leave arg name as `formula'
    cl[[1]] <- as.name("kha")
    kcall(res) <- cl
    attr(Terms,"intercept") <- 0
    terms(res) <- Terms
    if(!is.null(na.act)) 
        n.action(res) <- na.act
    return(res)
  })



setMethod("kha",signature(x="matrix"),
          function(x, kernel = "rbfdot", kpar = list(sigma = 0.1),
          features = 5, eta = 0.005, th = 1e-4, maxiter = 10000, verbose = FALSE, na.action = na.omit, ...)
{
  x <- na.action(x)
  x <- as.matrix(x)
  m <- nrow(x)
  ret <- new("kha")
  if(!is(kernel,"kernel"))
    {
      if(is(kernel,"function")) kernel <- deparse(substitute(kernel))
      kernel <- do.call(kernel, kpar)
    }
  if(!is(kernel,"kernel")) stop("kernel must inherit from class `kernel'")

  ## Initialize A dual variables
  A <- matrix(runif(features*m),m,features)*2 - 1
  AOld <- A

  ## compute square norm of data
  a <- rowSums(x^2)

  ## initialize the empirical sum kernel map
  eskm <- rep(0,m)

  for (i in 1:m)
    eskm[i] <- sum(kernelFast(kernel,x,x[i,,drop=FALSE], a))

  eks <- sum(eskm)

  counter <- 0
  step <- th + 1
  Aold <- A
  
  while(step > th && counter < maxiter)
    {
      y <- rep(0, features)
      ot <- rep(0,m)
      
      ## Hebbian Iteration
      for (i in 1:m)
        { 
          ## compute y output
          etkm <- as.vector(kernelFast(kernel,x,x[i,,drop=FALSE], a))
          sum1 <- as.vector(etkm %*% A)
          sum2 <- as.vector(eskm%*%A)/m
          asum <- colSums(A)
          sum3 <- as.vector(eskm[i]*asum)/m
          sum4 <- as.vector(eks * asum)/m^2
          y <- sum1 - sum2 - sum3 + sum4

          ## update A
          yy <- y%*%t(y)
          yy[upper.tri(yy)] <- 0
          tA <- t(A)
          A <- t(tA - eta * yy%*%tA)
          A[i,] <- A[i,] + eta * y
        }

      if (counter %% 100 == 0 )
        {
         step = mean(abs(Aold - A))
         Aold <- A
         if(verbose)
           cat("Iteration :", counter, "Converged :", step,"\n")
       }
      counter <- counter + 1
    }

  ## Normalize in Feature space
  cA <- t(A) - colSums(A)
  Fnorm <- rep(0,features)
  for (j in 1:m)
    Fnorm <- Fnorm + colSums(t(cA[,j] * cA) * as.vector(kernelFast(kernel,x,x[j,,drop=FALSE],a)))
  
  
  if(any(Fnorm==0))
    {
      warning("Normalization vector contains zeros, replacing them with ones")
      Fnorm[which(Fnorm==0)] <- 1
    }

  A <- t(t(A)/sqrt(Fnorm))
  
  pcv(ret) <- A
  eig(ret) <- Fnorm
  names(eig(ret)) <- paste("Comp.", 1:features, sep = "")
  eskm(ret) <- eskm
  kcall(ret) <- match.call()
  kernelf(ret) <- kernel
  xmatrix(ret) <- x
  return(ret)
})


## Project a new matrix into the feature space 
setMethod("predict",signature(object="kha"),
function(object , x)
  {
    if (!is.null(terms(object)))
      {
        if(!is.matrix(x))
          x <- model.matrix(delete.response(terms(object)), as.data.frame(x), na.action = n.action(object))
      }
    else
      x  <- if (is.vector(x)) t(t(x)) else as.matrix(x)

    if (is.vector(x)||is.data.frame(x))
      x<-as.matrix(x)
    if (!is.matrix(x)) stop("x must be a matrix a vector or a data frame")
    n <- nrow(x)
    m <- nrow(xmatrix(object))
    A <- pcv(object)
    y <- matrix(0,n,dim(A)[2])
    eks <- sum(eskm(object))
    a <- rowSums(xmatrix(object)^2)
    
    ## Project data
    sum2 <- as.vector(eskm(object)%*%A)/m
    asum <- colSums(A)

    sum4 <- as.vector(eks * asum)/m^2
        
    for (i in 1:n)
      {
        ## compute y output
        etkm <- as.vector(kernelFast(kernelf(object),xmatrix(object),x[i,,drop=FALSE], a))
        sum1 <- as.vector(etkm %*% A)
        sum3 <- sum(etkm)*asum/m
        y[i,] <- sum1 - sum2 - sum3 + sum4
      }

    return(y)
  })