File: kpca.Rd

package info (click to toggle)
r-cran-kernlab 0.9-33-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,216 kB
  • sloc: cpp: 6,011; ansic: 935; makefile: 2
file content (130 lines) | stat: -rw-r--r-- 5,144 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
\name{kpca}
\alias{kpca}
\alias{kpca,formula-method}
\alias{kpca,matrix-method}
\alias{kpca,kernelMatrix-method}
\alias{kpca,list-method}
\alias{predict,kpca-method}
\title{Kernel Principal Components Analysis}
\description{
Kernel Principal Components Analysis is a nonlinear form of principal
component analysis.}
\usage{
\S4method{kpca}{formula}(x, data = NULL, na.action, ...)

\S4method{kpca}{matrix}(x, kernel = "rbfdot", kpar = list(sigma = 0.1),
    features = 0, th = 1e-4, na.action = na.omit, ...)

\S4method{kpca}{kernelMatrix}(x, features = 0, th = 1e-4, ...)

\S4method{kpca}{list}(x, kernel = "stringdot", kpar = list(length = 4, lambda = 0.5),
    features = 0, th = 1e-4, na.action = na.omit, ...)
}

\arguments{
  \item{x}{the data matrix indexed by row or a formula describing the
    model, or a kernel Matrix of class \code{kernelMatrix}, or a list of character vectors} 
\item{data}{an optional data frame containing the variables in
	  the model (when using a formula).}
	
	\item{kernel}{the kernel function used in training and predicting.
    This parameter can be set to any function, of class kernel, which computes a dot product between two
    vector arguments. kernlab provides the most popular kernel functions
    which can be used by setting the kernel parameter to the following
    strings:
    \itemize{
      \item \code{rbfdot} Radial Basis kernel function "Gaussian"
      \item \code{polydot} Polynomial kernel function
      \item \code{vanilladot} Linear kernel function
      \item \code{tanhdot} Hyperbolic tangent kernel function
      \item \code{laplacedot} Laplacian kernel function
      \item \code{besseldot} Bessel kernel function
      \item \code{anovadot} ANOVA RBF kernel function
      \item \code{splinedot} Spline kernel 
    }
    The kernel parameter can also be set to a user defined function of
    class kernel by passing the function name as an argument.
  }

  \item{kpar}{the list of hyper-parameters (kernel parameters).
    This is a list which contains the parameters to be used with the
    kernel function. Valid parameters for existing kernels are :
    \itemize{
      \item \code{sigma} inverse kernel width for the Radial Basis
      kernel function "rbfdot" and the Laplacian kernel "laplacedot".
      \item \code{degree, scale, offset} for the Polynomial kernel "polydot"
      \item \code{scale, offset} for the Hyperbolic tangent kernel
      function "tanhdot"
      \item \code{sigma, order, degree} for the Bessel kernel "besseldot". 
      \item \code{sigma, degree} for the ANOVA kernel "anovadot".
    }
    Hyper-parameters for user defined kernels can be passed through the
    kpar parameter as well.}
  
  \item{features}{Number of features (principal components) to
    return. (default: 0 , all)}

    \item{th}{the value of the eigenvalue under which principal
      components are ignored (only valid when features =  0). (default : 0.0001) }

  \item{na.action}{A function to specify the action to be taken if \code{NA}s are
          found. The default action is \code{na.omit}, which leads to rejection of cases
          with missing values on any required variable. An alternative
	  is \code{na.fail}, which causes an error if \code{NA} cases
	  are found. (NOTE: If given, this argument must be named.)}
    
  \item{\dots}{ additional parameters}

}
\details{Using kernel functions one can efficiently compute
  principal components in high-dimensional 
  feature spaces, related to input space by some non-linear map.\cr
  The data can be passed to the \code{kpca} function in a \code{matrix} or a
\code{data.frame}, in addition \code{kpca} also supports input in the form of a
kernel matrix of class \code{kernelMatrix} or as a list of character
vectors where a string kernel has to be used.
}
\value{
 An S4 object containing the principal component vectors along with the
 corresponding eigenvalues. 
  \item{pcv}{a matrix containing the principal component vectors (column
  wise)}
\item{eig}{The corresponding eigenvalues}
\item{rotated}{The original data projected (rotated) on the principal components}
\item{xmatrix}{The original data matrix}

all the slots of the object can be accessed by accessor functions.
}
\note{The predict function can be used to embed new data on the new space}
\references{
  Schoelkopf B., A. Smola, K.-R. Mueller :\cr
  \emph{Nonlinear component analysis as a kernel eigenvalue problem}\cr
  Neural Computation 10, 1299-1319\cr
  \doi{10.1162/089976698300017467}.
}
\author{Alexandros Karatzoglou \cr
\email{alexandros.karatzoglou@ci.tuwien.ac.at}}


\seealso{\code{\link{kcca}}, \code{pca}}
\examples{
# another example using the iris
data(iris)
test <- sample(1:150,20)

kpc <- kpca(~.,data=iris[-test,-5],kernel="rbfdot",
            kpar=list(sigma=0.2),features=2)

#print the principal component vectors
pcv(kpc)

#plot the data projection on the components
plot(rotated(kpc),col=as.integer(iris[-test,5]),
     xlab="1st Principal Component",ylab="2nd Principal Component")

#embed remaining points 
emb <- predict(kpc,iris[test,-5])
points(emb,col=as.integer(iris[test,5]))
}
\keyword{cluster}