1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
\name{kqr}
\alias{kqr}
\alias{kqr,formula-method}
\alias{kqr,vector-method}
\alias{kqr,matrix-method}
\alias{kqr,list-method}
\alias{kqr,kernelMatrix-method}
\alias{coef,kqr-method}
\alias{show,kqr-method}
\title{Kernel Quantile Regression.}
\description{The Kernel Quantile Regression algorithm \code{kqr} performs
non-parametric Quantile Regression.}
\usage{
\S4method{kqr}{formula}(x, data=NULL, ..., subset, na.action = na.omit, scaled = TRUE)
\S4method{kqr}{vector}(x,...)
\S4method{kqr}{matrix}(x, y, scaled = TRUE, tau = 0.5, C = 0.1, kernel = "rbfdot",
kpar = "automatic", reduced = FALSE, rank = dim(x)[1]/6,
fit = TRUE, cross = 0, na.action = na.omit)
\S4method{kqr}{kernelMatrix}(x, y, tau = 0.5, C = 0.1, fit = TRUE, cross = 0)
\S4method{kqr}{list}(x, y, tau = 0.5, C = 0.1, kernel = "strigdot",
kpar= list(length=4, C=0.5), fit = TRUE, cross = 0)
}
\arguments{
\item{x}{e data or a symbolic description of the model to be fit.
When not using a formula x can be a matrix or vector containing
the training data or a kernel matrix of class \code{kernelMatrix}
of the training data or a list of character vectors (for use
with the string kernel). Note, that the intercept is always
excluded, whether given in the formula or not.}
\item{data}{an optional data frame containing the variables in the model.
By default the variables are taken from the environment which
\code{kqr} is called from.}
\item{y}{a numeric vector or a column matrix containing the response.}
\item{scaled}{A logical vector indicating the variables to be
scaled. If \code{scaled} is of length 1, the value is recycled as
many times as needed and all non-binary variables are scaled.
Per default, data are scaled internally (both \code{x} and \code{y}
variables) to zero mean and unit variance. The center and scale
values are returned and used for later predictions. (default: TRUE)}
\item{tau}{the quantile to be estimated, this is generally a number
strictly between 0 and 1. For 0.5 the median is calculated.
(default: 0.5)}
\item{C}{the cost regularization parameter. This parameter controls
the smoothness of the fitted function, essentially higher
values for C lead to less smooth functions.(default: 1)}
\item{kernel}{the kernel function used in training and predicting.
This parameter can be set to any function, of class kernel, which computes a dot product between two
vector arguments. \code{kernlab} provides the most popular kernel functions
which can be used by setting the kernel parameter to the following
strings:
\itemize{
\item \code{rbfdot} Radial Basis kernel function "Gaussian"
\item \code{polydot} Polynomial kernel function
\item \code{vanilladot} Linear kernel function
\item \code{tanhdot} Hyperbolic tangent kernel function
\item \code{laplacedot} Laplacian kernel function
\item \code{besseldot} Bessel kernel function
\item \code{anovadot} ANOVA RBF kernel function
\item \code{splinedot} Spline kernel
\item \code{stringdot} String kernel
}
The kernel parameter can also be set to a user defined function of
class kernel by passing the function name as an argument.
}
\item{kpar}{the list of hyper-parameters (kernel parameters).
This is a list which contains the parameters to be used with the
kernel function. Valid parameters for existing kernels are :
\itemize{
\item \code{sigma} inverse kernel width for the Radial Basis
kernel function "rbfdot" and the Laplacian kernel "laplacedot".
\item \code{degree, scale, offset} for the Polynomial kernel "polydot"
\item \code{scale, offset} for the Hyperbolic tangent kernel
function "tanhdot"
\item \code{sigma, order, degree} for the Bessel kernel "besseldot".
\item \code{sigma, degree} for the ANOVA kernel "anovadot".
\item \code{lenght, lambda, normalized} for the "stringdot" kernel
where length is the length of the strings considered, lambda the
decay factor and normalized a logical parameter determining if the
kernel evaluations should be normalized.
}
Hyper-parameters for user defined kernels can be passed
through the \code{kpar} parameter as well. In the case of a Radial
Basis kernel function (Gaussian) kpar can also be set to the
string "automatic" which uses the heuristics in 'sigest' to
calculate a good 'sigma' value for the Gaussian RBF or
Laplace kernel, from the data. (default = "automatic").
}
\item{reduced}{use an incomplete cholesky decomposition to calculate a
decomposed form \eqn{Z} of the kernel Matrix \eqn{K} (where \eqn{K = ZZ'}) and
perform the calculations with \eqn{Z}. This might be useful when
using \code{kqr} with large datasets since normally an n times n
kernel matrix would be computed. Setting \code{reduced} to \code{TRUE}
makes use of \code{csi} to compute a decomposed form instead and
thus only a \eqn{n \times m} matrix where \eqn{m < n} and \eqn{n} the sample size is
stored in memory (default: FALSE)}
\item{rank}{the rank m of the decomposed matrix calculated when using an
incomplete cholesky decomposition. This parameter is only
taken into account when \code{reduced} is \code{TRUE}(default :
dim(x)[1]/6)}
\item{fit}{indicates whether the fitted values should be computed and
included in the model or not (default: 'TRUE')}
\item{cross}{if a integer value k>0 is specified, a k-fold cross
validation on the training data is performed to assess the
quality of the model: the Pinball loss and the for quantile regression}
\item{subset}{An index vector specifying the cases to be used in the
training sample. (NOTE: If given, this argument must be
named.)}
\item{na.action}{A function to specify the action to be taken if \code{NA}s are
found. The default action is \code{na.omit}, which leads to
rejection of cases with missing values on any required variable. An
alternative is \code{na.fail}, which causes an error if \code{NA}
cases are found. (NOTE: If given, this argument must be named.)}
\item{\dots}{additional parameters.}
}
\details{In quantile regression a function is fitted to the data so that
it satisfies the property that a portion \eqn{tau} of the data
\eqn{y|n} is below the estimate. While the error bars of many
regression problems can be viewed as such estimates quantile
regression estimates this quantity directly. Kernel quantile regression
is similar to nu-Support Vector Regression in that it minimizes a
regularized loss function in RKHS. The difference between nu-SVR and
kernel quantile regression is in the type of loss function used which
in the case of quantile regression is the pinball loss (see reference
for details.). Minimizing the regularized loss boils down to a
quadratic problem which is solved using an interior point QP solver
\code{ipop} implemented in \code{kernlab}.
}
\value{
An S4 object of class \code{kqr} containing the fitted model along with
information.Accessor functions can be used to access the slots of the
object which include :
\item{alpha}{The resulting model parameters which can be also accessed
by \code{coef}.}
\item{kernelf}{the kernel function used.}
\item{error}{Training error (if fit == TRUE)}
see \code{kqr-class} for more details.
}
\references{Ichiro Takeuchi, Quoc V. Le, Timothy D. Sears, Alexander J. Smola\cr
\emph{Nonparametric Quantile Estimation}\cr
Journal of Machine Learning Research 7,2006,1231-1264 \cr
\url{https://www.jmlr.org/papers/volume7/takeuchi06a/takeuchi06a.pdf}
}
\author{Alexandros Karatzoglou \cr \email{alexandros.karatzoglou@ci.tuwien.ac.at}}
\seealso{\code{\link{predict.kqr}}, \code{\link{kqr-class}}, \code{\link{ipop}}, \code{\link{rvm}}, \code{\link{ksvm}}}
\examples{
# create data
x <- sort(runif(300))
y <- sin(pi*x) + rnorm(300,0,sd=exp(sin(2*pi*x)))
# first calculate the median
qrm <- kqr(x, y, tau = 0.5, C=0.15)
# predict and plot
plot(x, y)
ytest <- predict(qrm, x)
lines(x, ytest, col="blue")
# calculate 0.9 quantile
qrm <- kqr(x, y, tau = 0.9, kernel = "rbfdot",
kpar= list(sigma=10), C=0.15)
ytest <- predict(qrm, x)
lines(x, ytest, col="red")
# calculate 0.1 quantile
qrm <- kqr(x, y, tau = 0.1,C=0.15)
ytest <- predict(qrm, x)
lines(x, ytest, col="green")
# print first 10 model coefficients
coef(qrm)[1:10]
}
\keyword{regression}
\keyword{nonlinear}
\keyword{methods}
|