1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
\name{kpca}
\alias{kpca}
\alias{kpca,formula-method}
\alias{kpca,matrix-method}
\alias{kpca,kernelMatrix-method}
\alias{kpca,list-method}
\alias{predict,kpca-method}
\title{Kernel Principal Components Analysis}
\description{
Kernel Principal Components Analysis is a nonlinear form of principal
component analysis.}
\usage{
\S4method{kpca}{formula}(x, data = NULL, na.action, ...)
\S4method{kpca}{matrix}(x, kernel = "rbfdot", kpar = list(sigma = 0.1),
features = 0, th = 1e-4, na.action = na.omit, ...)
\S4method{kpca}{kernelMatrix}(x, features = 0, th = 1e-4, ...)
\S4method{kpca}{list}(x, kernel = "stringdot", kpar = list(length = 4, lambda = 0.5),
features = 0, th = 1e-4, na.action = na.omit, ...)
}
\arguments{
\item{x}{the data matrix indexed by row or a formula describing the
model, or a kernel Matrix of class \code{kernelMatrix}, or a list of character vectors}
\item{data}{an optional data frame containing the variables in
the model (when using a formula).}
\item{kernel}{the kernel function used in training and predicting.
This parameter can be set to any function, of class kernel, which computes a dot product between two
vector arguments. kernlab provides the most popular kernel functions
which can be used by setting the kernel parameter to the following
strings:
\itemize{
\item \code{rbfdot} Radial Basis kernel function "Gaussian"
\item \code{polydot} Polynomial kernel function
\item \code{vanilladot} Linear kernel function
\item \code{tanhdot} Hyperbolic tangent kernel function
\item \code{laplacedot} Laplacian kernel function
\item \code{besseldot} Bessel kernel function
\item \code{anovadot} ANOVA RBF kernel function
\item \code{splinedot} Spline kernel
}
The kernel parameter can also be set to a user defined function of
class kernel by passing the function name as an argument.
}
\item{kpar}{the list of hyper-parameters (kernel parameters).
This is a list which contains the parameters to be used with the
kernel function. Valid parameters for existing kernels are :
\itemize{
\item \code{sigma} inverse kernel width for the Radial Basis
kernel function "rbfdot" and the Laplacian kernel "laplacedot".
\item \code{degree, scale, offset} for the Polynomial kernel "polydot"
\item \code{scale, offset} for the Hyperbolic tangent kernel
function "tanhdot"
\item \code{sigma, order, degree} for the Bessel kernel "besseldot".
\item \code{sigma, degree} for the ANOVA kernel "anovadot".
}
Hyper-parameters for user defined kernels can be passed through the
kpar parameter as well.}
\item{features}{Number of features (principal components) to
return. (default: 0 , all)}
\item{th}{the value of the eigenvalue under which principal
components are ignored (only valid when features = 0). (default : 0.0001) }
\item{na.action}{A function to specify the action to be taken if \code{NA}s are
found. The default action is \code{na.omit}, which leads to rejection of cases
with missing values on any required variable. An alternative
is \code{na.fail}, which causes an error if \code{NA} cases
are found. (NOTE: If given, this argument must be named.)}
\item{\dots}{ additional parameters}
}
\details{Using kernel functions one can efficiently compute
principal components in high-dimensional
feature spaces, related to input space by some non-linear map.\cr
The data can be passed to the \code{kpca} function in a \code{matrix} or a
\code{data.frame}, in addition \code{kpca} also supports input in the form of a
kernel matrix of class \code{kernelMatrix} or as a list of character
vectors where a string kernel has to be used.
}
\value{
An S4 object containing the principal component vectors along with the
corresponding eigenvalues.
\item{pcv}{a matrix containing the principal component vectors (column
wise)}
\item{eig}{The corresponding eigenvalues}
\item{rotated}{The original data projected (rotated) on the principal components}
\item{xmatrix}{The original data matrix}
all the slots of the object can be accessed by accessor functions.
}
\note{The predict function can be used to embed new data on the new space}
\references{
Schoelkopf B., A. Smola, K.-R. Mueller :\cr
\emph{Nonlinear component analysis as a kernel eigenvalue problem}\cr
Neural Computation 10, 1299-1319\cr
\doi{10.1162/089976698300017467}.
}
\author{Alexandros Karatzoglou \cr
\email{alexandros.karatzoglou@ci.tuwien.ac.at}}
\seealso{\code{\link{kcca}}, \code{pca}}
\examples{
# another example using the iris
data(iris)
test <- sample(1:150,20)
kpc <- kpca(~.,data=iris[-test,-5],kernel="rbfdot",
kpar=list(sigma=0.2),features=2)
#print the principal component vectors
pcv(kpc)
#plot the data projection on the components
plot(rotated(kpc),col=as.integer(iris[-test,5]),
xlab="1st Principal Component",ylab="2nd Principal Component")
#embed remaining points
emb <- predict(kpc,iris[test,-5])
points(emb,col=as.integer(iris[test,5]))
}
\keyword{cluster}
|