File: kernelMatrix.Rd

package info (click to toggle)
r-cran-kernlab 0.9-33-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,216 kB
  • sloc: cpp: 6,011; ansic: 935; makefile: 2
file content (148 lines) | stat: -rw-r--r-- 5,473 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
\name{kernelMatrix}
\alias{kernelMatrix}
\alias{kernelMult}
\alias{kernelPol}
\alias{kernelFast}
\alias{kernelPol,kernel-method}
\alias{kernelMatrix,kernel-method}
\alias{kernelMult,kernel-method}
\alias{kernelFast,kernel-method}
\alias{kernelMatrix,rbfkernel-method}
\alias{kernelMatrix,polykernel-method}
\alias{kernelMatrix,vanillakernel-method}
\alias{kernelMatrix,tanhkernel-method}
\alias{kernelMatrix,laplacekernel-method}
\alias{kernelMatrix,anovakernel-method}
\alias{kernelMatrix,splinekernel-method}
\alias{kernelMatrix,besselkernel-method}
\alias{kernelMatrix,stringkernel-method}
\alias{kernelMult,rbfkernel,ANY-method}
\alias{kernelMult,splinekernel,ANY-method}
\alias{kernelMult,polykernel,ANY-method}
\alias{kernelMult,tanhkernel,ANY-method}
\alias{kernelMult,laplacekernel,ANY-method}
\alias{kernelMult,besselkernel,ANY-method}
\alias{kernelMult,anovakernel,ANY-method}
\alias{kernelMult,vanillakernel,ANY-method}
\alias{kernelMult,character,kernelMatrix-method}
\alias{kernelMult,stringkernel,ANY-method}
\alias{kernelPol,rbfkernel-method}
\alias{kernelPol,splinekernel-method}
\alias{kernelPol,polykernel-method}
\alias{kernelPol,tanhkernel-method}
\alias{kernelPol,vanillakernel-method}
\alias{kernelPol,anovakernel-method}
\alias{kernelPol,besselkernel-method}
\alias{kernelPol,laplacekernel-method}
\alias{kernelPol,stringkernel-method}
\alias{kernelFast,rbfkernel-method}
\alias{kernelFast,splinekernel-method}
\alias{kernelFast,polykernel-method}
\alias{kernelFast,tanhkernel-method}
\alias{kernelFast,vanillakernel-method}
\alias{kernelFast,anovakernel-method}
\alias{kernelFast,besselkernel-method}
\alias{kernelFast,laplacekernel-method}
\alias{kernelFast,stringkernel-method}
\alias{kernelFast,splinekernel-method}

\title{Kernel Matrix functions}
\description{
  \code{kernelMatrix} calculates the kernel matrix \eqn{K_{ij} = k(x_i,x_j)} or \eqn{K_{ij} =
    k(x_i,y_j)}.\cr
  \code{kernelPol} computes the quadratic kernel expression  \eqn{H = z_i z_j
    k(x_i,x_j)}, \eqn{H = z_i k_j k(x_i,y_j)}.\cr
    \code{kernelMult} calculates the kernel expansion \eqn{f(x_i) =
      \sum_{i=1}^m z_i  k(x_i,x_j)}\cr
    \code{kernelFast} computes the kernel matrix, identical
    to \code{kernelMatrix}, except that it also requires the squared
    norm of the first argument as additional input, useful in iterative
    kernel matrix calculations.
 }
\usage{
\S4method{kernelMatrix}{kernel}(kernel, x, y = NULL)

\S4method{kernelPol}{kernel}(kernel, x, y = NULL, z, k = NULL)

\S4method{kernelMult}{kernel}(kernel, x, y = NULL, z, blocksize = 256)

\S4method{kernelFast}{kernel}(kernel, x, y, a)
}

\arguments{
  \item{kernel}{the kernel function to be used to calculate the kernel
    matrix.
  This has to be a function of class \code{kernel}, i.e. which can be
  generated either one of the build in 
  kernel generating functions (e.g., \code{rbfdot} etc.) or a user defined
  function of class \code{kernel} taking two vector arguments and returning a scalar.}
  \item{x}{a data matrix to be used to calculate the kernel matrix, or a
  list of vector when a \code{stringkernel} is used}
  \item{y}{second data matrix to calculate the kernel matrix, or a
  list of vector when a \code{stringkernel} is used}
  \item{z}{a suitable vector or matrix}
  \item{k}{a suitable vector or matrix}
  \item{a}{the squared norm of \code{x}, e.g., \code{rowSums(x^2)}}
  \item{blocksize}{the kernel expansion computations are done block wise
    to avoid storing the kernel matrix into memory. \code{blocksize}
    defines the size of the computational blocks.}
}
\details{
  Common functions used during kernel based computations.\cr
  The \code{kernel} parameter can be set to any function, of class
  kernel, which computes the inner product in feature space between two
  vector arguments. \pkg{kernlab} provides the most popular kernel functions
  which can be initialized by using the following
  functions:
    \itemize{
      \item \code{rbfdot} Radial Basis kernel function
      \item \code{polydot} Polynomial kernel function
      \item \code{vanilladot} Linear kernel function
      \item \code{tanhdot} Hyperbolic tangent kernel function
      \item \code{laplacedot} Laplacian kernel function
      \item \code{besseldot} Bessel kernel function
      \item \code{anovadot} ANOVA RBF kernel function
      \item \code{splinedot} the Spline kernel 
    }  (see example.)

    \code{kernelFast} is mainly used in situations where columns of the
    kernel matrix are computed per invocation. In these cases,
    evaluating the norm of each row-entry over and over again would
    cause significant computational overhead.
  }
  
\value{
  \code{kernelMatrix} returns a symmetric diagonal semi-definite matrix.\cr
  \code{kernelPol} returns a matrix.\cr
  \code{kernelMult} usually returns a one-column matrix.
}
\author{Alexandros Karatzoglou \cr
\email{alexandros.karatzoglou@ci.tuwien.ac.at}}


\seealso{\code{\link{rbfdot}}, \code{\link{polydot}},
  \code{\link{tanhdot}}, \code{\link{vanilladot}}}

\examples{
## use the spam data
data(spam)
dt <- as.matrix(spam[c(10:20,3000:3010),-58])

## initialize kernel function 
rbf <- rbfdot(sigma = 0.05)
rbf

## calculate kernel matrix
kernelMatrix(rbf, dt)

yt <- as.matrix(as.integer(spam[c(10:20,3000:3010),58]))
yt[yt==2] <- -1

## calculate the quadratic kernel expression
kernelPol(rbf, dt, ,yt)

## calculate the kernel expansion
kernelMult(rbf, dt, ,yt)
}
\keyword{algebra}
\keyword{array}