1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
## kernel based on-line learning algorithms for classification, novelty detection and regression.
##
## created 15.09.04 alexandros
## updated
setGeneric("onlearn",function(obj, x, y = NULL, nu = 0.2, lambda = 1e-4) standardGeneric("onlearn"))
setMethod("onlearn", signature(obj = "onlearn"),
function(obj , x, y = NULL, nu = 0.2, lambda = 1e-4)
{
if(onstart(obj) == 1 && onstop(obj) < buffer(obj))
buffernotfull <- TRUE
else
buffernotfull <- FALSE
if(is.vector(x))
x <- matrix(x,,length(x))
d <- dim(x)[2]
for (i in 1:dim(x)[1])
{
xt <- x[i,,drop=FALSE]
yt <- y[i]
if(type(obj)=="novelty")
{
phi <- fit(obj)
if(phi < 0)
{
alpha(obj) <- (1-lambda) * alpha(obj)
if(buffernotfull)
onstop(obj) <- onstop(obj) + 1
else{
onstop(obj) <- onstop(obj)%%buffer(obj) + 1
onstart(obj) <- onstart(obj)%%buffer(obj) +1
}
alpha(obj)[onstop(obj)] <- lambda
xmatrix(obj)[onstop(obj),] <- xt
rho(obj) <- rho(obj) + lambda*(nu-1)
}
else
rho(obj) <- rho(obj) + lambda*nu
rho(obj) <- max(rho(obj), 0)
if(onstart(obj) == 1 && onstop(obj) < buffer(obj))
fit(obj) <- drop(kernelMult(kernelf(obj), xt, matrix(xmatrix(obj)[1:onstop(obj),],ncol=d), matrix(alpha(obj)[1:onstop(obj)],ncol=1)) - rho(obj))
else
fit(obj) <- drop(kernelMult(kernelf(obj), xt, xmatrix(obj), matrix(alpha(obj),ncol=1)) - rho(obj))
}
if(type(obj)=="classification")
{
if(is.null(pattern(obj)) && is.factor(y))
pattern(obj) <- yt
if(!is.null(pattern(obj)))
if(pattern(obj) == yt)
yt <- 1
else yt <- -1
phi <- fit(obj)
alpha(obj) <- (1-lambda) * alpha(obj)
if(yt*phi < rho(obj))
{
if(buffernotfull)
onstop(obj) <- onstop(obj) + 1
else{
onstop(obj) <- onstop(obj)%%buffer(obj) + 1
onstart(obj) <- onstart(obj)%%buffer(obj) +1
}
alpha(obj)[onstop(obj)] <- lambda*yt
b(obj) <- b(obj) + lambda*yt
xmatrix(obj)[onstop(obj),] <- xt
rho(obj) <- rho(obj) + lambda*(nu-1) ## (1-nu) ??
}
else
rho(obj) <- rho(obj) + lambda*nu
rho(obj) <- max(rho(obj), 0)
if(onstart(obj) == 1 && onstop(obj) < buffer(obj))
fit(obj) <- drop(kernelMult(kernelf(obj), xt, xmatrix(obj)[1:onstop(obj),,drop=FALSE], matrix(alpha(obj)[1:onstop(obj)],ncol=1)) + b(obj))
else
fit(obj) <-drop(kernelMult(kernelf(obj), xt, xmatrix(obj), matrix(alpha(obj),ncol=1)) + b(obj))
}
if(type(obj)=="regression")
{
alpha(obj) <- (1-lambda) * alpha(obj)
phi <- fit(obj)
if(abs(-phi) < rho(obj))
{
if(buffernotfull)
onstop(obj) <- onstop(obj) + 1
else{
onstop(obj) <- onstop(obj)%%buffer(obj) + 1
onstart(obj) <- onstart(obj)%% buffer(obj) +1
}
alpha(obj)[onstop(obj)] <- sign(yt-phi)*lambda
xmatrix(obj)[onstop(obj),] <- xt
rho(obj) <- rho(obj) + lambda*(1-nu) ## (1-nu) ??
}
else{
rho(obj) <- rho(obj) - lambda*nu
alpha(obj)[onstop(obj)] <- sign(yt-phi)/rho(obj)
}
if(onstart(obj) == 1 && onstop(obj) < buffer(obj))
fit(obj) <- drop(kernelMult(kernelf(obj), xt, matrix(xmatrix(obj)[1:onstop(obj),],ncol=d), matrix(alpha(obj)[1:onstop(obj)],ncol=1)) + b(obj))
else
fit(obj) <- drop(kernelMult(kernelf(obj), xt, xmatrix(obj), matrix(alpha(obj),ncol=1)) + b(obj))
}
}
return(obj)
})
setGeneric("inlearn",function(d, kernel = "rbfdot", kpar = list(sigma=0.1), type = "novelty", buffersize = 1000) standardGeneric("inlearn"))
setMethod("inlearn", signature(d = "numeric"),
function(d ,kernel = "rbfdot", kpar = list(sigma=0.1), type = "novelty", buffersize = 1000)
{
obj <- new("onlearn")
if(!is(kernel,"kernel"))
{
if(is(kernel,"function")) kernel <- deparse(substitute(kernel))
kernel <- do.call(kernel, kpar)
}
if(!is(kernel,"kernel")) stop("kernel must inherit from class `kernel'")
type(obj) <- match.arg(type,c("novelty","classification","regression"))
xmatrix(obj) <- matrix(0,buffersize,d)
kernelf(obj) <- kernel
onstart(obj) <- 1
onstop(obj) <- 1
fit(obj) <- 0
b(obj) <- 0
alpha(obj) <- rep(0, buffersize)
rho(obj) <- 0
buffer(obj) <- buffersize
return(obj)
})
setMethod("show","onlearn",
function(object){
cat("On-line learning object of class \"onlearn\"","\n")
cat("\n")
cat(paste("Learning problem :", type(object), "\n"))
cat
cat(paste("Data dimensions :", dim(xmatrix(object))[2], "\n"))
cat(paste("Buffersize :", buffer(object), "\n"))
cat("\n")
show(kernelf(object))
})
setMethod("predict",signature(object="onlearn"),
function(object, x)
{
if(is.vector(x))
x<- matrix(x,1)
d <- dim(xmatrix(object))[2]
if(type(object)=="novelty")
{
if(onstart(object) == 1 && onstop(object) < buffer(object))
res <- drop(kernelMult(kernelf(object), x, matrix(xmatrix(object)[1:onstop(object),],ncol= d), matrix(alpha(object)[1:onstop(object)],ncol=1)) - rho(object))
else
res <- drop(kernelMult(kernelf(object), x, matrix(xmatrix(object),ncol=d), matrix(alpha(object),ncol=1)) - rho(object))
}
if(type(object)=="classification")
{
if(onstart(object) == 1 && onstop(object) < buffer(object))
res <- drop(kernelMult(kernelf(object), x, matrix(xmatrix(object)[1:onstop(object),],ncol=d), matrix(alpha(object)[1:onstop(object)],ncol=1)) + b(object))
else
res <- drop(kernelMult(kernelf(object), x, matrix(xmatrix(object),ncol=d), matrix(alpha(object),ncol=1)) + b(object))
}
if(type(object)=="regression")
{
if(onstart(object) == 1 && onstop(object) < buffer(object))
res <- drop(kernelMult(kernelf(object), x, matrix(xmatrix(object)[1:onstop(object),],ncol=d), matrix(alpha(object)[1:onstop(object)],ncol=1)) + b(object))
else
res <- drop(kernelMult(kernelf(object), x, matrix(xmatrix(object),ncol=d), matrix(alpha(object),ncol=1)) + b(object))
}
return(res)
})
|